236004: Transformers and Attention-based Networks

Winter 2023-24

Staff

Instructor Office location & hours

Gilad Levy
Assaf Schuster
Yonatan Belinkov

TBA
TBA

General information

Description

Since their first appearance back in 2017 in the paper "Attention is all you need" <u>Vaswani et al. 2017</u>, Transformers became the standard model for almost every task in Deep Learning. This course will cover the components that the transformers is comprised of and the part each one plays in the complete function of the model as well as advanced/SOTA Transformer-based methods for various tasks.

Expectations and goals

- 1. Review the fundamentals of Deep Learning and explain the different pros and cons of different models in the context of the Transformer and Attention in general.
- 2. Train various Deep neural networks and analyze the various challenges that arise when using them.
- 3. Construct/Modify Transformer-based networks and apply them on different domains.
- 4. Explain the reasons for success/failure in a network from a more theoretical point of view while utilizing fundamental concepts such as manifolds.

Grading

Students will be graded based mainly on a final project as well as several short assignments.

Course materials

Required materials

- 236756 - Intro to ML

And at least one of the following courses:

- 236781 Deep learning on computational accelerators
- 236299 Natural language processing

Optional materials

This is an advanced course in Deep Learning which assumes an understanding of the fundamentals of deep learning and as such the course 236781- Deep learning on computational accelerators is recommended. Additionally, familiarity with Python and Pytorch specifically is assumed as we will rely heavily on Pytorch based models and implementations.

Course schedule (Order TBA)

Week	Topic	Reading	Exercises
Week 1	Attention	Attention is all you need	ТВА
Week 2	Transformers	Attention is all you need	ТВА
Week 3	Encoder-Decoder models	Exploring the Limits of Transfer Learning with a Unified Texto-Text Transformer	
Week 4	Generative models	Language Models are Few-Shot Learners	ТВА
Week 5	In-context learning	How does in-contex learning work? A framework for understanding the differences from traditional supervised learning	t <mark>TBA</mark>
Week 6	Encoder-only models	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	TBA
Week 7	Vision	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	ТВА
Week 8	Multi-modality	Learning Transferable Visual Models From Natura Language Supervision	TBA L
Week 9	Sparsity, architecture and scaling	 FlashAttention: Fast and Memory- Efficient Exact Attention with IO- Awareness Switch Transformers: Scaling to Trillion 	TBA

Week	Topic	Reading	Exercises	
		Parameter Models with Simple and Efficient Sparsity		
Week 10	Expressivity and interpretability	ТВА	TBA	
Week 11	RL & transformers	 Reinforce nt Learning from Hum Feedback Decision Transform Reinforce nt Learning via Seque Modeling 	ng nan ner: me ng	
Week 12	Projects			
Week 13	Projects			

Additional information and resources

Reading materials

- "Attention is all you need" <u>Vaswani et al. 2017</u> is the fundamental paper which introduced transformers and we highly recommend reading it thoroughly.
- <u>The Illustrated Transformer</u> A carefully constructed blog which goes into the full details of the Transformer with many helpful visuals.