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Contributions
• A stochastic image denoising scheme producing visually pleasing images while ensuring high PSNR performance

• A revision of CGAN training framework which alleviates mode collapse

• A simple way to traverse the perception-distortion tradeoff at inference time

Background

Problem Statement: Given a noisy image y of a clean source x, obtain x̂, a natural looking image "close" to x

Solution: Sample from the posterior distribution x̂ ∼ Px|y , which is known to produce perfect perceptual quality images with

MSE performance twice that of the MMSE estimator [1]

Method

Loss: We sample from the posterior by optimizing the CGAN objective [3] LCGAN . We introduce an additional penalty term

which maintains the global optimum of LCGAN but significantly eases training and avoids mode collapse:

θ
∗
= argmin

θ
LCGAN + λEx,y

[
‖x − Ez [Gθ(z,y)|y]‖2

2

]

Architecture: Inspired by StyleGAN2 [2] and UNet [4], our denoiser is an encoder-decoder deep neural network:

• The encoder gradually down-scales the input image to extract both global and local details. The features of each down-scaling

stage are passed to the corresponding stage of the decoder

• The decoder transforms the features of each stage into a “residual” RGB image, which is added to the up-sampled version of

the RGB image from the previous stage

• Stochastic noise is injected at each stage of the decoder to generate scale-specific details in the denoised image

Experiments: visual comparison
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Experiments: stochastic variation of our denoiser
Denoised Samples

Clean σ = 75 ︷ ︸︸ ︷ Std Dev

Traversing the percetion-distortion tradeoff
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FID versus PSNR performance (σ = 50)

Varying σz Varying N MSE Methods

We traverse the perception distortion tradeoff by varying at

inference time:

• σz, the standard deviation of the noise injected to our

stochastic denoiser

• N , the number of instances that are being averaged to

produce the resulting image

PSNR and FID comparison

σ
One instance 64 instances mean Ours-MSE DnCNN

PSNR FID PSNR FID PSNR FID PSNR FID

25 29.19 12.66 ± 0.07 31.46 27.48 31.83 31.48 31.77 36.80

50 25.83 15.18 ± 0.15 28.28 31.81 28.44 41.56 28.30 42.97

75 24.09 15.78 ± 0.13 26.57 34.64 26.81 46.31 26.46 47.69

Did we really obtain a denoiser?

We confirm that our denoiser does not generate improper

details by assessing the following properties both globally

and locally:

• The remainder noise y − x̂ should be normally dis-

tributed

• The “energy” (L2 norm) of the residual x− x̂ should

be much lower than that of the ground truth noise
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