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Contributions Experiments: visual comparison

e A stochastic image denoising scheme producing visually pleasing images while ensuring high PSNR performance
e A revision of CGAN training framework which alleviates mode collapse

e A simple way to traverse the perception-distortion tradeoff at inference time

Background

Problem Statement: Given a noisy image y of a clean source x, obtain X, a natural looking image "close" to x
Solution: Sample from the posterior distribution X ~ [P

MSE performance twice that of the MMSE estimator [1]

x|y» Which 18 known to produce perfect perceptual quality images with

Noisy

Loss: We sample from the posterior by optimizing the CGAN objective [3] Loaa n. We introduce an additional penalty term

which maintains the global optimum of £~ G 4 n but significantly eases training and avoids mode collapse:

One instance of
our denoiser

0% _ arg min Logan + Ax,y [||x — E, [Go(z, y)ly]ll?]

Architecture: Inspired by StyleGAN2 [2] and UNet [4], our denoiser 1s an encoder-decoder deep neural network:
e The encoder gradually down-scales the input image to extract both global and local details. The features of each down-scaling
stage are passed to the corresponding stage of the decoder

The decoder transforms the features of each stage into a “residual” RGB 1image, which 1s added to the up-sampled version of

The mean of f64
nstances o
our denoiser

the RGB 1image from the previous stage

Stochastic noise 1s injected at each stage of the decoder to generate scale-specific details in the denoised image

Ours-MSE

Std Dev

DnCNN [5]

PSNR and FID comparison

FID versus PSNR performance (o = 50)

| | DnC‘NN A PSNR FID PSNR FID PSNR FID

Ours-MSE A
o 29.19 12.66 + 0.07 31.46 27.48 31.83 31.48
25.83 15.18 = 0.15 28.28 31.81 28.44 41.56

24.09 15.78 = 0.13 26.57 34.64 26.81 46.31

One instance 64 instances mean Ours-MSE

Did we really obtain a denoiser?

Density of the global RMSE (o = 75)
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We confirm that our denoiser does not generate improper

—@— Varying o, —— Varying N A MSE Methods details by assessing the following properties both globally
and locally:
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Probability Density

e The remainder noise y — X should be normally dis-

-

We traverse the perception distortion tradeoff by varying at

inference time: tributed 0.10 0.20 0.30

(14 29 ° ~ RMSE
® o0, the standard deviation of the noise injected to our e The “energy” (L2 norm) of the residual x — X should

stochastic denoiser be much lower than that of the ground truth noise Energy of x — X

e [NV, the number of instances that are being averaged to Energy of y — X

Energy of the ground truth noise

produce the resulting image
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