Multi-Agent Terraforming
Efficient Multi-Agent Path Finding via Environment Manipulation
David Vainshtein, Oren Salzman
Computational Robotics Lab, Technion

Motivation
Multi-Agent Path Finding (MAPF) is used to model smart warehouses, such as those of Amazon. Agents are tasked with carrying shelves to their destination.

The MAPF Problem

Given a graph $G = (V, E)$ with static obstacles, find collision-free paths $\pi = (\pi_1, ..., \pi_n)$ for agents $A = (a_1, ..., a_k)$.

Optimal & complete algorithm:
- Convert movable obstacles (new)
- Initialize root node R
- Detect conflicts $(u_i, v_j, t_i) \text{ or } (v_j, u_i, t_j)$
- Compute flowtime f_{flowtime}
- Exact best-first search
- Constrain child node & replan

Solution quality is determined by:
- The flowtime as the sum of individual path costs $\sum_{i=1}^{n} |\pi_i|$.
- Agent-to-agent interactions → Congestion, delays and detours.

The total task delay as the latency $= \sum_{i=1}^{n} |\pi_i|$, where π_i is the optimal path of agent a_i if all collisions are ignored.

Key Insight
Agents that carry shelves can create shortcuts for efficiency. A shortcut can serve multiple agents, lowering flowtime and reducing latency.

Terraforming

Given a MAPF problem for graph G, agents A, and movable obstacles $\mathcal{O} = \{o_1, ..., o_k\}$, find the optimal plan π.

Displacing an obstacle incurs a cost that accounts towards the total cost and the obstacle must be returned to its original location. Idle obstacles do not accrue a cost.

Dynamic shortcut

Contribution
Terraforming the environment → enhance efficiency:
- Lowering flowtime and reducing latency.
 - A novel formulation that can attain negative latency with shortcuts that cut through obstructed regions.
 - We present TF-CBS, a complete and optimal algorithm for solving the Terraforming problem.

Figure 1: MAPF task for agents a_1, a_2.

Figure 2: (a) Obstacles block the shortcut paths. (b) Optimal solution (static obstacles). (c) Solution a_1, a_2 with candidate shortcut.

Figure 3: (a) Solution a_1, a_2 without shortcut.

Figure 4: MAPF task with 54 agents.

See it in action!