
The Picnic Post-Quantum Signature
Scheme and its Security Analysis

Credit for some slides: Melissa Chase and Picnic team

Itai Dinur
Ben-Gurion University

Post-Quantum Cryptography

• Large-scale quantum computer could efficiently factor
large numbers and compute discrete logs
• Breaks hardness assumptions of all standardized public key

crypto (e.g., RSA, DSA, ECDSA)

• Goal of post-quantum crypto: design new schemes that:
• can be run on classical computer

• remain secure even if adversary has a quantum computer

Post-Quantum Crypto Standardization

• NIST (National Institute of Standards and Technology)
initiated post-quantum crypto standardization project
• Goal: standardize post-quantum crypto schemes by 2024
• Submission deadline: November 2017 (69 accepted)

• Why now? existing quantum computers extremely limited
• Some researchers believe that a fundamental public-key crypto

scheme may be broken by a quantum computer by 2030
• Designing and deploying (secure) cryptography is slow

Post-Quantum Crypto Standardization

• Scope:
• Digital signatures
• Public-key encryption
• Key-establishment

• Main selection criteria
• Security against both classical and quantum attacks
• Performance on various "classical" platforms

Post-Quantum Crypto Design

• Factoring and discrete log are not hard problems on a
quantum computer

• (Conjectured) hard problems:
• Problems on algebraic structures (lattices, codes, Multi-variate

polynomials…)
• Symmetric-key algorithms (hash functions, block ciphers,

pseudo-random generators)

Signatures from Symmetric-Key Algorithms

• In this talk: focus on signature schemes
• Can be built using symmetric-key algorithms:
• Hash-based signatures based on Lamport’s one-time

signatures (1979)
• Practical challenge: efficiency (+compatibility)
• A lot of progress in recent years

Picnic

Public key
size

Signature
size

Signing
time

Verification
time

Post-
quantum
security

ECDSA Small Small Fast Fast -

Picnic Small
(100’s bits)

Moderate
(10K’s bits)

Moderate
(ms’s)

Moderate
(ms’s)

+

• New signature scheme based on symmetric-key algorithms
• Submitted to NIST’s project

• Built completely differently from hash-based signatures
• New design: a lot of room for optimizations

Picnic Designers

In this Talk

• Basic design of Picnic
• Optimizations
• Security Analysis

Digital Signature Scheme
• A digital signature scheme defines 3 algorithms:
• Key generation algorithm (run by signer) outputs:

• SK (secret signing key)
• PK (public verification key)

• Signing algorithm (run by signer):
• Inputs: SK,m
• Output: signature s

• Verification algorithm (run by verifier):
• Inputs: PK,m,s
• Output: signature s on m “valid” or “not valid”

Picnic Signature Scheme: Overview

• PK = F(SK) for some function F
• F must be hard to invert (not leak SK)

• A signature is proof of knowledge of SK (with m as nonce)
• Proof (=signature) must not leak SK, so must be a zero

knowledge (ZK) proof

• Require:
• Hard to invert function F
• ZK proof system

Picnic Signature Scheme: Overview

• F is implemented using a block cipher
• Key generation algorithm:

• Choose random plaintext block p and key x for F and compute
y=F(x,p) (encrypt p using key x)

• SK=(p,x)
• PK=(p,y)

• sign((p,x),m)
• Output s = proof of knowledge of x such that y=F(x,p) (with m

as nonce)

y

p

x F

Picnic’s Zero Knowledge Proof
• Prove knowledge of x such that y=F(x,p) (with m as nonce)
• Represent F as a Boolean circuit C, with output y=y1,y2,…,ym

• Prove knowledge of x=x1,x2,…,xn such that y=C(x)
• Note: p is fixed (“hardwired to C”)

• Signer proves in ZK “I know x such that C(x)=y”

SK (private) PK (pubic)F,p (pubic)

Picnic’s Zero Knowledge Proof
• Building blocks:

• Multi-Party Computation (MPC-in-the-Head [IKOS07])
• Commitment scheme

SK (private) PK (pubic)F,p (pubic)

MPC (Multi-Party Computation)

• (Special) MPC Setting:
• Public Boolean circuit C, secret input value x

• t players, player i given input share 𝑤𝑖
0

• 𝑤1
0⊕𝑤2

0⊕…⊕𝑤𝑡
0 = 𝑥

• Goal: compute output shares 𝑤1
𝑁,𝑤2

𝑁, … , 𝑤𝑡
𝑁

• 𝑤1
𝑁⊕𝑤2

𝑁⊕…⊕𝑤𝑡
𝑁 = 𝐶(𝑥)

• Players communicate
• Privacy requirement:

• if t-1 players combine information, learn
nothing about x (or missing player’s share)

Hash-Based Commitment Scheme

• Committing to a value v
• Choose random string k
• Output commitment: z=H(v,k) for crypto hash function H

• Opening a commitment
• Reveal v,k
• Given z and v,k, anyone can verify that z=H(v,k)

• Hiding property: commitment z hides v
• Security property: Given commitment z to value v,

committer “cannot lie” about v

• In Picnic, signer proves “I know x such that C(x)=y”
• Assume signing\verification is an interactive process:

• Prover chooses t=3 random shares s.t. 𝑤1
0⊕𝑤2

0⊕𝑤3
0 = x

• Imagine t=3 parties each with input 𝑤𝑖
0

• Internally run MPC to compute 𝑤1
𝑁,𝑤2

𝑁,𝑤3
𝑁 s.t.

𝑤1
𝑁⊕𝑤2

𝑁⊕𝑤3
𝑁=C(x)=y

• For each player, commit to “view”:

• input 𝑤𝑖
0, randomness, states, messages sent and received

• Verifier chooses random challenge i ∈ {1,2,3}
• Prover reveals views of 2 players except i
• Verifier checks:

• (Partial) correctness of MPC computation
• Openings of 2 commitments

ZK from MPC: MPC-in-the-Head [IKOS07]

MPC-in-the-Head [IKOS07]

• Zero Knowledge: Verifier learns nothing about x by
privacy of MPC protocol (sees only 2 out of 3 views)

• Correctness: If prover knows x, can run MPC protocol
correctly and pass verification

MPC-in-the-Head [IKOS07]
• Soundness (proof convincing?):
• If prover doesn’t know x and tries to cheat, either:

• A player misbehaved
• 2 views are inconsistent

• Catch cheater with probability p=1/3
• Repeat R times to amplify p

• R=219 times for p = 1-(2/3)219 ≈ 1-2-128 (128-bit security)

• Why simulate 3 players?
• 2 players give soundness 0 (cannot check consistency)
• 4 players: better soundness 2/4 per run

but much more communication
• In general: all pairs communicate.
Communication increases quadratically
• More communication = larger proof =
larger signature, signing time

Removing Interaction

• Problem: signing\verification is not interactive
• How to generate R ``random’’ challenges i𝑟 ∈ {1,2,3} ?
• Solution: in sign((p,x),m) use Fiat-Shamir transform
• Generate challenges as H(commitments,m)

• Challenges pseudorandom and cannot be predicted

• Signature s includes for each run r=1,2,…,R:
• 3 commitments, views of 2 players except i𝑟

In this Talk

• Basic design of Picnic
• Optimizations
• Security Analysis

Picnic’s MPC Protocol (ZKBoo [GMO16])

• For each wire with Boolean value a in C: each player 1,2,3
holds wire with (resp.) Boolean value a1,a2,a3

• Invariant: for each wire with value a, a1⊕a2⊕a3=a
• Assume 2 players, XOR gate a⊕b=c
• Know that a1⊕a2=𝐚,b1⊕b2=b
• Need to define c1,c2 such that c1⊕c2=c

• Players don’t learn information
XOR

b

a
c

b1

a1 c1

b2

a2 c2

?

?

Picnic’s MPC Protocol (ZKBoo [GMO16])

• For each wire with Boolean value a in C: each player 1,2,3
holds wire with (resp.) Boolean value a1,a2,a3

• Invariant: for each wire with value a, a1⊕a2⊕a3=a
• Assume 2 players, XOR gate a⊕b=c
• Know that a1⊕a2=𝐚,b1⊕b2=b
• Need to define c1,c2 such that c1⊕c2=c

• Players don’t learn information

• Define: c1=a1⊕b1, c2=a2⊕b2

• c1⊕c2= (a1⊕b1)⊕(a2⊕b2)=
(a1⊕a2)⊕(b1⊕b2)=a⊕b=c

• XOR computation is local: No need to include
XOR outputs c1, c2 in signature
• Verifier computes outputs of XOR gates

from known inputs

XOR
b

a
c

XOR
b1

a1 c1

XOR
b2

a2 c2

Picnic’s MPC Protocol (ZKBoo [GMO16])

• Maintaining invariant for AND gates is more complicated
• Requires parties to communicate, generate random bits
• “MPC-in-the-head” optimizations:

• Player Pi only depends on player Pi+1

• Instead of sending messages: define current state of Pi

as function of previous state, current state of Pi+1

• Given (open) states of Pi , Pi+1, consistency can be checked by
verifier – no “messages” in signature (proof)

P1 P2

P3

Picnic’s MPC Protocol (ZKBoo [GMO16])

• AND gate implementation c=a∙b
• Parties generate random bits r1,r2,r3

c1=a1∙b1⊕a2∙b1⊕a1∙b2⊕r1⊕r2

c2=a2∙b2⊕a3∙b2⊕a2∙b3⊕r2⊕r3

c3=a3∙b3⊕a1∙b3⊕a3∙b1⊕r3⊕r1

• Assume views of P1,P2 opened
• Verifier checks consistency:
c1=a1∙b1⊕a2∙b1⊕a1∙b2⊕r1⊕r2

ANDb
a c

b3

a3 c3?
r3

b2

a2 c2?
r2

b1

a1 c1?
r1

P2P1

Picnic’s MPC Protocol (ZKBoo, ZKB++)

• XOR gates do not blow up signature, cheap to compute
• AND gates blow up signature size (randomness, additional

state), more expensive to compute
• Optimizations:

• Circuit C: Use (secure) block cipher with small number of AND
gates – LowMC [ARS+15]

• Randomness generation: each player generates (pseudo)
random bits deterministically using PRG from short random seed

• View of each open player (in signature) includes short seed
• Instead of random bits

In this Talk

• Basic design of Picnic
• Optimizations
• Security Analysis

Security Analysis ([D,Nadler 2018])

• Consider Picnic variant for 128-bit security
• Attacker given signature with R=219 partial MPC runs
• Each partial run r exposes 2 out of 3 player views

• Includes 2 random 128-bit seeds

• 3’rd seed unexposed – if revealed allows to easily
compute block cipher (signing) key

• Attack attempt: given run, guess unknown 128-bit seed
• Complexity: 2128

Security Analysis ([D,Nadler 2018])

• Multi-target attack:
• Given signature, store all R=219 runs
• Guess unopened player’s seed for one of 219 runs (targets)

• Complexity:
2128

219
≈ 2120

seed1 seed2 seed219…

seed guess

=?
=? =? =?

• Problem: how to detect seed guess = seedr?

• Seems impossible: MPC protects unopened player privacy

Security Analysis ([D,Nadler 2018])

• Subtlety: MPC protects player’s input, but not generated
random bits

c1=a1∙b1⊕a2∙b1⊕a1∙b2⊕r1⊕r2

c2=a2∙b2⊕a3∙b2⊕a2∙b3⊕r2⊕r3

c3=a3∙b3⊕a1∙b3⊕a3∙b1⊕r3⊕r1

• Assume P1,P2 opened. Goal: determine r3

• Assume a2=b2=0
• r3=c2⊕r2

Security Analysis ([D,Nadler 2018])

• Multi-target attack:

• Complexity:
2128

219
≈ 2120

• Problem: how to detect seed guess = seedr?
• For each run: compute PRG bits produced by unopen player

(PRG(seedr)), sort in table
• Compute PRG(seed guess), search in table

• In practice attack more complex
• For each run can compute different PRG output bits for

unopened player
• Simple sort-and-match doesn’t work

seed1 seed2 seed219…

seed guess

=?
=? =? =?

Security Analysis ([D,Nadler 2018])

• Generalization: given S signatures with S∙219 runs
• Signed by one or many users

• Attack complexity:
2128

S∙219
≈

2120

S
• E.g. given 245 signatures, security reduced from 2128 to 275

• Weakness exists in several related cryptosystems

• Fix (Picnic 2.0): salt PRG
• Player i in run r produces random bits using PRG(salti,r , seedi,r)
• Forces attacker to choose salt when evaluating PRG
• Can only compare with 1 target

Conclusions

• Picnic is a new promising post-quantum
signature scheme
• A lot of room for improvements

• Optimizes (traditionally) theoretical crypto for
practical use
• Requires care: consider “real world” attacks

Thanks for your attention!

