ArtiSketch: A System for Articulated Sketch Modeling

Zohar Levi
Technion

Craig Gotsman
Technion

Eurographics 2013
Sketch-Based Modeling

• Previous work:
 – 2D interaction (Teddy [Igarashi et al. 1999])
 – Predetermined views (orthographic)
 – Rigid object
Objective

• Exploit 2D articulated content (e.g. cartoon animations and sprites)
• Assumptions:
 – Articulated content (piecewise rigid)
 – The animation “imitates real-life”
• What is missing?
The Skeleton

- **Missing information:** camera transforms
- **Can the user supply somehow the missing info?** 3D skeleton!
A New Problem

• Input:
 – A set of F sketches
 – A skeleton in F (initial) poses
 – Correspondence

• Output:
 – Triangle mesh
 – Silhouettes of LBS fit sketch
System Outline

• Camera calibration
• Surface reconstruction
• Volume reduction
• Parts consolidation
Camera Calibration

• The user can’t be trusted!
• Objective: Maximize consistency between shape silhouette and sketch contour
• Voxel grid for visual hull carving (discretize camera rays)
• Camera transform = joint inverse transform
ICP-Based Approach

- Previous algorithms: texture, epipolar geometry
- Objective: Minimize Hausdorff distance between rays
- ICP iteration
 - Find correspondences between A-rays and B-rays
 - Optimize camera transformation
• Generalize: full skeleton, multiple cameras
• Perspective camera: camera dolly step

Camera B view
Surface Reconstruction

• LSM:
 – Chan-Vese, GAC, GVF, OMG...
Volume Reduction

• The visual hull = maximal volume
• The user meant something else...

Before

Circle

After

Heart
• Find rim paths (dynamic programming)
 – Silhouette cost
 – Proximity cost
 – Geodesic cost
 – Barycenter cost
 – Normal cost
• Bi-Laplacian equation
 – Anchors: rim points
Parts Consolidation

- Place a sphere at each joint
- Boolean union
- Bi-Laplacian equation
 - Variables: vertices inside spheres