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Abstract

This paper surveys recent results in the area of virtual path layout in ATM networks�
We present a model for the theoretical study of these layouts� the model amounts to
covering the network with simple paths� under various constraints� The constraints are the
hop count �the number of paths traversed between the vertices that have to communicate��
the load �the number of paths that share an edge or a vertex�� and the stretch factor �the
total length traversed between pairs of vertices� reduced by the distance between them��
We focus on the one�to�all �or broadcast� and the all�to�all communication problems� The
results are positive �design and analysis of virtual path layout schemes� including recursive
constructions� greedy and dynamic programming algorithms�� and negative �lower bounds
and NP�hardness�� The results are presented for a variety of cases� and involving various
parameters in such layouts�

� Introduction

��� Motivation

The advent of �ber optic media has dramatically changed the classical views on the role
and structure of digital communication networks� Speci�cally� the sharp distinction between
telephone networks� cable television networks� and computer networks� has been replaced by
a uni�ed approach�

The most prevalent solution for this new network challenge is called Asynchronous Transfer
Mode� or ATM for short� this is thoroughly described in the literature �see� e�g�� ��� �� ���� ATM
is based on relatively small �xed	size packets� termed cells� Each cell is routed independently�
based on two small routing �elds at the cell header� called virtual channel index �VCI� and
virtual path index �VPI�� At each intermediate switch� each of these �elds serves as an index to
a corresponding routing table� the routing is carried out in accordance to the predetermined
information in the appropriate entries�

Routing in ATM is hierarchical in the sense that the VCI of a cell is ignored as long as its
VPI is not null� This algorithm e
ectively creates two types of predetermined simple routes
in the network 	 namely� routes that are based on VPIs� called virtual paths or VP s� and
routes based on VCIs and VPIs� called virtual channels or VCs� VCs are used for connecting



network users �e�g�� a telephone call�� VP s are used for simplifying network management �
in particular� routing of VCs � Thus� the route of a VC may be viewed as a concatenation of
complete VP s�

As far as the mathematical model is concerned� for a given communication network� the
VP s form a virtual network on top of the physical one� which we term the virtual path layout
�VPL for short�� on the same vertices� but with a di
erent set of edges� which is typically a
superset of the original edges� Each VC is a simple path in this virtual network�

The VP layout must satisfy certain conditions to guarantee important performance aspects
of the network �see ��� �� for technical justi�cation of the model for ATM networks�� In
particular� there are restrictions on the following parameters�

The load� The number of virtual edges or vertices that share any physical edge� This number
determines the size of the VP routing tables� since at each incoming port which a VP
goes through� a separate entry is allocated for routing cells that belong to the VP �see
��� for a detailed description of the routing mechanism in ATM�� As the ATM standard
��� limits the maximum size of VP routing tables to ��� entries� this resource is critical
in networks with a few hundreds of vertices �see ��� for a justi�cation��

The hop count� The number of VPs which comprise the path of a VC in the virtual graph�
This parameter determines the e�ciency of the setup of a VC since the routing tables at
the end of each VP must be updated to support the new VC� The importance of a low
hop count to the e�ciency of the network is very high� especially for data applications
��� �� ���

The stretch factor� The ratio between the length of the path that a VC takes in the physical
graph and the shortest possible path between its endpoints� This parameter controls the
e�ciency of the utilization of the network� Most results in the literature deal with a
stretch factor of one� which is the case where the connection is done along shortest
paths�

In many works �e�g�� ��� �� �� ���� a general routing problem is solved using a simpler sub	
problem as a building block� In this sub	problem it is required to enable routing between all
vertices to a single vertex� rather than between any pair of vertices� This restricted problem
for the ATM VP layout problem is termed the rooted� or one�to�all� VPL problem ����

This paper surveys some recent results for the one	to	all and the all	to	all problems� The
results are usually of two types� either bounding the �maximum or average� load L as a
function of the other parameters �usually the number of vertices N and a bound H on the hop
count�� or bounding the maximum hop count H as a function of the other parameters �usually
the number of vertices N and a bound L on the maximum load�� For this latter problem� we
comment that� for the one	to	all problem this is equivalent to determining the radius of the
graph� formed by the virtual paths� that has to be embedded in the physical network� for the
all	to	all problem� this is equivalent to determining the diameter of this graph�

��� Related Works

A few works have tackled the VP layout problem� some of these works used empirical tech	
niques ��� ��� while others used theoretical analysis ��� ��� However� none of these works has



attempted to combinatorially characterize the optimal solution� in order to achieve a tight
upper bound for the problem� In addition� most of these works have considered only one of the
relevant performance measures� namely the worst	case load measure� Of particular practical
interest is the weighted hop count measure� since this determines the expected time for setting
up a connection between a pair of users� given the relative frequency of connection requests
between network vertices� A similar problem was empirically handled in ����

The VP layout problem is closely related to graph	embedding problems� since in both
cases it is required to embed one graph into another graph� However� while in most embedding
problems both graphs are given� here we are given only the physical �host� graph� and we can
choose the embedded graph� in addition to the choice of the embedding itself�

Most of the performance parameters are also di
erent between these cases�

� While the association between the host graph and the embedded graph is made by the
dilation parameter in embedding problems� it is made here by the stretch factor� In
other words� while for embedding problems it is important to minimize the length of
each individual embedded edge� for this kind of problems it is important to minimize the
length of paths�

� The hop count parameter is closely related to the distance in the virtual graph� However�
while the distance is de�ned with respect to only one of the graphs� the hop count depends
on the physical graph as well� unless the stretch factor is unbounded�

� The edge load parameter is identical to the congestion in embedding problems� The
di
erent terminology is due to the loaded meaning of congestion in the communication
literature�

These di
erences have a signi�cant impact on the techniques and results in this model�
Another problem related to those we survey here is that of keeping small routing tables for

routing in conventional computer networks� This problem has been widely studied ��� �� �� ��
�� �� ��� and has yielded interesting graph decompositions and structures� It di
ers� however�
from the problems we treat here in some major aspects which deemed most of these solutions
impractical for our purposes� The main di
erence stems from the fact that in our setting
there is no �exibility as to the routing scheme itself since it is already determined by the ATM
standard ����

A related criterion� minimizing the number of VP s to achieve a required maximal hop
count� is discussed in ��� mainly for database optimization purposes� where it yields very
di
erent results� For ATM� however� this criterion is of less importance since no such global
constraint exists�

The notion of forwarding index was studied for communication networks �see� e�g�� ��� ����
The forwarding index in a given network with a given set of paths corresponds to the load in
our case� in ��� the authors study load on vertices� while in ��� they study load on both vertices
and edges� However� these studies �that deal with the all	to	all problem� do not consider the
notion of hop count�

The rest of this survey is organized as follows� In Section � we present the mathematical
model� Section � contains the survey of research in this area� while in Section  we present in
more detail some of the recent results concerning chain networks� We conclude in Section �
with a summary of the results and a list of open problems�



� The Model

In this section we present the mathematical model� that was presented in ��� �� ��� We model
the underlying communication network as an undirected graph G � �V�E�� where the set V of
vertices corresponds to the set of switches� and the set E of edges to the set of physical links
between them� In addition� we are given a set � of pairs of distinct nodes in V � a communication
needs to be established between each of the pairs� A system �G � �V�E�� �� has been termed
a connection network in ��� ��� We concentrate on two extreme cases�

� The one�to�all case� in this case a connection is required from one speci�ed vertex to all
others� namely� � � f�r� u�ju� V� u �� rg� where r is the speci�ed vertex� usually termed
the root�

� The all�to�all case� in this case a connection is required between all pairs of vertices�
namely� � � f�v� u�jv� u � V� u �� vg�

In the following de�nitions� the network is meant to be G� while the set � corresponds to
either of the two cases above�

De�nition ��� A virtual path layout �VPL for short� � is a collection of simple paths in G�
termed virtual paths �VP s for short��

De�nition ��� The load L�e� of an edge e � E in a VPL � is the number of VP s � � �
that include e� � The load L�v� of a vertex v � V in a VPL � is the number of VP s � � �
that include v�

De�nition ��� The maximal edge load Lmax�� � of a VPL � is maxe�E L�e�� The maximal
vertex load of a VPL � is maxv�V L�e��

Unless otherwise speci�ed� the loads referred to in this survey are edge loads�

De�nition ��� The average �edge� load of a VPL � is

Lavg�� � � �

jEj
X
e�E

L�e��

De�nition ��	 The hop count H�u� v� between two vertices u� v � V in a VPL � is the
minimum number of VP s whose concatenation forms a path in G connecting u and v� If no
such VP s exist� de�ne H�u� v� � ��

De�nition ��
 The maximal hop count of a VPL � is

Hmax�� � � max
�u�v���

fH�u� v�g�

De�nition ��� Let � � �u� v� be a VP � Then the dilation of � � denoted j� j� is the number
of physical links that � traverses� Let � be a VPL � then the total load of � is Ltot�� � �P
��� j� j�
�This notion is also referred to as its congestion� or cutwidth �as used in other references��



In both problems� in order to minimize the load� one can use a VPL � which has a VP on
each physical link� i�e�� Lmax�� � � �� however such a layout has a large �O�N�� hop count� The
other extreme is connecting a direct VP from the root to each other vertex� yielding Hmax � �
but a large load �O�N� for the one	to	all problem and O�N�� for the all	to	all problem�� This
paper discusses recent results for intermediate cases� which suggest trade	o
s between these
two extreme cases� for various network topologies�

� Brief Survey

In this section we brie�y summarize recent results in this area� All of them use the model
presented in Section �� Some of the results are described in more details in Section �

We discuss the problems of one	to	all and all	to	all layouts� As it will become apparent from
the discussion� these problems are closely related to the radius and the diameter� respectively�
of the graph that represents the virtual paths that we are embedding within our physical
network �see especially the discussion in Section ��

Unless otherwise speci�ed� N denotes the number of vertices in a given network� and �
denotes the maximum degree of a vertex in it� in addition� H and L denote given upper bounds
for the hop count and for the load� respectively�

��� Chain Networks

�� One	to	all �or� broadcast��

�a� Recursive constructions with load bounded by H �N �

H are presented in ����

�b� Optimal constructions for chain networks with stretch factor of one are presented
in ���� and for a general stretch factor in ���� They are described in Sections ���

In both of these papers the results obtained are symmetric in the load and the
hop count� a simple explanation for these symmetries is provided in Section ���
following ����

�� All	to	all�

�a� In ��� the authors de�ne HopsN �L � as the maximal number of hops connecting
any pair of vertices in a chain �with N vertices� where the load is bounded by L ��
They prove that p

�N � � � HopsN��� �
p
�N � ��

and that
�

�
N

�

L � HopsN�L � � L �N �

L �

for any L � ��

�b� In ��� the all	to	all path layouts is studied using a geometric approach� For a
detailed discussion� see Section ��� Stated in graph	theoretic terms� these layouts
are translated into embeddings �or linear arrangements� of the vertices of a graph
with N vertices onto the points �� �� � � � � N of the x	axis� The authors pursue the
existence of a graph with minimum diameter DL �N� for which such an embedding



is possible� given a bound L on the cutwidth of the embedding� The results can be
summarized as follows� For an N 	vertex chain and for every L � ��

maxf�
�
��L � �N���L �L ��

�

�
�N��L ����

logN

log ��L � ��
g 	 DL �N� 	 �L � �N���L���

The relation of these results to those in ��� �� �� are summarized in Section ���

�c� In ��� it is shown that the hop count is �� logN
logL �� if L � log���N � for any �xed

� � ��

��� Ring Networks

�� In ��� the authors study chordal rings �a ring network enhanced by adding non	crossing
edges �chords��� express rings �chordal rings in which the chords are oriented either
clockwise or counterclockwise�� and multi�rings �in which subsidiary rings are appended
to edges of a ring and� recursively� to edges of appended subrings�� The authors �rst
demonstrate the topological equivalence of these structures� They then show that for
every N and L � there exists an N 	vertex express ring �with load bounded by L � and

whose diameter is bounded by ��
�

L � L �N �

L � �� and that there is no construction with

diameter smaller than L
��eN

�

L � The discussion involves geometric considerations that are
similar to those later used in ��� to obtain optimal constructions � see Section ���� The
relation between the diameter and the hop count is clear� see also ��� for more discussion
and results� It is also shown that the insistence that the arcs in an express ring be
non	crossing at most doubles the diameter of the augmented ring�

�� In ��� the all	to	all path layouts is studied for augmented ring and augmented path
networks �for more details� see Section ����

��� Tree Networks

�� In ��� ��� the authors describe a greedy algorithm to determine the existence of a one	
to	all layout in tree networks� which� for a given bound on the hop count� determines a
layout with smallest possible vertex load �for more algorithms of related problems� see
also ��� ���� This approach proved to be quite helpful for such constructions of virtual
layouts�

�� In ��� the authors �rst describe a recursive construction for a path layout for the one	

to	all problem with the load bounded by H �N �

H � A lower bound of �� �

���
�

H
�N �

H � is

also proved� This implies that for �realistic� networks the load is ��N
�

H ��

�� For the all	to	all problem an upper bound of H
���

�

H ���
N

�

H and a lower bound of �

����H �
�

H
N

�

H

are shown in ���� This proves that for �realistic� networks the load is ��N
�

H ��



��� Mesh Networks

�� In ��� the authors study constructions for the all	to	all problem on an a
 b mesh� They

show a construction that achieves a load of a
�
ha � where ha � H

log a

log b
��

� For an
p
N 


p
N

mesh this implies a bound of H
���

�

H ���
N

�

H �

�� In ��� the authors study the all	to	all problem� They de�ne Hopsa�b�L � to be the
maximal number of hops connecting any pair of vertices in an a 
 b mesh� They show

that Hopsk�n�L � � ��n
�

kL �� for a �xed k� and that Hopsn�n�L � � ��log n��

�� In ��� it is shown that the number of hops for the
p
N
pN mesh is �� logN

logL � for L � ��

for the all	to	all problem�

� In ��� �� a lower bound of ��� NH �
�

H � is shown for the one	to	all problem� together with

a construction with an upper bound of H �N �

H on the load� For the all	to	all problem

a construction with load bounded by � � �H	 � �� �N �

�H is shown�

��� General Networks

�� All	to	all�

�a� In ��� the authors describe a recursive construction� which� for a given k� yields a
layout with a stretch factor bounded by �k� and a vertex load bounded by O�H �k �
logN �N �

k
� �

H �� The technique uses ideas from ���� which seem to be quite useful
for these layout designs�

�b� In ��� the authors de�ne HopsN �L � to be the maximal number of hops connecting
any pair of vertices for a network with N vertices and a bound L for the load� They
show that HopsN�L � � logN

log��L �
��� for any L � �� We note that an identical lower

bound is presented in ����

�c� In ��� the authors construct a virtual path layout with hop count O�diam�G��log�

logL ��

where diam�G� is the diameter of the network G� and � � �� In the case of
unbounded degree networks with diameter O�logN�� these hop numbers are optimal
for any c � �� For any L � � and bounded degree network with diameter O�logN�
a construction is presented with hop count of �� logN

logL ��

�d� In ��� the authors describe a recursive construction for graphs with bounded

treewidth �see also ����� They show a construction with load bounded byO� k�H �N
�

H

�����
�
�

H ���
��

where k is the bound on the treewidth�

�� One	to	all�

�a� In ��� a recursive construction is presented� and a bound of
pHN�� �

H is shown on
the maximal load�



�b� Decision Problems�

In ���� the complexity of deciding the existence of layouts of one	to	all virtual paths
which have maximum hop count H and maximum �edge� load L � for a stretch
factor of one� has been studied� It is proved that the problem of determining the
existence of such layouts is NP	complete for any given values of H and L � except
for the cases where H � � and L � �� or H � � and any L � For these cases the
authors give polynomial	time layout constructions� these constructions follow from
polynomial time algorithms that compute maximum �ow�

In ��� it was shown that the problems of determining the existence of either a one	
to	all or an all	to	all layout of virtual paths� which has maximum hop count H and
maximum vertex load L � for an unbounded stretch factor� are both NP	complete�

�� In ���� the dynamic maintenance of virtual path layout is discussed� The authors describe
methods to adjust the layout of these paths to the dynamics of changes in the usage of
the networks by its end users�

� It is certainly of interest to consider problems other than the one	to	all or the all	to	
all� An interesting result� that gives a lower bound on the load� and also uses the total
number of pairs to be connected as a parameter� has been recently shown in ��� ��� The

lower bound shown is �
� � �

�H �NC

jCj � �
���

�

H � where C is a cut in the network and NC is
the number of pairs separated by this cut� between which a communication is required�

For the one	to	all problem� this implies a lower bound of �
��N�


��H �
�

H �

��� Miscellaneous

�� In ���� the problem of path layout is considered� under the assumption that the vertices
are of three types� those that can switch only virtual paths� those that can switch only
virtual channels� and those that can switch both� A few solutions are presented to this
problem� among them is a greedy algorithm� which optimizes the network overhead for
a request response and the utilization of bandwidth and routing table resources�

�� In ��� the authors present a measure of maximum vertex load �for more results in this
venue� see also ����� which is the total number of virtual paths that end at this vertex�
They show that determining the existence of a one	to	all layout for a given network� with
a vertex load bounded by L and a hop count bounded by H � is an NP	complete problem
for any H and L � except for the cases where H � � and any L � or H � � and L � �
�the proof techniques is borrowed from ����� Speci�c bounds are given for chain� mesh
and torus networks�

�� Planar graphs are studied in ���� for the all	to	all problem� a lower bound of �� ��N
�

�H �
on the load is shown�

� Other speci�c graphs are also considered in the literature� However� the area is still far
from being adequately explored� See� for example� ��� for the cases of the hypercube
and the de	Bruijn graphs�



� Detailed Description

In this section we �rst present in some more detail the structure of layouts for the one	to	all
problem on a chain network� for a stretch factor of either one or unbounded� These layouts
are optimal for the various measures� We then discuss the use of geometry in deriving optimal
bounds for the all	to	all problem in chains� augmented paths and ring networks�

��� The One�to�All Problem on Chain Networks

This simple topology� which is also quite practical� admits a precise treatment� as summarized
in this section�

We consider four performance measures� and achieve optimal solutions for each� These are
the maximum hop count and average hop count� denoted Hmax and Havg� respectively� and the
maximum load and average load� denoted Lmax and Lavg � respectively� All these measures have
practical implications in di
erent ways� As the hop count is proportional to the setup time of
a new connection� the worst	case hop measure represents �hard� deadlines for this overhead�
which are typical to real time applications� on the other hand� the average hop measure is
useful for general purpose networks� Since the load represents the utilization of the routing
tables� maximum load is important in cases where the layout is large and may over�ow the
limited space of routing entries ���� per routing table ����� whereas average load measures
are relevant for general purpose networks� in which many independent layouts may coexist in
an e
ort to minimize local bottlenecks at any location in the network� Given an upper bound
on the maximum hop count� we want to minimize the maximum load �Lmax� or the average
load �Lavg�� Given an upper bound on the maximum load� we want to minimize the maximum
hop count Hmax or the average hop count Havg �

The following discussion presents results that use shortest path layouts� These results have
been shown in ���� At the end of the section we mention extensions of these results� that yield
exact layouts for the case of a general stretch factor� In our discussion� N denotes the number
of vertices in the chain� and the layout is from the leftmost vertex to all others �the extension
for the case where the layout is to all vertices on the left and right is trivial� such extensions
are explicitly considered in ��� ����

We �rst establish a canonic form of a VPL � that will simplify the rest of the discussion�

Lemma ��� ����� Given a chain network� there exists� for each optimality measure �Lmax�
Lavg� Hmax� or Havg� an optimal VPL in which every vertex i � � is the right�most endpoint
of a single VP �

In other words� this VPL induces a tree rooted at vertex � with the VP s corresponding to
tree edges�

We proceed to de�ne an important class of VPL !s that do not �cross� each other�

De�nition ��� Let l� � l�� Two VP s denoted �l�� r�� and �l�� r�� constitute a crossing if
l� � l� � r� � r�� A VPL is called crossing	free if no pair of VP s constitute a crossing�

Theorem ��� ����� For each performance measure �Lmax� Hmax� Lavg� and Havg� there exists
an optimal VPL which is crossing�free�



InduceVPL�T �� Induce an VPL according to a tree T with N ver	
tices�

�� Label the vertices of T in depth	�rst order� Let ��u� be the
label of a vertex u � T � � 	 ��u� 	 N �

�� For every edge �u� v� � T connect a VP between ��u� and ��v��

�� Return � T � the collection of generated VP s�

Figure �� Procedure InduceVPL�T ��

Lemma �� implies that a VPL induces a tree� The next lemma shows that the converse holds
too� namely� any tree induces a VPL � The lemma refers to procedure InduceVPL�T � depicted
in Figure ��

Lemma ��� ����� Let T be an ordered tree� Then procedure InduceVPL�T � induces a crossing�
free VPL �

Figure � presents an example of how InduceVPL�T � runs on a speci�c ordered tree�
We now consider optimal VPL layouts for the worst	case �maximal� load and hop count

measures� Speci�cally� if the load is required to be Lmax 	 L � we characterize the layout with
the minimal worst	case hop count� similarly� if the hop count is Hmax 	 H � we characterize
the layout with the minimal worst	case load� This is done using a new class of trees T �L �H �
that we de�ne next� These trees contain all VPL s on a chain that satisfy the above constraints
on maximum load and maximum hop count�

De�nition ��	 The ordered tree T �L �H � is de�ned recursively as follows� The root r has L
children� The ith child from the left is the root of a T �i�H � �� subtree� for � 	 i 	 L � A tree
T �L � �� or T ���H � is a single vertex�

See Figure � for an illustration of De�nition ���
We remarks that an internal vertex of T �L �H �� which is the ith child �from the left� of its

parent� has i children� The tree T ���H � is a rooted chain of H � � vertices� Note also that
T �L �H � has height H and maximum degree L � It is possible to show�

Lemma ��
 ����� The tree T �L �H � contains
�L�H
H

�
vertices�

De�nition ��� An ordered tree T is subsumed in T �L �H � if its root is subsumed in the
root of T �L �H � and the subtrees of the root�s children in T are �recursively� subsumed in the
subtrees of a subset of the children of the root in T �L �H ��

It is easy to see that the VPL of a subsumed tree T has load and hop counts lower than those
of the tree T �L �H � it is subsumed in� since T may be obtained from T �L �H � by deleting
subtrees� The next corollary follows�

Corollary ��� Let T be an ordered tree that is subsumed in T �L �H �� and let � T � InduceVPL�T ��
Then� Lmax�� T � 	 L and Hmax�� T � 	 H �



Figure �� The tree T ��� �� and its induced VPL �



Lemma �� ����� For every crossing�free VPL �� with Lmax��� 	 L and Hmax��� 	 H
there exists a tree T which is subsumed in T �L �H � such that � � InduceVPL�T ��

Theorem ���� ����� Given N and L � Let H be such that�
L �H � �

L

�
� N 	

�
L �H
L

�
�

Then Hopt�N�L � � H �

A similar result holds for the maximum load measure�

Theorem ���� ����� Given N and H � let L be such that�
L �H � �

H

�
� N 	

�
L �H
H

�
�

Then Lopt�N�H � � L �

Given a chain with N � N�L �H �� there exists a unique VPL with Lmax�� � � L and
Hmax�� � � H � whereas several such VPL s exist for other values of N �that is� for values of N
such that N�L �H � �� � N � N�L �H ��� This symmetry is not a coincidence� as explained
in the sequel�

If N � N�L �H � then �H � �N���H � H��
� 	 L 	 �H � �N���H � �� This is an improvement

to the upper bound L 	 H �N��H shown in ���� since �H ����H � H for any H � ��
In ���� a greedy algorithm for �nding a VPL for the more general case of tree networks is

presented and shown to be optimal with respect to the Hmax measure� However� the algorithm
does not give insight into the structure of the obtained VPL � and� in particular� no upper
bound is easily derived from it� When N � N�L �H � the previous theorem gives a precise
characterization of this greedy solution� �In ��� the load is measured on the vertices rather than
on the edges� Thus� the greedy algorithm should be modi�ed to use the edge	load constraint�
We refer in the above to this modi�ed algorithm in the comparison��

We now turn to discuss the average load� We start with the case where the maximal
number of hops is limited to H � and it is required to �nd the layout with the smallest average
load� Our next de�nition is justi�ed by the fact that a layout � opt that minimizes Lavg also
minimizes its total load Ltot�� opt��

De�nition ���� Let Ltot�N�H � denote the minimal total load of any VPL on N vertices with
at most H hops� that is�

Ltot�N�H � � min
�
fLtot�� � � Hmax�� � 	 Hg�

The rationale behind our dynamic programming algorithm for �nding optimal Ltot �Lavg�
layouts is the following� Let � opt be the optimal VPL �that achieves Ltot�� opt� � Ltot�n�H ���
Let ��� d��� be the longest VP connected to the root � Since� by Theorem ��� we can assume
that � opt is crossing	free� it follows that no VP of � opt connects a vertex i 	 d with a vertex
j � d � �� thus � opt can be split into two disjoint optimal layouts� one on vertices �� � � � � d�



and the other on vertices d� �� � � � � N � However� the second layout �rooted at d� �� may use
only H � � hops since one hop is used to traverse the VP ��� d���� Thus� if d is known� then
the total load is equal to d� Ltot�d�H � � Ltot�N � d�H � ��� so clearly

Ltot�N�H � � min
��d�N��

fd� Ltot�d�H � � Ltot�N � d�H � ��g� ���

There are two simple "boundary� cases� �i� If � 	 N 	 H�� then clearly Ltot�N�H � � N�
�� �ii� If H � � then we must connect a direct VP to each vertex� so Ltot�N� �� � N�N� ��	��
The above argument leads to a natural dynamic programming algorithm� with time complexity
of O�N�H �� Moreover� the exact value of Ltot�N�H � can be determined as follows�

Theorem ���� ����� Given N and H � let L be the largest integer such that N � �L�HL
�
� and

let r � N � �L�HL
�
� Then

Ltot�N�H � � H
�
L �H
L � �

�
� r�L � ���

We now turn to study the �unweighted� average hops measure� assuming a maximum bound
L on the load� This problem can be solved by an algorithm similar to that for the case of the
average load�

De�nition ���� Consider a crossing�free optimal VPL � opt for a chain with n vertices and
maximum load L �which achieves the minimum Htot�� ��� De�ne Htot�N�L � � Htot�� opt��

Let ��� d� �� be the longest VP connected to the root� Again� it follows that there exists
no VP connecting the vertices �� � � � � d to the vertices d� �� � � � � N � thus� the layouts in these
two segments are disjoint and should both be optimal in � opt� In this case however� the layout
on the vertices �� ���� d should not exceed the load L � � �since together with the VP ��� d� the
load should not exceed L �� By the above discussion� it is evident that

Htot�N�L � � min
��d�N��

fHtot�d�L � �� � �N � d� �Htot�N � d�L �g� ���

The �rst and third components of the sum are the values of Htot in the two separate segments�
while the second component is the cost of an additional hop incurred by all vertices in the
segment d��� ���� N � The boundary conditions here amount to Htot�N� �� � N�N���	�� since
if the maximum load is � then the only possible VP s are identical to the network edges� also�
if N 	 L �� then Htot�N�L � � N � �� since we can then a
ord to construct direct VP s from
all vertices to the root�

A dynamic programming algorithm follows from the above recurrence relations� with time
complexity O�N�L �� Moreover� the exact value of Htot�N�L � can be determined� as follows�

Theorem ���	 ����� Let N and L be given� Let H be the maximal such that N � �L�HH
�
�

and let r � N � �L�HH
�
� Then

Htot�N�L � � L
�
L �H
H � �

�
� r�H � ���


