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Abstract. We show how duality properties and geometric considerati-
ons are used in studies related to virtual path layouts of ATM networks.
We concentrate on the one-to-many problem for a chain network, in
which one constructs a set of paths, that enable connecting one vertex
with all others in the network. We consider the parameters of load (the
maximum number of paths that go through any single edge) and hop
count (the maximum number of paths traversed by any single message).
Optimal results are known for the cases where the routes are shortest
paths and for the general case of unrestricted paths. These solutions are
symmetric with respect to the two parameters of load and hop count,
and thus suggest duality between these two. We discuss these dualities
from various points of view. The trivial ones follow from corresponding
recurrence relations and lattice paths. We then study the duality pro-
perties using trees; in the case of shortest paths layouts we use binary
trees, and in the general case we use ternary trees. In this latter case we
also use embedding into high dimensional spheres.
The duality nature of the solutions, together with the geometric ap-
proach, prove to be extremely useful tools in understanding and ana-
lyzing layout designs. They simplify proofs of known results (like the
best average case designs for the shortest paths case), enable derivation
of new results (like the best average case designs for the general paths
case), and improve existing results (like for the all-to-all problem).

1 Introduction

In path layouts for ATM networks pairs of nodes exchange messages along pre-
defined paths in the network, termed virtual paths. Given a physical network,
the problem is to design these paths optimally. Each such design forms a layout
of paths in the network, and each connection between two nodes must consist
of a concatenation of such virtual paths. The smallest number of these paths
between two nodes is termed the hop count for these nodes, and the load of a
layout is the maximum number of virtual paths that go through any (physical)
communication line. The two principal parameters that determine the optimality
of the layout are the maximum load of any communication line and the maximum
hop count between any two nodes. The hop count corresponds to the time to set
up a connection between the two nodes, and the load measures the size of the
routing tables at the nodes.

Following the model presented in [15,5], this problem has been studied from
various points of view (see also Section 8).
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Fig. 1. Tractability of the one-to-all problem

The existence of a design, with given bounds on the load L and the hop count
H between a given node and all the other nodes was shown to be NP-complete
except for few cases. This was studied in [7], and the results - whether the
problem is polynomially solvable or whether it is NP-complete - are summarized
in thetable depicted in Fig. 1 (a related NP-complete result was presented in
[15]).

Two basic problems that have been studied are the one-to-all (or broadcast)
problem (e.g., [5,13,11,6]), and the all-to-all problem (see, e.g., [5,11,16,17,1,6]),
in which one wishes to measure the hop count from one specified node (or all
nodes) in the network to all other nodes.

In this paper we focus on chain networks, with an emphasis on duality pro-
perties and the use of geometry in various analytic results. Considering a chain
network, where the leftmost vertex has to be the root (the one broadcasting to
all others using the virtual paths), and where each path traversed by a message
must be a shortest path, a family of ordered trees Tshort(L ,H ) was presented
in [13], within which an optimal solution can be found, for a chain of length

N , with N bounded by
(L+H

L
)
. This number, which is symmetric in H and

L , is also equal to the number of lattice paths from (0, 0) to (L ,H ), that use
horizontal and vertical steps. Optimal bounds for this shortest path case were
also derived for the average case , which also turned out to be symmetric in
H and L .

Considering the same problem but without the shortest path restriction,
termed the general path case, a family of tree layouts T (L ,H ) was introduced
in [6], for a chain of length N , not assuming that the root is located at its

leftmost vertex, and with N bounded by
∑min{L ,H }

i=0 2i
(L

i

)(H
i

)
[12]. This

number, which is also symmetric in H and L , is equal to the number of lattice
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points within an L -dimensional l1-Sphere or radius H , and is also equal to the
number of lattice paths from (0, 0) to (L ,H ), that use horizontal, vertical or
(up-)diagonal steps. The main tool in this discussion was the possibility to map
layouts with load bounded by L and hop count bounded by H into this sphere.

As a consequence, the trees T (L ,H ) and T (H ,L ) have the same number
of nodes, and so do the trees Tshort(L ,H ) and Tshort(H ,L ). It turns out that
these dualities bear a lot of information regarding the structure of these trees,
and exploring this duality, together with the use of the high dimensional spheres,
proved to be extremely useful in understanding and analyzing layout designs:
they simplify proofs of known results, enable derivation of new results, and
improve existing results.

We use one-to-one correspondences, using binary and ternary trees, in order
to combinatorially explain the duality between these two measures of hop count
and load, as reflected by these above symmetries. These correspondences shed
more light into the structure of these two families of trees, allowing to find for
any optimal layout with N nodes, load L and minimal (or minimal average) hop
count H , its dual layout, having N nodes, maximal hop count L and minimal (or
minimal average) load H , and vice-versa. Moreover, they give one proof for both
measures, whereas in the above-mentioned papers these symmetries were only
derived as a consequence of the final result; we note that the average-case results
were derived by a seemingly-different formulas, whereas the worst-case results
were derived by symmetric arguments. In addition, these correspondences also
provide a simple proof to a new result concerning the duality of these two para-
meters in the worst case and the average case analysis for the general path case
layouts. Finally, it is shown that an optimal worst case solution for the shortest
path and general cases, is also an optimal average case solution in both cases,
allowing a simpler characterization of these optimal layouts. We then introduce
the relation between high dimensional spheres and layouts for the general case.
This is then used in simplifying proofs of known results, in derivation of new
results (like the best average case designs for the general paths case), and in
improving existing results (like for the all-to-all problem).

This survey paper is based on results presented in previous studies, as detailed
in the following description of its structure. In Section 2 the ATM model is
presented, following [5]. In Section 3 we discuss the optimal solutions; the
optimal design for the shortest path case follows the discussion in [13], and the
optimal design for the general case follows the discussion in [6,8]. We encounter
the duality of the parameters of load and hop count, which follows via recurrence
relations. In Section 4 we discuss relations with lattice paths. In Section 5 we
describe the use of binary and ternary trees to shed more direct light on these
duality results, and the use of high dimensional spheres is discussed in Section
6, both following ( [6,8]). The applications of the tools of duality and geometry
are presented in Section 7, following [8]). We close with a discussion in Section
8.
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2 The Model

We model the underlying communication network as an undirected graph G =
(V,E), where the set V of vertices corresponds to the set of switches, and the
set E of edges corresponds to the physical links between them.

Definition 1. A rooted virtual path layout (layout for short) Ψ is a collection
of simple paths in G, termed virtual paths ( VP s for short), and a vertex r ∈ V
termed the root of the layout (denoted root(Ψ)).

Definition 2. The load L(e) of an edge e ∈ E in a layout Ψ is the number of
VP s ψ ∈ Ψ that include e.

Definition 3. The load Lmax(Ψ) of a layout Ψ is maxe∈E L(e).

Definition 4. The hop count H(v) of a vertex v ∈ V in a layout Ψ is the
minimum number of VP s whose concatenation forms a path in G from v to
root(Ψ). If no such VP s exist, define H(v) = ∞.

Definition 5. The maximal hop count of Ψ is Hmax(Ψ) = maxv∈V {H(v)}.
In the rest of this paper we assume that the underlying network is a chain.

We consider two cases: the one in which only shortest paths are allowed, and the
second one in which general paths are considered.

To minimize the load, one can use a layout Ψ which has a VP on each
physical link, i.e., Lmax(Ψ) = 1, however such a layout has a hop count of
N − 1. The other extreme is connecting a direct VP from the root to each
other vertex, yielding Hmax = 1, but then Lmax = N − 1. For the intermediate
cases we need the following definitions.

Definition 6. Hopt(N ,L ) denotes the optimal hop count of any layout Ψ on
a chain of N vertices such that Lmax(Ψ) ≤ L , i.e.,

Hopt(N ,L ) ≡ min
Ψ

{Hmax(Ψ) : Lmax(Ψ) ≤ L }.

Definition 7. Lopt(N ,H ) denotes the optimal load of any layout Ψ on a chain
of N vertices such that Hmax(Ψ) ≤ H , i.e.,

Lopt(N ,H ) ≡ min
Ψ

{Lmax(Ψ) : Hmax(Ψ) ≤ H }.

Definition 8. Two VP s constitute a crossing if their endpoints l1, l2 and r1, r2
satisfy l1 < l2 < r1 < r2. A layout is called crossing-free if no pair of VP s
constitute a crossing.
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It is known ([13,1]) that for each performance measure (Lmax, Hmax, Lavg,
Havg) there exists an optimal layout which is crossing-free. In the rest of the
paper we restrict ourselves to layouts viewed as a planar (that is, crossing-free)
embedding of a tree on the chain, also termed tree layouts. Therefore, when no
confusion occurs, we refer to each VP in a given layout Ψ an edge of Ψ .

Nshort(L,H) denotes the length of a longest chain in which one node can
broadcast to all others, with at most H hops and a load bounded by L , for the
case of shortest paths. The similar measure for the general case is denoted by
N (L,H) .

3 Optimal Solutions and Their Duality

In this section we present the optimal solutions for layouts, when messages have
to travel either along shortest paths or general paths. We’ll show the symmetric
role played by the load and hop count, and explain it via the corresponding
recurrence relations.

3.1 Optimal Virtual Path for the Shortest Path Case

Assuming that the leftmost node in the chain has to broadcast to each node to
its right, it is clear that, for given H and L , the largest possible chain for which
such a design exists is like the one shows in Fig. 2.

Tshort(L − 1, H ) Tshort(L , H − 1)

Fig. 2. The tree layout Tshort(L , H )

The design depicted in Fig. 2 uses the trees Tshort(L ,H ) defined as follows.

Definition 9. The tree layout Tshort(L ,H ) is defined recursively as follows.
Tshort(L , 0) and Tshort(0,H ) are tree layouts with a unique node. Otherwise,
the root of a tree layout Tshort(L ,H ) is the leftmost node of a Tshort(L − 1,H )
tree layout, and it is also the leftmost node of a tree layout Tshort(L ,H − 1)

Recall that Mshort (L ,H ) is the length of the longest chain in which a design
exists, for a broadcast from the leftmost node to all others, for given parameters
H and L . Mshort (L ,H ) clearly satisfies the following recurrence relation:

Mshort (0,H ) = Mshort (L , 0) = 1 ∀ H ,L ≥ 0 (1)
Mshort (L ,H ) = Mshort (L ,H − 1) + Mshort (L − 1,H ) ∀ H ,L > 0 .
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It easily follows that

Mshort (L ,H ) =
(L + H

H
)
. (2)

The expression in 2 is clearly symmetric in H and L , which establishes the
first result in which the load and hop count play symmetric roles.

Note that it is clear that the maximal number Nshort(L,H) of nodes in a
chain to which one node can broadcast using shortest paths, satisfies

Nshort(L,H) = 2
(L + H

H
)

− 1 .

Using these trees, it is easy to show that Lmax(Tshort(L ,H )) = L and
Hmax(Tshort(L ,H )) = H . The following two theorems follow:

Theorem 1. Consider a chain of N vertices and a maximal load requirement
L . Let H be such that(L + H − 1

L
)
< N ≤

(L + H
L

)
.

Then Hopt(N ,L ) = H .

Theorem 2. Consider a chain of N vertices and a maximal hop requirement
H . Let L be such that(L + H − 1

H
)
< N ≤

(L + H
H

)
.

Then Lopt(N ,H ) = L .

Optimal bounds were also derived in [13,14] for the average case, using dyna-
mic programming; the results use different recursive constructions, but end up
in structures that are symmetric in H and L . These results are stated as follows:

Theorem 3. Let n and H be given. Let L be the largest integer such that N ≥(L+H
L

)
, and let r = N − (L+H

L
)
. Then

Ltot(N,H ) = H
(L + H

L − 1

)
+ r(L + 1).

Theorem 4. Let N and L be given. Let H be the maximal such that N ≥(L+H
H

)
, and let r = N − (L+H

H
)
. Then

Htot(N,L ) = L
(L + H

H − 1

)
+ r(H + 1).

Note that these last two theorems imply that in Tshort(L ,H ) the average
hop is L

L+1
H , and the average load is slightly smaller than H

H+1
L .
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3.2 Optimal Virtual Path for the General Case

In the case where not only shortest paths are traversed, a new family of optimal
tree layouts T (L ,H ) is now presented.

Definition 10. The tree layout T (L ,H ) is defined recursively as follows.
Tright(L , 0), Tright(0,H ), Tleft(L , 0) and Tleft(0,H ) are tree layouts with a
unique node. Otherwise, the root r is also the rightmost node of a tree layout
Tright(L ,H ) and the leftmost node of a tree layout Tleft(L ,H ), when the tree
layouts Tleft(L ,H ) and Tright(L ,H ) are also defined recursively as follows. The
root of a tree layout Tleft(L ,H ) is the leftmost node of a Tleft(L − 1,H ) tree
layout, and it is also connected to a node which is the root of a tree layout
Tright(L − 1,H − 1) and a tree layout Tleft(L ,H − 1) (see Fig. 3). Note that
the root of Tleft(L ,H ) is its leftmost node. The tree layout Tright(L ,H ) is de-
fined as the mirror image of Tleft(L ,H ).

Tleft(L − 1, H ) Tright(L − 1, H − 1) Tleft(L , H − 1)

Fig. 3. Tleft(L , H ) recursive definition

Denote by N (L ,H ) the longest chain in which it is possible to connect one
node to all others, with at most H hops and the load bounded by L . From the
above, it is clear that this chain is constructed from two chains as above, glued
at their root. N (L ,H ) clearly satisfies the following recurrence relation:

N (0,H ) = N (L , 0) = 1 ∀ H ,L ≥ 0 (3)
N (L ,H ) = N (L ,H − 1) + N (L − 1,H ) + N (L − 1,H − 1) ∀ H ,L > 0 .

Again, the symmetric role of the hop count and the load are clear both from
the definition of the corresponding trees and from the recurrence relations that
compute their sizes.

It is known ( [12]) that the solution to the recurrence relation (3) is given by

N =
min{L ,H }∑

i=0

2i

(L
i

)(H
i

)
. (4)

4 Correspondences with Lattice Paths
The recurrence relation (1) clearly corresponds to the number of lattice paths
from the point (0,0) to the point (L ,H ), that use only horizontal (right) and
vertical (up) steps.
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In Fig. 4 each lattice point is labeled with the number of lattice paths from
(0,0) to it; the calculation is done by the recurrence relation 1. For the case L=
3 and H = 2 one gets

(3+2
2

)
= 10; this corresponds to the number of nodes in

the tree Tshort(3, 2) (see Fig. 6), and to the number of paths that go from (0,0)
to (3,2).

The recurrence relation (3) clearly corresponds to the number of lattice paths
from the point (0,0) to the point (L ,H ), that use horizontal (right), vertical (up),
and diagonal (up-right) steps. In Fig. 5 each lattice point is labeled with the
number of lattice paths from (0,0) to it. For the case L= 3 and H = 2 one gets
25 such paths. This corresponds to the number of nodes in the tree T (3, 2)
that is constructed of two trees, glued at their roots, the one (Tleft(3, 2)) depicted
in Fig. 6 (and containing 13 vertices), and its corresponding reverse tree.

We also refer to these lattice paths in Section 6.
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5 Duality: Binary Trees and Ternary Trees

We saw in Section 3 that the layouts Tshort(L ,H ) and Tshort(H ,L ) and also
T (L ,H ) and T (H ,L ) have the same number of vertices. We now turn to show
that each pair within these virtual path layouts are, actually, quite strongly
related. In Section 5.1 we deal with layouts that use shortest-length paths, and
show their close relations to a certain class of binary trees, and in Section 5.2
we deal with the general layouts and show their close relations to a certain class
of ternary trees.

5.1 Tshort(L , H ) and Binary Trees

In this section we show how to transform any layout Ψ with hop count bounded
by H and load bounded by L for layouts using only shortest paths, into a
layout Ψ (its dual) with hop count bounded by L and load bounded by H . In
particular, this mapping will transform Tshort(L ,H ) into Tshort(H ,L ).

To show this, we use transformation between any layout with x virtual paths
(depicted as edges) and binary trees with x nodes (in a binary tree, each internal
node has a left child and/or a right child). We’ll derive our main correspondence

between Tshort(H ,L ) and Tshort(L ,H ) for x = N − 1, where N =
(L+H

L
)
.

Our correspondence is done in three steps, as follows.
Step 1: Given a planar layout Ψ we transform it into a binary tree T = b(Ψ),
under which each edge e is mapped to a node b(e), as follows. Let e = (r, v) be
the edge outgoing the root r to the rightmost vertex (to which there is a VP;
we call this a 1-level edge). This edge e is mapped to the root b(r) of T . Remove
e from Ψ . As a consequence, two layouts remain: Ψ1 with root r and Ψ2 with
root v, when their roots are located at the leftmost vertices of both layouts.
Recursively, the left child of node b(e) will be b(Ψ1) and its right child will be
b(Ψ2). If any of the layouts Ψ is empty, so is its image b(Ψ) (in other words, we
can stop when a Ψ that consists of a single edge is mapped to a binary tree that
consists of a single vertex).
Step 2: Build a binary tree T , which is a reflection of T (that is, we exchange
the left child and the right child of each vertex).
Step 3: We transform back the binary tree T into the (unique) layout Ψ such
that b(Ψ) = T

In Fig. 6 the layouts for L = 2,H = 3 and L = 3,H = 2 are shown, together
with the corresponding trees Tshort(2, 3) and Tshort(3, 2), and the corresponding
binary trees constructed as explained above. The edge e in the layout Tshort(3, 2)
is assigned the vertex b(e) in the corresponding tree b(Tshort(3, 2)).

Given a non-crossing layout Ψ , we define the level of an edge e in Ψ , denoted
levelΨ (e) (or level(e) for short), to be one plus the number of edges above e in
Ψ . In addition, to each edge e of the layout Ψ we assign its farthest end-point
from the root, v(e).

In Fig. 6 the edge e in the layout Tshort(3, 2) is assigned the vertex v(e) in
this layout, and its level level(e) is 2.
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One of our key observations is the following theorem:

Theorem 5. For every H and L , the trees b(Tshort(L ,H )) and b(Tshort(H ,L ))
are reflections of each other.

This clearly establishes a one-to-one mapping between these trees, and thus
establishes the required duality.

To further investigate the structure of these trees, we now turn to explore the
properties of the binary trees that we have defined above. We prove the following
theorem:

Theorem 6. Given a layout Ψ , let T = b(Ψ) be the binary tree assigned to it by
the transformation above. Let dL

T (v) (dR
T (v)) be equal to one plus the number of

left (right) steps in the path from the root r to v, for every node v in T . Then,
for every edge e in the layout Ψ :

1. HΨ (v(e)) = dR
T (b(e)), and

2. level(e) = dL
T (b(e)).

Given a non-crossing layout Ψ , for each physical link e′ we assign an edge
φ(e′) in Ψ that includes it and is of highest level (such a path exists due to the
connectivity and planarity of the layout; see edge e′ and physical edge φ(e′) in
Fig. 6). It can be easily proved that:

Lemma 1. Given a non-crossing tree layout Ψ , the mapping of a physical link
e′ to an edge φ(e′) described above is one-to-one.
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Proposition 1. Given a non-crossing tree layout Ψ over a physical network, let
T = b(Ψ) be the binary tree assigned to it. Then L(e′) = level(φ(e′)) for every
edge e′ in the physical network.

Given a layout Ψ over a chain network, if we consider the multiset {dR
T (v)|v ∈

b(Ψ)} we get exactly the multiset of hop counts of the vertices of this network
(by Theorem 6), and if we consider the multiset {dL

T (v)|v ∈ b(Ψ)} we get exactly
the multiset of loads of the physical links of this network (by Theorem 6 and
Proposition 1). By using this and finding the dual layout Ψ with the multisets
{dR

T (v)|v ∈ b(Ψ)} of hop counts of its vertices and {dL
T (v)|v ∈ b(Ψ)} of loads of

its physical edges of Ψ , we observe that the multiset of hop counts of Ψ is exactly
the multiset of load of Ψ , and the multiset of loads of Ψ is also the multiset of
hop counts of Ψ , thus deriving a complete combinatorial explanation for the
symmetric results of Section 3.1 for either the worst case trees or average case
trees:

Theorem 7. Given an optimal layout Ψ with N nodes, load bounded by L and
optimal hop count Hopt(N ,L ), its dual layout Ψ has N nodes, hop count bounded
by L and optimal load Hopt(N ,L ).

Theorem 8. Given an optimal layout Ψ with N nodes, hop count bounded by
H and optimal load Lopt(N ,H ), its dual layout Ψ has N nodes, load bounded by
H and optimal hop count Lopt(N ,H ).

Theorem 9. Given an optimal layout Ψ with N nodes, load bounded by L and
optimal average hop count, its dual layout Ψ has N nodes, hop count bounded by
L and optimal average load.

Theorem 10. Given an optimal layout Ψ with N nodes, hop count bounded by
H and optimal average load, its dual layout Ψ has N nodes, load bounded by
H and optimal average hop count.

5.2 T (L , H ) and Ternary Trees

We now extend the technique developed in Section 5.1 to general path case
layouts; we show how to transform any layout Ψ with hop count bounded by H
and load bounded by L into a layout Ψ (its dual) with hop count bounded by
L and load bounded by H . In particular, this mapping will transform T (L ,H )
into T (H ,L ).

To show this, we use transformation between any layout with x edges ( VP s)
and ternary trees with x nodes (in a ternary tree, each internal node has a left
child and/or a middle child and/or a right child). Our correspondence is done
in three steps, as follows.
Step 1: Given a planar layout Ψ we transform it into a ternary tree T = t(Ψ),
under which each edge e is mapped to a node t(e), as follows. Let e = (r, v) be
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the edge outgoing the root r to the rightmost vertex (to which there is a VP; we
call this a 1-level edge). This edge e is mapped to the root t(r) of T . Remove e
from Ψ . As a consequence,three layouts remain: Ψ1 with root r and and Ψ3 with
root v (when their roots are located at the leftmost vertices of both layouts)
and Ψ2 with root v (when v is its rightmost vertex). Recursively, the left child
of node t(e) will be t(Ψ1), its middle child will be t(Ψ2) and its right child will
be t(Ψ3). If any of the layouts Ψ is empty, so is its image t(Ψ) (in other words,
we can stop when a Ψ that consists of a single edge is mapped to a ternary tree
that consists of a single vertex).
Step 2: Build a ternary tree T , which is a reflection of T (that is, we exchange
the left child and the right child of each vertex; the middle child does not change).
Step 3: We transform back the ternary tree T into the (unique) layout Ψ such
that t(Ψ) = T

See Fig. 7 for an example of this transformation.
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T (v)

dLM
T (v)

Fig. 7. An example of the transformation using ternary trees

One of our key observations is the following theorem:

Theorem 11. For every H and L , the trees t(T (L ,H )) and t(T (H ,L )) are
reflections of each other.

This clearly establishes a one-to-one mapping between these trees, and thus
establishes the required duality.

To further investigate the structure of these trees, we now turn to explore
the properties of the ternary trees that we have defined above. We prove the
following theorem. Note that the definition of level (of an edge) and φ (of a
physical link) remain exactly the same as in Section 5.1.

Theorem 12. Given a layout Ψ , let T = t(Ψ) be the ternary tree assigned to
it by the transformation above. Let dLM

T (v) (dRM
T (v)) be equal to one plus the
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number of left and middle (right and middle ) steps in the path from the root r
to v, for every node v in T . Then, for every edge e in the layout Ψ :

1. HΨ (v(e)) = dRM
T (t(e)), and

2. level(e) = dLM
T (t(e)).

Proposition 2. Given a non-crossing tree layout Ψ over a physical network, let
T = t(Ψ) be the ternary tree assigned to it. Then L(e′) = level(φ(e′)) for every
edge e′ in the physical network.

Given a layout Ψ over a chain network, if we consider the multiset {dRM
T (v)|v

∈ t(Ψ)} we get exactly the multiset of hop counts of the vertices of this network
(by Theorem 12), and if we consider the multiset {dLM

T (v)|v ∈ t(Ψ)} we get
exactly the multiset of loads of the physical links of this network (by Theorem
12 and Proposition 2). By using this and finding the dual layout Ψ with the
multisets {dRM

T (v)|v ∈ t(Ψ)} of hop counts of its vertices and {dLM
T (v)|v ∈ t(Ψ)}

of loads of its physical edges of Ψ , we observe that the multiset of hop counts of
Ψ is exactly the multiset of load of Ψ , and the multiset of loads of Ψ is also the
multiset of hop counts of Ψ , thus deriving a complete combinatorial explanation
for the symmetric results of either the worst-case trees or average-case trees in
the general path case.

Following the above discussion, we obtain the exact four theorems (Theorems
7, 8, 9 and 10) extended to the general path case layouts.

6 Use of Geometry

Consider the set Sp(L ,H ) of lattice points (that is, points with integral coordi-
nates) of an L -dimensional l1-Sphere of radius H . The points in this sphere are
L -dimensional vectors v = (v1, v2, . . . , vL ), where |v1| + |v2| + . . .+ |vL | ≤ H .
Let Rad(N,L ) be the radius of the smallest L -dimensional l1-Sphere containing
at least N internal lattice points. For example, Sp(1, 2) contains 5 lattice points,
and Rad(6, 2) = 3.

We show that

Theorem 13. The tree T (L ,H ) contains |Sp(L ,H )| vertices.

The exact number of points in this sphere is given by equation (4). (This was
studied, in connection with codewords, in [12].)

Moreover, we can show that

Theorem 14. Consider a chain of N vertices and a maximal load requirement
L . Then Hopt(N ,L ) = Rad(N,L ).

These theorems are proved by showing a one-to-one mapping between the
nodes of any layout with hop count bounded by H and load bounded by L into
Sp(L ,H ) . This mapping turns out to be a very useful tool in derivations of
analytical results (see Section 8). The details of this embedding can be found
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in [6,8]. A short description of this embedding is now described, followed by an
example.

In this embedding, a node for which the hop count is h will be mapped onto
a point (x1, x2, · · · , xL ), such that |x1| + |x2| + · · · + |xL | = h. This embedding
starts by mapping the root of the given layout onto the origin (0, 0, ..., 0). The
algorithm continues in Lphases. In the first phase we consider the paths, ema-
nating from the root in both directions. The nodes on one path are mapped to
the points (1, 0, ..., 0), (2, 0, ..., 0), and so on, and the nodes on the other path to
the points (−1, 0, ..., 0), (−2, 0, ..., 0), and so on. In each subsequent phase, we
continue in the same manner from each node that already got mapped, and for
each such node, the new nodes are mapped to points that differ from it in the
second component.

We present now an example of this embedding . We illustrate our algorithm
on the tree layout T shown in Figure 8(A). first(T ) = a, last(T ) = d, and
root = c. The path P1 is first(T ) = a − b − c = root and the path P2 is
root = c− d = last(T ). We thus map in the first stage (ξ = 1) the nodes a, b, c
and d to the points (2,0,0), (1,0,0), (0,0,0) and (-1,0,0), respectively (see Figure
8(B)). We then delete these edges from T , and the remaining graph (forest)
is shown in Figure 8(C). At this 2nd stage (ξ = 2), the nodes b, c and d are
roots of non-trivial layouts, and the algorithm maps the nodes e, f, and g to
the points (1,-1,0), (0,-1,0) and (-1,1,0), respectively. Note that LABEL(e)[1] =
LABEL(b)[1] = 1. The corresponding edges are then deleted from the layout,
and we result in the graph depicted in Figure 8(D), which results in a similar
mapping for nodes h and i.

(1,-1,0) (0,-1,0) (-1,1,0)

(1,-1,1) (0,0,-1)

(0,0,0)(1,0,0)(2,0,0) (-1,0,0)

a b c d

e f

ih

g

A

B

C

D

root

Fig. 8. Embedding of a tree layout of load 3
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We now sketch a one-to-one mapping between the set of lattice points of
the L -dimensional sphere of radius H and the set of lattice paths from (0, 0)
to (L ,H ) that use horizontal, vertical or (up-)diagonal steps. We first describe
a function which maps every vector v = (v1, . . . , vL ) in Sp(L ,H ) into such a
lattice path. Starting from (0, 0) make |v1| vertical steps and one horizontal step,
make |v2| vertical steps and one horizontal step,..., make |vL | vertical steps and
one more horizontal step, ending with H − ∑i=l

i=1vi horizontal steps. After that,
for every negative vi component of v, we replace the |vi|th vertical step and
the subsequent horizontal step done during the translation of this component
by an (up-)diagonal step. A close look at the properties of these paths enables
us to further explore the properties of these trees. Returning to the discussion
of the layouts Tshort(L ,H ) that use only shortest paths, it is possible to find a
similar correspondence between the vertices of these trees and lattice paths from
(0, 0) to (L ,H ) that use only vertical and horizontal steps, and to view some
properties of these trees using these lattice paths.

7 Applications

The insight gained by the duality properties of the solutions for both the shortest
path case and the general path case, and the one-to-one correspondence between
layouts with a hop count bounded by H and load bounded by Lwith the lattice
points in Sp(L ,H ) , have proved to be quite powerful in deriving analytical
results.

1. Using the insight we got for the trees Tshort(L ,H ) due to the duality bet-
ween the hop count and the load, we managed to supply very short proofs
for the optimal average hop count and load in the shortest path case, as
detailed in Theorems 3 and 4 (for details, see [8]). Moreover, the duality
properties imply that a solution for a certain setting of the parameters im-
plies a solution for the same setting, where the roles of the hop count and
the load are interchanged. See Theorems 7, 8, 9 and 10, and the last
sentence of Section 5.

2. Using the duality properties, and especially using the high dimensional sphe-
res, the following theorem can be proved (see [8]), regarding the optimal
average hop count and load in the general path case.

Theorem 15. Let N and H be given. Let L be the maximal l such that
|Sp(l,H ) | ≤ N , and let r = N − |T (L ,H )|. Then

Ltot(N,H ) = (L +
1
2
)|Sp(L ,H ) | − 1

2
|Sp(L ,H + 1) | + r(L + 1).

Theorem 16. Let N and L be given. Let H be the maximal h such that
|Sp(L , h) | ≤ N , and let r = N − |T (L ,H )|. Then

Htot(N,H ) = (H +
1
2
)|Sp(L ,H ) | − 1

2
|Sp(L + 1,H ) | + r(H + 1).
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3. Using the above correspondences and discussion, it can be shown that the
layout that we managed to design - for a given N and L - with an optimal
worst case hop count is also optimal with respect to the average case hop
count, and the layout that we managed to design - for a given N and H -
with an optimal worst case load is also optimal with respect to the average
case load. This holds for either the shortest path designs or the general path
designs (for details, see [8]).

4. Using volumes of high-dimensional polyhedra, we show a trade-off between
the hop count and load, as follows (for a detailed discussion, see [6,8]):

Theorem 17. For all L and N :

max{1/2 · (L !N)
1L − L /2, 1/2 · N

1L − 1/2,
log N

log (2 · L + 1)
} ≤

≤ Rad(N, L ) < 1/2 · (L !N)
1L + 1/2

5. While the one-to-one problem is naturally related to the radius of a network,
the all-to-all problem is related to its diameter. By using the fact that the
diameter lies between the radius and twice the radius, and using the ap-
proximation to Rad(N,L ) as discussed above, we manage to significantly
improve results regarding the all-to-all problem, presented in [16,17,1]; for a
detailed discussion, see [6,8]).

8 Discussion

We showed how duality properties and geometric considerations are used in
studies related to virtual path layouts of chain ATM networks. These dualities
follow immediately from the recurrence relations, but a clearer insight was gained
with the aid of binary trees (in the shortest path case) and ternary trees (in the
general path case). For the general path case we also presented the relation with
high dimensional spheres. The duality nature of the solutions, together with the
geometric approach, proved to be extremely useful tools in understanding and
analyzing the optimal designs. We managed to simplify proofs of known results,
derive new results, and improve existing ones.

It might be of interest to further explore such duality relations in various
directions. This can be done either for related parameters (such as load measured
at vertices, as discussed in [11,9]), or for other topologies (such as trees ([5,11]),
meshes ([3,2,11]), or planar graphs ([11])). An interesting direction for extension
is suggested for directed networks, following [4]. One might also consult the
survey in [18] for a general discussion of these and other extensions.

Of special interest was the use of the high dimensional spheres. The discussion
of the use of these spheres and of the applications of this embedding technique
suggest this as a promising direction for a further investigation.
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Lacanau-Océan, France, 1999, pp. 1-16.

2. L. Becchetti, P. Bertolazzi, C. Gaibisso and G. Gambosi, On the design of efficient
ATM routing schemes, submitted, 1997.

3. L. Beccheti and C. Gaibisso, Lower bounds for the virtual path layout problem
in ATM networks, Proceedings of the 24th Seminar on Theory and Practice of
Informatics (SOFSEM), Milovny, The Czech Republic, November 1997, pp. 375-
382.

4. J-C. Bermond, N. Marlin, D. Peleg and S. Pérennes, Directed virtual path layout
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