Convolutional Neural Networks
Analyzed via Convolutional Sparse Coding*

Yaniv Romano
The Electrical Engineering Department
Technion – Israel Institute of technology
Haifa 32000, Israel

Joint work with
Vardan Papyan Prof. Michael Elad

The research leading to these results has been received funding from the European union's Seventh Framework Program (FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649
Convolutional Neural Networks (CNN)

Sparse representations

\[\mathbf{X} = \mathbf{D} \Gamma \]
Convolutional Sparse Coding (CSC)

Convolutional Neural Networks (CNN)

Sparse representations

\[X = D \Gamma \]
Sparse representations

Convolutional Sparse Coding (CSC)

Convolutional Neural Networks (CNN)
The representations are locally sparse

\[
\begin{align*}
X &= D_1 \Gamma_1 \\
\Gamma_1 &= D_2 \Gamma_2 \\
\vdots \\
\Gamma_K &= D_K \Gamma_K
\end{align*}
\]
Sparse representations

Convolutional Sparse Coding (CSC)

Multi-Layer Convolutional Sparse Coding (ML-CSC)

Forward pass

Convolutional Neural Networks (CNN)
The forward pass is a sparse-coding algorithm, serving the ML-CSC.
Forward pass

Multi-Layer Convolutional Sparse Coding (ML-CSC)

Sparse representations

Convolutional Sparse Coding (CSC)

Convolutional Neural Networks (CNN)

The forward pass is a sparse-coding algorithm, serving the ML-CSC

Forward pass
Convolutional Sparse Coding (CSC)

Multi-Layer Convolutional Sparse Coding (ML-CSC)

The forward pass is a sparse-coding algorithm, serving the ML-CSC

Extension of the classical sparse theory to a multi-layer setting

Convolutional Neural Networks (CNN)

Sparse representations

Forward pass
Forward pass

Multi-Layer Convolutional Sparse Coding (ML-CSC)

The forward pass is a sparse-coding algorithm, serving the ML-CSC

Extension of the classical sparse theory to a multi-layer setting

Convolutional Neural Networks (CNN)

Sparse representations

Convolutional Sparse Coding (CSC)
The forward pass is a sparse-coding algorithm, serving the ML-CSC.

Extension of the classical sparse theory to a multi-layer setting.

Convolutional Sparse Coding (CSC)

Multi-Layer Convolutional Sparse Coding (ML-CSC)

Convolutional Neural Networks (CNN)

Sparse representations

Forward pass
The feature maps CNN aims to recover are unique

The problem CNN aims to solve is stable

The forward pass is stable

The above are guaranteed assuming that the sparse representations are locally sparse and the noise is locally bounded

We also propose a better pursuit that is shown to be theoretically superior to the conventional forward pass