
32 · J. Gil and Y. Zibin

5.5 Dynamic dispatching

In the incremental version of the dispatching problem we must support insertions of new
types as leaves (with their accompanied method implementations), while answering dis-
patching queries. More precisely, the problem is to maintain a data structure to manage a
hierarchy of types annotated with message families, which supports two kinds of opera-
tions:

(1) dispatch(µ, t), where t is a type and µ is a message.

(2) Insert(t, t1, . . . , tp, µ1, . . . , µq) which is an insertion of new type t into the hierarchy.
Types t1, . . . , tp, p ≥ 0 are the parents of t, and must have been previously inserted.
Type t also implements messages µ1, . . . , µq , q > 0. These messages may already
been introduced by a previous type, or they might be new.

This section describes two algorithms for generalizing the static dispatching algorithm to
support such insertions. We use the same slicing technique as before, where a dispatch(µ, t)
query searches for t in the data structure of µ corresponding to the (previously computed)
slice of t. In inserting a new type, we shall use order-preserving heuristic (see Section 5.2)
for maintaining the slicing property; in other words, an insertion of a new type will never
disturb the ordering of types in each slice. The challenge is to efficiently update the data
structure of each message in each of the slices. Slicing and the implementation of a dis-
patch query guarantee that updates done in different slices are entirely independent.

We now describe how the problem of incremental dispatching can be solved using κ
dictionaries over the ordered lists of the κ slices (see Section 3.2). Consider some fixed
slice T i. Recall that all the types in T i are kept in an ordered list such that the follow-
ing slicing property holds: for each type t ∈ T , the set of descendants in slice T i, de-
noted Di(t), defines a list interval (which might be empty). The order-preserving heuristic
selects a unique slice T i, and a location in it where t can be inserted without disturbing the
slicing property. With a slight abuse of notation we will use T i to denote the entire ordered
list, and Di(t) to denote its list interval. No confusion will arise.

Each method µ(t) ∈ Fµ defines an interval Di(t) in the list T i. The collection of
intervals of Fµ partition the list T i into list segments. Dispatching µ on types in the same
segment results in the same method to execute.

Let Υµ[i] denote the dictionary of µ over the list T i. A dispatch(µ, t) query is translated
to a Lookup(t) query in Υµ[st], where st is the slice of t.

An Insert(t, t1, . . . , tp, µ1, . . . , µq) transaction is handled by first using the order-preserving
heuristic to find a slice T i and a location ` in the ordered list of T i where we can insert t
without disturbing the slicing property.

Let M(t) be the set of messages recognized by t. Next we need to update the dictio-
naries Υµ[i], for each µ ∈ M(t). The parameters passed to the Update transaction are
the location ` and the dispatching result dispatch(µ, t). Calculating dispatch(µ, t) can be
done at compile time. In general, we assume a preprocessing step (performed in compile-
time) in which we can compute any information which depends solely on ancestors of t
(no knowledge of future descendants is used).

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2002.

Theory and Practice of Incremental Subtyping Tests and Message Dispatching · 33

By using the non-exhaustive dictionary implementation (see Section 3.3) the time of
inserting a type t which recognizes a set of messages M(t) is

O

∑

µ∈M(t)

log|Fµ|

 . (20)

Therefore, the amortized cost of inserting a method µ(t) is O(∆µ(t) log|Fµ|) time, where ∆µ(t)

is the size of the cone of influence of µ(t).
If we use a partitioning dictionary (see Section 3.6) then we must also supply the

set of intervals N ⊆ neighbors(`) which contain t. We first calculate the sets Xµ =
ancestors(t) ∩ Fµ by traversing the ancestors of t. Then N are the list intervals Di(t

′)
where t′ ∈ Xµ ∩ neighbors(`). Observe that |N | ≤ |ancestors(t) ∩ Fµ|. Next we create
new intervals for those Di(t

′), t′ ∈ Xµ which were previously empty.
The time of all insert transaction for a message µ, Fµ ⊆ T , in slice T i is

fµ log fµ +
∑

t∈T i

|ancestors(t) ∩ Fµ|.

Since we apply this algorithm in each of the κ slices, the total time is

κfµ log fµ +
∑

t∈T

|ancestors(t) ∩ Fµ|,

and using simple algebraic manipulation we get

κfµ log fµ +
∑

t∈Fµ

|descendants(t)|.

Therefore, the amortized time of inserting µ(t) is

O(κ log fµ + |descendants(t)|).

6. DATA SET

Forty-three hierarchies collected from eight different programming languages and total-
ing 78,474 types, comprise our experimental data set.

For benchmarking subtyping algorithms we used the same 13 hierarchies for PQE bench-
mark [Zibin and Gil 2001]. This collection includes all the hierarchies used in previous
experimental work on subtyping. As observed previously [Eckel and Gil 2000] many of
the topological properties of these hierarchies are similar to those of balanced binary trees.
We note that the average number of ancestors in these hierarchies is less than 9 for all
hierarchies, with the exception of Geode (14.0) and Self (30.9).

We were unable to obtain information on the definition of messages and methods in
eight hierarchies out of our subtyping benchmark. Instead, the data set for benchmarking
the dispatching algorithms was assembled from the following sources:

(1) The four hierarchies (Self, Unidraw, LOV, Geode) used in benchmark of RD in MI
hierarchies [Driesen and Hölzle 1995]. (These hierarchies were also used in bench-
marking the subtyping algorithms.)

(2) The eight SMALLTALK, OBJECTIVE-C and C++ hierarchies used for benchmarking
RD and CT [Vitek and Horspool 1996] in SI hierarchies.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, January 2002.

