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1. INTRODUCTION

Modern languages such as Java and C# provide low-level concurrency-control constructs
that enable the programmer to create complicated and powerful synchronization schemes.
However, these languages provide no means of compile-time or run-time checking for
the correctness of concurrent behavior. This makes concurrent programming in these lan-
guages quite error-prone (e.g., [Vermeulen 1997; Lea 1997;Goetz et al. 2006]).

The theme of this paper is to develop static analysis techniques for verifying safety
properties by detecting program configurations that may violate them. This is a different
task than dynamic anomaly-detection techniques, which operate on a given input (and thus
can only show the presence of errors, not their absence).

1.1 Main Results

In this paper, we present a framework for verifying safety properties of concurrent heap-
manipulating programs. This framework handles dynamic allocation of objects and ref-
erences to objects. This allows us to analyze programs that dynamically allocate thread
objects, and even programs that create an unbounded number of threads. Dynamic alloca-
tion of threads is common when implementing services in threads (e.g., [Lea 1997], ch. 6).
For these programs, we can verify properties such as the absence of interference. Handling
dynamically allocated objects also allows us to model concurrent programs that manipu-
late linked-lists with sufficient precision to show that they maintain subtle properties of
interest.

1.1.1 A Parametric Framework for Verifying Safety Properties.We provide a paramet-
ric framework for verifying safety properties of concurrent heap-manipulating programs
(A preliminary version of the framework appeared in [Yahav 2001]). We use different in-
stances of this framework (see Section 1.1.2) to obtain static-analysis algorithms that have
the ability to verify different safety properties.

The semantics of Java can be described using a structural operational semantics (e.g.,
[Knapp et al. 1998]) in terms ofconfigurations(or states). In our framework, the oper-
ational semantics of Java statements (and conditions) is specified using a meta-language
based on first-order logic with transitive-closure. The same meta-language is also used to
check that a safety property holds in a given configuration. Our framework then computes
a safe approximation of the (usually infinite) set ofreachable configurations, i.e., configu-
rations that can arise during program execution. This can beformulated within the theory
of abstract interpretation [Cousot and Cousot 1977]. The main idea is to conservatively
represent many configurations using a singleabstract configuration. The effect of every
statement (and condition) on an abstract configuration is then conservatively computed,
yielding another abstract configuration. Also, the framework conservatively verifies that
all the “reachable abstract configurations” satisfy the desired safety property. Thus, we
may falsely report that a safety property may be violated (false alarm) but can never miss
a violation.

Our framework is parametric in the following: (i) the definition of a configuration (Sec-
tions 3.1, 7.2.1); (ii) the (concrete) operational semantics (Section 3.3); (iii) the definitions
of properties to be verified (Sections 3.2, 3.4, 7.2.2); (iv)the manner in which concrete
configurations are abstracted (Section 4.3 and Section 7.3).

Our framework can be viewed as on-the-fly model checking [Clarke et al. 1999a] for
verifying safety properties of programs. On-the-fly model checking does not require the
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while(?) {
Thread t = new Thread(new WorkerRunner());
t.start();

}

Fig. 1. A program allocating a number of worker threads (unknown a priori) at a single allocation site, demon-
strating loss of precision in the two-phased approach.

construction of a global state graph as a prerequisite for property verification. In order
to handle dynamic creation and references to objects, we usefirst-order logical structures
to represent configurations of the program. A simplestate-space explorationalgorithm
(see Fig. 5) is used to generate the configurationsreachablefrom an initial set of con-
figurations. The effect of every program statement is modeled by actionsspecified using
first-order logical formulae. Our abstract configurations are bounded representations of
logical structures. A (concrete) configuration is automatically abstracted into an abstract
configuration.

Our framework should be contrasted with traditional model checking algorithms in
which a bounded representation is guaranteed by usingpropositional formulaefor actions.
Moreover, most model checking techniques perform an abstraction when the model is
extracted, and apply actions with a fixed number of propositional variables ([Clarke et al.
1994; Clarke et al. 1999b]). This could be trivially encodedin our framework by using only
nullary predicates (e.g., see [Manevich et al. 2005]). In fact, our framework allows more
general (and natural) modeling of programs by using unary and binary predicates. This is
crucial in order to handle dynamically allocated objects and references to objects where
the “name” of the object is unknown at compile-time. Even thetechnique of [Emerson
and Sistla 1993] (formulated for processes rather than threads) relies on explicit process
names, and thus cannot handle dynamic allocation of processes.

ESP [Das et al. 2002] and SLAM [Ball et al. 2001] use a preceding pointer-analysis
phase and use the results of this phase to perform finite-state verification of sequential
programs. Separating verification from pointer-analysis may generally lead to imprecise
results. In contrast, our framework handles concurrent programs, and applies integrated
verification and pointer analysis which is more precise.

For example, trying to verify correct thread usage for the program of Fig. 1 using a
two-phased approach based on points-to analysis would yield a false-alarm — reporting
that a thread may be started more than once (IllegalThreadStateException). The
reason for this loss of precision is that all threads allocated at the same allocation site are
represented using a single “abstract object”. As a result, the start operation may appear as
being possibly applied multiple times to a single thread object. The same program would be
successfully verified using the integrated approach in which the state of the thread refines
the heap abstraction, and makes observable the fact that thestart operations are applied to
different threads.

The reader may find our comparison to related works somewhat unfair in that we only
compare the relative precision of the approaches, and not their scalability. However, in
a practical sense, both our approach and the two-phased approaches are limited. Our ap-
proach will not yet scale (as is) to programs of realistic size, and the two-phased approaches
will not be precise enough to verify many properties of interest.
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Nevertheless, we believe that the scalability of our approach could be improved without
loss of precision by considering a more limited setting and by using techniques such as
dynamic partial-order reduction (e.g., [Gueta et al. 2006]), and staging (e.g., [Fink et al.
2006]). For example, Gotsman et al. [2007] present an analysis that is potentially more
scalable by considering a more limited setting which requires knowledge about locks (and
cannot handle fine-grained synchronization).

Recently, it was shown that thread-quantification [Berdineet al. 2008] and separation
[Manevich et al. 2008] can be used to further scale concurrent shape analysis. Their ap-
proach is an extension of our approach, where parts of the global state are modeled sepa-
rately.

Technically speaking, our framework is a generalization of[Sagiv et al. 2002] in the
following aspects: (i) Program configurations are used to model the global state of the
program instead of modeling only the relationships betweenheap-allocated objects. This
allows us to combine thread scheduling information with information about the shape of
the heap. (ii) Program control-flow is not separately represented, but instead the program
location of each thread is maintained in the configuration which allows us to handle an
unbounded number of threads in a natural way. This is naturally coded in first-order logic
as a property of a thread (in contrast to explicit-state model checking in which it is exter-
nally coded). Furthermore, it does not require control-flowinformation to be computed
in a separate earlier phase. This is an advantage because theimprecision in control-flow
computation could lead to imprecise results. (iii) We use the standard interleaving model of
concurrency. A slightly different generalization is used in [Nielson et al. 2000], which even
allows the program to modify itself to support the semanticsof Mobile Ambients [Cardelli
and Gordon 1998].

1.1.2 Applications.We have used our framework to verify the properties listed below.
Interference: Two threads are said tointerferewhen they may both access a shared object

simultaneously, and at least one of them is performing an update of the shared object. We
use our framework to locate read-write and write-write interference between threads (see
[Netzer and Miller 1992]). Here, we benefit from the fact thatthe analysis keeps track of
both scheduling information and information about the shape of the heap. For example, in
a two-lock queue (see [Michael and Scott 1996], also shown inFig. 14 (b)) we are able to
show that write-write interference is not possible since writing is never performed on the
same object.

Deadlock: Our framework has been used to verify the absence of a few types of dead-
locks: (i) total deadlocks in which all threads are blocked.(ii) nested monitors dead-
locks, which are very common in Java ([Vermeulen 1997]) (iii) partial deadlocks created
by threads cyclically waiting for one another.

We are also able to verify that a program complies with a resource-ordering policy, and
thus cannot produce a deadlock (see [Lea 1997], ch. 8).

Shared ADT: Our framework has been used to verify that a shared ADT, based on a
linked-list, preserves ADT properties under concurrent manipulation. Here, the strength
of our technique is obvious, since precise information about the structure of a scheduling
queue can be used to precisely reason about thread scheduling. In particular, our framework
has been applied to verify the concurrent queue algorithms presented by Michael and Scott
in [Michael and Scott 1996] which are in part implemented in thejava.util.concurrent
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package of JDK1.5. (a preliminary version of this case studyappeared in [Yahav and Sagiv
2003]).

For example, Fig. 2(a) shows a concurrent program using a queue. The implementation
of the queue is given in Fig. 2(b) and Fig. 3. This program is used as a running example
throughout this chapter. Our technique is able to show that the properties of the queue are
correctly maintained by this program without anyfalse alarms. Moreover, since the anal-
ysis is conservative, it is guaranteed to report errors whenanalyzing an ill-synchronized
version of the same queue (not shown here).

Our framework has been also applied to prove the correctnessof the apprentice chal-
lenge, originally presented by J. Moore as a challenge for Java verification [Moore and
Porter 2002].

Illegal Thread Interactions: The Java compiler does not prevent the programmer from
introducing thread interactions that are illegal and result in an exception during program
execution (this is the only runtime checking applied by Javafor correctness of con-
current behavior). For example — starting a thread more thanonce will result in an
IllegalThreadStateExceptionbeing thrown. Our framework has been used to detect
such illegal interactions.

1.1.3 Prototype Implementation.We have implemented a prototype of our framework
calledTVLA/3VMC [Yahav 2000]. In Section 6, we report experimental results of applying
this prototype to several small but interesting programs. We then show a detailed case
study of applying our framework to verify the correctness ofconcurrent queue algorithms.

Currently, we do not perform interprocedural analysis and assume that procedures are
inlined. Support for (recursive) procedures can be added byextending the approach de-
scribed by Rinetskey and Sagiv [2001].

The examples used in this paper have been manually modeled asTVLA/3VMC files. It
is possible to translate Java programs directly toTVLA by using a Soot-based [Vallée-Rai
et al. 1999] front-end for Java developed by R. Manevich.

The main disadvantage of our current implementation is thatno optimizations are used,
and thus only small programs can be handled. However, we are encouraged by the preci-
sion of our results and the simplicity of the implementation.

While only being able to handle small programs, the framework is useful in practice
when handling small but intricate concurrent heap-manipulating programs such as con-
current garbage collection algorithms [Vechev et al. 2007], and concurrent data structures
[Vechev and Yahav 2008; Amit et al. 2007; Berdine et al. 2008].

In addition, our framework is flexible and powerful and can beused for prototyping
analyses that can be later implemented in a more efficient manner.

1.1.4 Paper Outline.In Section 2, we give a brief overview of Java’s concurrency
model. Section 3 defines our formal model which uses logical structures to represent pro-
gram configurations. Section 4 shows how multiple program configurations can be con-
servatively represented using a 3-valued logical structure. In Section 5, we show how our
method can be used to detect several common concurrency errors. In Section 6, we describe
the prototype implementation and the results we have obtained with it for a few small but
interesting programs. In Section 7, we show how to apply our framework to verify correct-
ness properties of implementations of concurrent queue algorithms. In Section 8, we apply
our framework to verify the Apprentice Challenge. In Section 9, we survey closely related
work. Finally, Section 10 concludes the paper and discussesfuture work.
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class Producer implements Runnable {
protected Queue q;
...
public void run() {

...
q.put(val1);

}
}

class Consumer implements Runnable {
protected Queue q;
...
public void run() {

...
val2 = q.take();

}
}

class Approver implements Runnable {
protected Queue q;
...
public void run() {

q.approveHead();
}

}

class Main {
public static void main(String[] args) {

lm1 Queue q = new Queue();
lm2 Thread prd = new Thread(new Producer(q));
lm3 Thread cns = new Thread(new Consumer(q));
lm4 for(int i = 0; i < 3; i++) {
lm5 new Thread(new Approver(q)).start();

}
lm6 prd.start();
lm7 cns.start();

}
}

(a)

// Queue.java
class Queue {

private QueueItem head;
private QueueItem tail;
...
public void put(int value) {

lp1 QueueItem x i = new QueueItem(value);
lp2 synchronized(this) {
lp3 if (tail == null) {
lp4 tail = x i;
lp5 head = x i;

} else {
lp6 tail.next = x i;
lp7 tail = x i;

}
lp8 }
lp9 }

public QueueItem take() {
lt1 synchronized(this) {

QueueItem x d = null;
lt2 if (head != null) {
lt3 newHead = head.next;
lt4 x d = head;
lt5 x d.next = null;
lt6 head = newHead;
lt7 if (newHead == null) {
lt8 tail = null;

}
}

lt9 }
lt10 return x d;

}
public void approveHead() {

la1 synchronized(this) {
la2 if (head != null)
la3 head.approve();
la4 }

}
}

(b)

Fig. 2. (a) a simple program that uses a queue, (b) simplified Java source code for a queue implementation.

// QueueItem.java
class QueueItem {
private QueueItem next;
private int value;
private boolean isApproved;
...
public void approve() {

...
}

}

Fig. 3. Simplified Java source code for a QueueItem implementation.
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2. JAVA CONCURRENCY MODEL

We now give a brief description of the Java-like concurrency-primitives used in this paper.
The reader is referred to [Gosling et al. 1997; Lea 1997; Lindholm and Yellin 1997; Goetz
et al. 2006] for more details.

Java contains a few basic constructs and classes specifically designed to support concur-
rent programming:

—The classjava.lang.Thread, used to initiate and control new activities.

—Thesynchronized keyword, used to implement mutual exclusion.

—The methodswait, notify, andnotifyAll defined injava.lang.Object, used to
coordinate activities across threads.

The constructor forThread class takes an object implementing theRunnable interface
as a parameter. TheRunnable interface requires that the object implements therun()

method.
A thread iscreatedby executing anew Thread() allocation statement. A thread is

startedby invoking thestart() method and starts executing therun() method of the
object implementing theRunnable interface.

Initially, a program starts with executing themain() method by the main thread. Java
assumes that threads are scheduled arbitrarily.

The program shown in Fig. 2 contains3 classes implementing theRunnable interface:
aProducer class, which puts items into a shared queue; a balkingConsumer class, which
takes items from a shared queue and does not wait for an item ifthe queue is empty; and an
Approver class, which performs some computation on a queue element toapprove it. The
program starts by executing themain() method, which creates a shared queue, a Producer
thread, a Consumer thread, and3 Approver threads. Threads in the example are started at
labelslm5, lm6, andlm7.

Each Java object has a unique monitor associated with it, which a thread can lock or
unlock. Only one thread at a time may hold a lock on a monitor. In addition, each object
has an associated block-set and wait-set for managing threads that are blocked on the ob-
ject’s monitor or waiting on it. When asynchronized(expr) statement is executed by
a threadt, the expressionexpr is evaluated, and the resulting object’s monitor is checked
for availability. If the monitor has not beenacquiredby any other thread,t successfully
acquiresit. If the monitor has already been acquired by another thread t′, the threadt
becomesblockedand is inserted into the monitor’s block-set. A thread may acquire more
than one monitor, and may acquire a monitor more than once (monitors are re-entrant).
When a thread leaves thesynchronized block, it unlocksthe monitor associated with it.
When a monitor has been locked more than once (by the same thread), it is released only
when a matching number ofunlockoperations are performed.

In the example shown in Fig. 2, we guarantee that the queue operations are atomic by
putting critical code into asynchronized(this) block.

A threadt can wait on an objecto by calling the methodo.wait(). Invokingo.wait()
placest in o’s wait-set, and releases the monitor lock associated witho. However, it does
not release any other locks thatt acquired. When a thread is in the wait-set of an object,
we say that the thread iswaiting. A waiting threadt can be only released by another thread
invokingo.notify(), o.notifyAll() or interrupt() on the threadt.
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Invokingnotify() on an object removes an arbitrary thread from the object’s wait-set,
and makes it available for scheduling. InvokingnotifyAll() on an object removes all
threads from the wait-set, and makes them available for scheduling.

A threadt should only invokewait(), notify() andnotifyAll()when it is holding
the object’s lock, otherwise an exception is thrown.

A threadt1 may wait for another threadt2 to complete execution andjoin it by invoking
a call to t2.join(). If t2 is not yet started ort2 is already dead, the call fort2.join() is
ignored.

Java uses a variant of no-priority non-blocking monitors [Buhr et al. 1995]. In no-
priority monitors a notified thread has no priority over blocked threads, or over a thread
just reaching the monitor entrance. Notified threads, blocked threads, and entering threads
have the same priority when competing to acquire a lock. Therefore, a notified thread
does not resume execution immediately, but is moved to the block-set, and competes to
re-acquire the lock.

For simplicity and readability we make the following simplifying assumptions:

—We assume the identity of the lock forsynchronized(exp), and the target object of
scheduling-related methods, is given as a single referencevariable rather than a general
reference expression as supported by the Java language. If the program uses a general
expression, we normalize the program by adding a temporary variable.

—Similarly, we assume the target object of scheduling-related methods (notify(),
notifyAll(), wait() etc.) is given as a single reference variable.

—We assume that the memory-model provides sequential consistency. This assumption
abstracts away from the actual details of the memory model and is common to most
Java verification frameworks. While our framework is expressive enough for expressing
the lower-level semantics involving the actual memory-model, this would result in a
significant performance decrease.

—For simplicity, we do not present here the semantics for multiple acquisitions of a lock
by the same thread.

—We may handle additional Java features such as exceptions and dynamic binding in a
conservative manner.

3. A PROGRAM MODEL

In this section, we lay the ground for our analysis framework. In Section 3.1, we use log-
ical structures to represent the global state of a multithreaded program. Section 3.2 uses
logical formulae as meta-language to extract interesting properties of a configuration, such
as mutual exclusion. Then, in Section 3.3, we define a structural small-step operational se-
mantics which manipulates configurations using logical formulae. Finally, in Section 3.4,
we describe the safety properties that are verified in this paper.

3.1 Representing Program Configurations via Logical Structures

First-order logical structures provide a natural formalism for representing the global state
of a heap-manipulating program — individuals of the first-order structure correspond to
heap-allocated objects, properties of objects are represented using unary predicates, and
relationships between objects using binary predicates. Itis also possible to use first-order
logical structures to model non heap-allocated objects (such as integer values), as well
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as enforce a typing mechanism on objects by using a unary predicateis T (v) to denote
objects of typeT .

A program configurationencodes a global state of a program which consists of (i) a
global store, (ii) the program location of every thread, and(iii) the status of locks and
threads, e.g., if a thread is blocked on a lock. Technically,first-order logic with transitive-
closure is used in this paper to express configurations and their properties in a parametric
way. Formally, we assume that there is a set of predicate symbolsP for every analyzed pro-
gram, each with a fixed arity. Table I contains the predicatesused to analyze our example
programs.

—The binary predicateeq(v1, v2) holds for objects that are equal.
—A unary predicateis T (v) is used to denote the objects of typeT . In particular, the

unary predicateis thread(t) denotes objects that are threads, i.e., instances of the
java.lang.Thread or its subclasses.

—To model integer values, we introduce objects of type unsigned-integer, where the unary
predicatezero(v) is used to record the integer with the value zero, and the binary pred-
icatesucc(v1, v2) to record successor relationship between integers.

—For every potential program location (label)lab of a threadt, there is a unary predicate
at[lab](t) which is true whent is atlab.

—For every class field and local variablefld, there is a binary predicaterv[fld](v1, v2)
records the fact that thefld of the objectv1 points to the objectv2. For simplicity, we
do not model the stack of a thread, and treat local variables of a thread as fields of the
thread object.

—For every integer valued fieldifld, there is a binary predicateiv[if ld](v1, v2) that rep-
resents the integer value of a field by relating an objectv1 to an individual representing
an integer valuev2.

—The predicatesheld by(l, t), blocked(t, l) andwaiting(t, l) model possible relation-
ships between locks and threads.held by(l, t) is true when the lockl has been acquired
by the threadt via a successfulsynchronized statement.blocked(t, l) is true when the
threadt is blocked on the lockl as a result of an unsuccessfulsynchronized statement.
waiting(t, l) is true when the threadt is waiting for the lockl as a result of invoking a
wait() call.

Note that predicates in Table I are actually written in a generic way and can be applied
to analyze different programs by modifying the set of labelsand fields.

A (concrete)program configurationis a2-valued logical structureC♮ = 〈U ♮, ι♮〉 where:

—U ♮ is the infinite universe of the2-valued structure. Each individual inU ♮ represents an
allocated heap object (some of which may represent threads of the program,). The con-
figuration may also contain an infinite number of individualsrepresenting the unsigned
integers.

—ι♮ is the interpretation function mapping predicates to theirtruth-value in the structure,

i.e., for every predicatep ∈ P of arity k, ι♮(p) : U ♮k → {0, 1}.

Usually, not all logical structures represent valid program configurations. Therefore,
TVLA/3VMC allows the programmer to introduce integrity constraints specified asFOTC

(first order-logic with transitive closure) formulae [Sagiv et al. 2002]. The integrity con-
straints for integers are simply the Peano axioms encoded usingFO formulae.
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Predicates Intended Meaning
eq(v1, v2) v1 equals tov2
is T (v) v is an object of typeT
zero(v) the individualv represents integer value zero
succ(v1, v2) v2 is the successor value ofv1
{at[lab](t) : lab ∈ Labels} threadt is at labellab
{rv[fld](v1, v2) : fld ∈ RFields} field fld of the objectv1 points to the objectv2
{iv[fld](v1, v2) : fld ∈ IF ields} field fld of the objectv1 has the valuev2
held by(l, t) the lockl is held by the threadt
blocked(t, l) the threadt is blocked on the lockl
waiting(t, l) the threadt is waiting on the lockl

Table I. Predicates for partial Java semantics.

<q>
r_by[this]

<u0>
r_by[head]rv[head] <u4>

r_by[next]
r_by[tail]

rv[tail]

<prd>
at[lp_6]held_by

<u1>
r_by[next]

rv[next] <u2>
r_by[next]

rv[next] <u3>
r_by[next]

rv[next]
rv[next]

<m1>
r_by[x_i]

<a3>
at[la_1]

rv[this]

<a2>
at[la_1]

rv[this]

<a1>
at[la_1]

rv[this]

rv[this]
rv[x_i]

<cns>
at[lt_1]blocked

rv[this]

Fig. 4. A concrete configurationC♮
4.

In this paper, program configurations are depicted as directed graphs. Each individual
of the universe is displayed as a node — objects of type threadare presented as hexagon
nodes, other objects as round nodes. A unary predicatep which holds for an individual
(node)u is drawn inside the nodeu. In some of the figures, we use node names written
inside angle brackets. Node names are only used for ease of presentation and do not affect
the analysis. A true binary predicatep(u1, u2) is drawn as a directed edge fromu1 to u2

labeled with the predicate symbol. For brevity, predicateeq(v1, v2) is not shown. We use
a natural sign (♮) to denote entities of the concrete domain (e.g.,C♮ denotes a concrete
configuration C).

EXAMPLE 3.1. The configurationC♮
4 shown in Fig. 4 corresponds to a global state of

the example program with 5 threads: a singleproducerthread (labeledprd) that acquired
the queue’s lock, a singleconsumerthread (labeledcns) that is blocked on the queue’s lock,
and 3approvingthreads (a1, a2, a3) that haven’t performed any action yet. The role of the
predicater by[fld](o) will be explained in future sections. For clarity of presentation, we
omit theRunnable objects and present only thread objects.

All threads in the example use a single shared queue containing 5 items{u0, . . . , u4}.
The binary predicaterv[next](o1, o2) records for each objecto1 the target object refer-
enced by itsnext field.
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Note that the number of heap allocated objects in a configuration is not bounded since
the analyzed program may allocate new non-thread and/or thread individuals. We do not
place a bound on the number of allocated objects.

3.2 Extracting Properties of Configurations using Logical Formulae

Properties of a configuration can be extracted by evaluatinga first-order logical formulae
with transitive closure and equality over the configuration. Appendix A provides a formal
description of such formulae and their evaluation.

For example, the following formula describes the fact that alock pointed-to by thethis
field of some thread has been acquired by the thread.

∃t, l.is thread(t) ∧ rv[this](t, l) ∧ held by(l, t)

For ease of notation, we use the shorthand∃v : type.ϕ , ∃v.is type(v) ∧ ϕ (similarly
for universal quantification). This allows us to write the above formula in a more readable
form as:

∃t : thread ∃l.rv[this](t, l) ∧ held by(l, t)

For example, the formula

∃t : thread.held by(l, t)

describes the fact that the lockl has been acquired by some thread. Our experience indi-
cates that it is quite natural to express configuration properties using first-order logic.

Transitive closure is useful for expressing reachability.For example, to express the fact
that an elementu1 in the queueq is reachable fromhead through a sequence ofnext
fields, we write the formula:

∃u.rv[head](q, u) ∧ rv[next]∗(u, u1)

Note that the program location of each thread can be used in a formula by using the ap-
propriate label. For example, consider a labellcrit which corresponds to a critical section.
We formalize the mutual exclusion requirement using the following formula:

∀t1, t2 : thread.(t1 6= t2) → ¬(at[lcrit](t1) ∧ at[lcrit](t2))

The above formula could be trivially extended to handle critical sections with multiple
labels by using a disjunction of the labels in the critical section. It can also be extended to
handle threads with different critical sections.

3.3 A Structural Operational Semantics of Configurations

Fig. 5 shows a depth-first search algorithm for exploring a state-space. For each config-
urationC such thatC is not already amemberof thestate-space, we explore every con-
figurationC′ that can be produced by applying some action to the current configuration
C.

Every resulting configurationC′, is added to thestate-spaceusing set union. The mem-
bership operator used is set-membership, we will later use ageneralized membership op-
erator. In the case of set membership, this algorithm is essentially the classic state-space
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initialize(C0) {
WorkSet = C0

}

explore() {
while WorkSet is not empty {

select and remove C from WorkSet
if not member(C, stateSpace) {

verify(C)
stateSpace′ = stateSpace ∪ {C}
for each action ac
for each C′ such that C ⇒ac C′

WorkSet = WorkSet ∪ {C′}
}

}
}

Fig. 5. State space exploration.

exploration used in model-checking [Clarke et al. 1999a]. However, in contrast to model-
checking, there is no bound on the number of objects, and therefore the state-space ex-
plored by this algorithm is not guaranteed to be finite. A possible solution for this problem
is given in Section 4.

Informally, an action is characterized by the following kinds of information:

—Thepreconditionunder which the action is enabled expressed as a logical formula. This
formula may also include a designated free variablets to denote the “scheduled” thread
on which the action is performed. Our operational semanticsis non-deterministic in the
sense that many actions can be enabled simultaneously and one of them is chosen for
execution. In particular, it selects the scheduled thread by an assignment tots. This
implements the interleaving model of concurrency.

—Enabled actions create a new configuration where the interpretations of every predicate
p of arity k is determined by evaluating a formulaϕp(v1, v2, . . . , vk) which may use
v1, v2, . . . , vk andts as well as all other predicates inP .

Table II defines the semantics of concurrency statements used in the running example.
The table lists a precondition and update formulae for each action. The value of a predicate
p(v1, v2, . . . , vk) after the update is given by a formulaϕp(v1,v2,...,vk). Predicates not given
an update formula are assumed to remain unchanged by the action. The set of actions is
partitioned into blocking and non-blocking actions. Blocking actions do not affect the
program location. Non blocking actions advance to the next program location by updating
theat[lab](ts) predicates for the thread.

A Java statement may be modeled by several alternative actions corresponding to the
different behaviors of the statement. When a precondition is enabled, it determines a thread
(denoted byts) that executes the action, and an action to be taken.

The actionslock(var) andblockLock(var) correspond to the two possible behaviors on
entry to asynchronized(var) block: lock(var) is enabled when there exists no thread
(other than the current thread) that is holding the lock referenced byvar, blockLock(var)
is enabled when such a thread exists. The actionunlock(var) corresponds to the release of
the lock upon exit of thesynchronized(var) block. The actionwait(var) corresponds
to invocation ofvar.wait(). The actionsnotify(var) andignoredNotify(var) cor-
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Action Precondition Predicate-update

lock(var) ¬∃t 6= ts.rv[var](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∨ (t1 = ts ∧ l1 = l)
∧ held by(l, t) ϕblocked(t1,l1) = blocked(t1, l1) ∧ ((t1 6= ts) ∨ (l1 6= l))

unlock(var) rv[var](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∧ (t1 6= ts ∨ l1 6= l)

wait(var) rv[var](ts, l) ϕheld by(l1,t1) = held by(l1, t1) ∧ (t1 6= ts ∨ l1 6= l)
ϕwaiting(t1 ,l1) = waiting(t1, l1) ∨ (t1 = ts ∧ l1 = l)

notify(var) rv[var](ts, l) ϕwaiting(t1 ,l1) = waiting(t1, l1) ∧ (t1 6= tw ∨ l1 6= l)
∧ waiting(tw, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (t1 = tw ∧ l1 = l)

ignored rv[var](ts, l)
Notify(var) ∧ ¬∃tw.waiting(tw, l)

notifyAll(var) rv[var](ts, l) ϕwaiting(t1 ,l1) = waiting(t1, l1) ∧ (l1 6= l)
∧ ∃tw.waiting(tw, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (waiting(t1, l1) ∧ (l1 = l))

ignored rv[var](ts, l)
NotifyAll(var) ∧ ¬∃tw.waiting(tw, l)

blockLock(var) ∃t 6= ts.rv[var](ts, l) ϕblocked(t1,l1) = blocked(t1, l1) ∨ (t1 = ts ∧ l1 = l)
∧ held by(l, t)

Table II. Operational semantics for concurrency statements. Actions above the two hori-
zontal lines are non-blocking, theblockLock(var) action is blocking.

respond to the possible behaviours when callingvar.notify(): notify(var) is enabled
when there exists a thread waiting on the lock referenced byvar, and the free variable
tw in its precondition corresponds to non-deterministic selection of the thread to be noti-
fied; ignoredNotify(var) is enabled when no such thread exists.notifyAll(var) and
ignoredNotifyAll(var) model similar behavior ofvar.notifyAll(). Technically, the
translation of a Java statement (and condition) to several alternative actions can be per-
formed by a front-end.

In essence, the predicates defined in this section, and the predicate update formulae we
describe here, are an encoding of the concrete operational semantics. As such, it is up to
the user to make sure that these formulae are a faithful representation of the operational
semantics. We refer to the predicates that are used to encodethe concrete operational se-
mantics ascore predicates. In Section 4, we will introduce the notion of instrumentation
predicates that are used to refine the abstraction. The update formulae for these can be de-
rived automatically using finite differencing [Reps et al. 2003]. The beauty of the approach
of [Sagiv et al. 2002] (that we inherit here) is the fact that the predicate update formulae
specified by the user are ones of the concrete semantics. The abstract transformers are
automatically constructed by interpreting these formulaeover3-valued structures.

Formally, the meaning of actions is defined as follows:

DEFINITION 3.2. Given a configurationC♮ and an actionac, we say thatC♮ = 〈U, ι〉

rewrites into a configurationC♮′ = 〈U, ι′〉 (denoted byC♮ ⇒ac C♮′), if there exists an
assignmentZ that satisfies the precondition ofac onC♮, and for everyp ∈ P of arity k
andu1, . . . , uk ∈ U ,

ι′(p)(u1, . . . , uk) =

[[ϕp(v1, v2, . . . , vk)]]
C♮

2 (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])
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whereϕp(v1, · · · , vk) is the formula forp given in Table II. We writeC♮ ⇒ C♮′ if for

some actionac C♮ ⇒ac C
♮′.

In addition, there is a special action that creates a new individual unew and results
in a structureC♮′ = 〈U ∪ {unew}, ι

′〉. A special predicateisNew holds forunew, and
thus can be used in the predicate update formulae. The predicate isNew is updated by
the allocation action, and only holds (temporarily) for thenewly allocated object(s). This
predicate is required in order to distinguish newly allocated objects from objects that were
pre-existing in a structure.

We say that a configurationC♮ transitively rewrites into a configurationC♮′ (denoted
by C♮ ⇒∗ C♮′) if there exists a (potentially empty) sequence of configurationsC♮ =
C♮

0, C
♮
1, . . . , C

♮
n = C♮′ such that for each0 ≤ i < n , C♮

i ⇒ C♮
i+1.

3.4 Safety Properties of Java Programs

Given a set of initial configurationsCI , the set ofreachableconfigurationsCR is the set of
configurations that can be created by transitively rewriting a configuration fromCI . More
formally, a configurationCr ∈ CR iff there existsCi ∈ CI .Ci ⇒

∗ Cr.
A safety property is formalized using a logical formula. We say that a safety property of

a programholdsif all reachable configurations satisfy the formula specifying the property.
Our analysis described in Section 4.1 aims at automaticallyverifying safety properties

by guaranteeing to detect configurations where the properties are violated, if such configu-
rations exist. Moreover, we sometimes also show that a liveness property at some reachable
configuration holds by showing that a stronger safety property holds.

Table III lists some of the formulae used to detect configurations that violate a safety
property. Formulae for other safety properties may be defined similarly.

In the Read-Write (RW) Interference formula, the first line states that both individuals
tr andtw are different thread individuals, the second line states that threadtr is at label
lr and the threadtw is at labellw, and the third line states that the variablexw of thread
tw and variablexr of threadtr reference the same objecto. Note thatlw is assumed to be
a label of a statement with a writing access, andlr a label of a statement with a reading
access.

EXAMPLE 3.3. In Fig. 4, the RW-Interference formula evaluates to0 for the labelslt3
(newHead = head.next) andlp6 (tail.next = x i) of the example program shown
in Fig. 2. This is due to the fact that synchronization prevents the consumer thread〈cns〉
from being at labellt3 when the producer thread〈prd〉 is at labellp6.

Even if synchronization was dropped, and the consumer and producer threads were al-
lowed to be atlt3 and lp6 correspondingly, RW-Interference would still evaluate to0 in
this configuration sincehead andtail refer to different objects.

The Write-Write (WW) Interference formula is similar to theRW Interference formula.
The Total Deadlock formula requires that for each threadt there exists a lockl such that

t is blocked onl. This is a strict formulation of the problem that can be generalized (e.g.,
allowing some thread to be in the terminated state).

The Resource Ordering Criterion formula states that there exists a threadt holding a
lock l2, and blocked on a lockl1, such that the ID ofl2 is greater than the ID ofl1.

The Nested Monitors formula states thatoout is a separation node in the configuration
graph with respect to paths over the fieldin. Thus, everyin-path from a node in the con-
figuration graph reachingoin passes through the nodeoout. Therefore, a nested-monitors
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Formula Intended Meaning
∃tr, tw : thread, o.(tr 6= tw) RW Interference between a thread (tr) at labellr
∧ at[lr](tr) ∧ at[lw](tw) readingxr.f ld and a thread (tw) at labellw
∧ rv[xw ](tw, o) ∧ rv[xr ](tr, o) updatingxw.f ld, wherexr andxw

are pointing to the same objecto.
∃tw1, tw2 : thread, o.(tw1 6= tw2) WW Interference between a thread (tw1) at labellw1

∧ at[lw1](t1) ∧ at[lw2](t2) writing xw1.f ld and a thread (tw2) at labellw2

∧ rv[xw1](tw1, o) ∧ rv[xw2](tw2, o) updatingxw2.f ld, wherexw1 andxw2

are pointing to the same objecto.
∀t : thread.∃l.blocked(t, l) Total Deadlock
∃t : thread, l1, l2.blocked(t, l1) Resource Ordering. A threadt is blocked on a lock
∧ held by(l2, t) ∧ ¬lt[id](l2, l1) “smaller” than a lock it is holding.

∃tw : thread, oout, oin.waiting(tw, oin) Nested Monitors. A threadtw is waiting
∧ held by(oout, tw) ∧ rv[in]∗(oout, oin) on an objectoin while holding the lock
∧ ∀op.((op 6= oout) ∧ rv[in]∗(oout, op) of an objectoout which structurally contains it,
∧ rv[in]∗(op, oin) thus preventing any other thread from notifyingtw.
→ ¬(∃t1, t2.rv[in](t1, op) ∧ rv[in](t2, op))

∃t.at[ls](t) ∧ rv[var](t, l) ∧ ¬held by(l, t) Missing Ownership. Thread invokingvar.wait() or
var.notify() at labells when not holding the lock
referenced byv.

See Section 5.2 Shared ADT
See Section 5.3 Thread Interactions

Table III. Violations of safety properties detected in thispaper.

deadlock may be created when a thread is waiting onoin while holding the lock of the
objectoout.

The Missing Ownership formula states that there exists a threadt at labells which in-
vokesvar.wait() orvar.notify() and does not hold the lock of the objectl referenced
by variablevar.

4. AN ABSTRACT PROGRAM MODEL

The state-space exploration algorithm of Fig. 5 may be infeasible in programs with an
unbounded number of objects. In this section, we describe how to create a conservative
representation of the concrete model presented in Section 3in a way that provides both
feasibility and high precision.

In Section 4.1 we use3-valued logical structures to conservatively represent multiple
configurations of a multithreaded program. Section 4.1.1 presents the concept of embed-
ding, which is crucial for proving the correctness of our algorithm. Section 4.2 presents the
abstract semantics derived from the concrete semantics presented in Section 3.3. Finally,
Section 4.3 shows how to improve the precision of our analysis by adding instrumentation
predicates.
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<q>
r_by[this]

<u0>
r_by[head]

rv[head]

<u4>
r_by[next]=1/2

r_by[tail]

rv[tail]

<prd>
at[lp_6]

held_by

<u>
r_by[next]=1/2

rv[next]

rv[next]rv[next]

<m1>
r_by[x_i]

<a1>
at[la_1]

rv[this]

rv[this] rv[x_i]

<cns>
at[lt_1]

blocked

rv[this]

Fig. 6. An abstract configurationC6 representingthe (concrete) configurationC♮
4 of Fig. 4.

4.1 Representing Abstract Program Configurations via 3-Valued Logical Struc-
tures

To make the analysis feasible, we conservatively representmultiple configurations using
a single logical structure but with an extra truth-value1/2 denoting values which may be
1 and may be0. The values0 and1 are calleddefinite valueswhereas the value1/2 is
calledindefinite value. We allow an abstract configuration to includesummary nodes, i.e.,
individuals that represent one or more individuals in a represented concrete configuration.
Technically, a summary nodeu hasι(eq(u, u)) = 1/2.

Formally, anabstract configurationis a3-valued logical structureC = 〈U, ι〉 where:

—U is the universe of the3-valued structure. Each individual inU represents possibly
many allocated heap objects.

—ι is the interpretation function mapping each predicate to its truth-value in the struc-
ture, i.e., for every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}. For example,
ι(p)(u) = 1/2 indicates that some of the individuals represented byu have1 as their
truth values, and some have the truth value0.

4.1.1 Embedding.We now formally define how configurations are represented using
abstract configurations. The idea is that each individual from the (concrete) configuration
is mapped into an individual in the abstract configuration. More generally, it is possible
to map individuals from an abstract configuration into an individual in another less precise
abstract configuration. The latter fact is important for ourabstract transformer.

Formally, letC = 〈U, ι〉 andC′ = 〈U ′, ι′〉 be abstract configurations. A function
f : U → U ′ such thatf is surjective is said toembedC into C′ if for each predicatep of
arity k, and for eachu1, . . . , uk ∈ U one of the following holds:

ι(p(u1, u2, . . . , uk)) = ι′(p(f(u1), f(u2), . . . , f(uk)))
or

ι′(p(f(u1), f(u2), . . . , f(uk))) = 1/2

We say thatC′ representsC when there exists such an embeddingf .
One way of creating an embedding functionf is by usingcanonical abstraction. Canon-

ical abstraction maps concrete individuals to an abstract individual based on the values of
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the individuals’ unary predicates. All individuals havingthe same values for unary predi-
cate symbols are mapped byf into the same abstract individual.

Example4.1.1. The abstract configurationC6 representsconcrete configurationC♮
4.

We use dashed edges to draw1/2-valued binary predicates, and nodes with double-line
boundaries to represent summary nodes.

The summary node labeleda1 represents the threadsa1, a2, a3 which all have the same
values for the unary predicates. The summary node labeledu represents all queue items
that are not directly referenced by the queue’s head or tail.Note that the abstract config-
urationC6 represents many configurations. For example, it representsany configuration
with 3 or more queue items (asu0 andu4 represent exactly one item each, and the sum-
mary nodeu represents at least one item). In a similar fashion, the abstract configuration
represents configurations with one or more threads that reside at labella1 (represented by
the summary node labeleda1). Note that the RW-Interference condition evaluates to0
over the abstract configurationC6.

The abstraction mechanism we describe here operates on a configuration as a whole.
This may have obvious limitations on scalability as it uniformly applies the same abstrac-
tion to an entire configuration. Alternative approaches include separation and heterogenous
abstraction [Yahav and Ramalingam 2004] applying different abstractions to different parts
of a configuration, and heap decomposition [Manevich et al. 2008].

4.2 An Abstract Semantics

We use the same simple algorithm from Fig. 5 for exploration of the abstract state space.
The operations used by the algorithm are modified to work for abstract configurations.
The rewrites relation is modified to conservatively model the effect of anaction on the
given abstract configuration (possibly representing multiple configurations). In addition,
the state-space exploration now starts withC0 being the abstraction of initial configurations.

Implementing an algorithm for computing therewrite relation on abstract configurations
is non-trivial because one has to consider all possible relations on the set of represented
(concrete) configurations.

Thebest conservative effectof an action (also known as theinduced effector best ab-
stract transformer of an action) [Cousot and Cousot 1979] isdefined by the following
3-stage semantics: (i) A concretization of the abstract configuration is performed, result-
ing in all possible configurationsrepresentedby the abstract configuration; (ii) The action
is applied to each resulting configuration; (iii) Abstraction of the resulting configurations
is performed, resulting in a set of abstract configurationsrepresentingthe results of the
action.

Our prototype implementation described in Section 6 operates directly on abstract con-
figurations, and obtains actions which are more conservative than the ones obtained by the
best transformers. Our experience shows that these actionsare still precise enough to de-
tect violations of the safety properties as listed in Table III, without producingfalse alarms
on our example programs.

Intuitively, our approach uses partial concretization (anoperation calledfocusin [Sagiv
et al. 2002]) to produce a finite set of abstract configurations to which the update is applied.
The update is followed by an abstraction (blur in [Sagiv et al. 2002]) that produces the set
of abstract configuration that constitute the result of the action.
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Fig. 7. Example ofTVLA/3VMC transformer being more conservative than the best trans-
former.

In Section 6, we show that our abstract transformers are precise enough to verify the
properties of interest in our example programs. However, our transformers may yield
results that are more conservative than the best transformer, as shown in the following
example.

Example4.2.1. As a simple example of where our abstract transformers are more con-
servative than the best transformer, consider the abstractconfigurations shown in Fig. 7.
For simplicity, we show abstract configurations of a sequential program in which there are
no thread nodes. In these configurations, the program variablesx,y, andz are represented
using unary predicates and the fieldn using a binary predicate. In addition, we use the
predicatesr[n, x],r[n, y], andr[n, z] to record transitive reachability from variables, and a
predicatesis to record whether a node is shared (pointed to by more than a singlen field).
Given the configurationC7, we consider the effect of a single statementz.n = y. Ap-
plying the action corresponding to this statement to the abstract configurationC7 results
in the abstract configurationC′

7. Note that in the configurationC′
7, the value for theis

predicate is1/2.
Applying the statementz.n = y to the abstract configurationC7 makes the node pointed

to by y become a shared node, as it is transitively reachable from the node pointed-to by
x and (directly) reachable from the node pointed-to byz. Technically, this means that
the value of theis predicate after the update should have been1. However, our abstract
transformer in this case is conservative and sets the value of is to 1/2.

DEFINITION 4.1. We say that an abstract configurationC rewrites into an abstract
configurationC′ (denoted byC⇒ac C

′) whereac is an action, if forC and forC′ there
existsC♮ andC♮′ = 〈U ♮, ι♮

′
〉 such that:(i) C♮ is in the concretization ofC, i.e.,C repre-

sentsC♮, (ii) C′ is thecanonical abstractionof C♮′, (iii) there exists an assignmentZ that
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Fig. 8. Concretization and predicate-update for an unbounded number of threads all per-
forming theapproveHead() method of the running example.

satisfies the precondition ofac onC♮, and for everyp∈P of arity k andu1, . . . , uk∈U ♮,

ι♮
′
(p)(u1, . . . , uk) =

[[ϕp(v1, v2, . . . , vk)]]
C
3 (Z[v1 7→ u1, v2 7→ u2, . . . , vk 7→ uk])

whereϕp(v1, · · · , vk) is the formula forp given in Table II, and[[ϕ]]C3 (Z) is the three-
valued evaluation of a formulaϕ in a configurationC under an assignmentZ (see Ap-
pendix A). We writeC ⇒ C′ if for some actionac C ⇒ac C

′.

Example4.2.2. The abstract configurationC8,0 shown in Fig. 8 represents an un-
bounded number of threads all at labella1. The actions for labella1 arelock(this) and
blockLock(this).

The infinite set of configurations{C8,0,1, C8,0,2,. . . } is the set of (concrete) configu-
rations after concretization. After concretization the preconditions of the actions are eval-
uated, the precondition forlock(v) evaluates to1 and the precondition forblockLock(v)
evaluates to0. Thuslock(v) is applied. The infinite set of configurations{C8,1,1,C8,1,2,. . .
} is the set after the application oflock(v). The set of abstract configurations{C8,2,1,
C8,2,2 } is the finite set of configurations after abstraction.
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Fig. 9. Instrumentation predicateis blocked(t).

The membership operatormember(C, stateSpace) of Fig. 5 can be modified to check
if the configurationC is already represented by one of the configurations instateSpace.
This is an optimization for preventing exploration of redundant configurations.

4.3 Instrumentation

Instrumentation predicates record derived properties of individuals. Instrumentation predi-
cates are defined using a logical formula over core predicates. Updating an instrumentation
predicate is part of the predicate-update formulae of an action.

The information recorded by an instrumentation predicate in a configuration may be
more precise than evaluating the defining formula of the instrumentation predicate over the
configuration. This is known as theInstrumentation Principleintroduced in [Sagiv et al.
2002].

The mapping of individuals in a configuration into an abstract individual of an abstract
configuration is directed by the values of the unary predicates. By adding unary instru-
mentation predicates, one may allow finer distinction between individuals, and thus may
improve the precision of the analysis.

Table IV shows some of the instrumentation predicates we used in this paper. We elab-
orate on the use of these predicates in Section 5. The following provides a simple example
of their effect.

Example4.3.1. Consider an unbounded number of threads competing toacquire a sin-
gle shared lock. Assume that a threadt1 has already acquired the lock. The configuration
C9,0,1 shown in Fig. 9 corresponds to a state in which some thread tried to acquire the
lock and consequently became blocked on the lock. In this configuration, the formula
∃t, l.rv[this](t, l) ∧ blocked(t, l) evaluates to1/2. ConfigurationC9,0,2 shows the same
global state when the instrumentation predicateis blocked(t) is used. Now, one can check
the existence of a blocked thread using the stored value of the instrumentation predicate
is blocked(t), which evaluates to1. Note that in this case evaluation of the original for-
mula over the configuration with instrumentation also evaluates to1 rather than to1/2, but
this is not always the case.
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4.4 Updating Instrumentation Predicates

The updated value of a core predicate is obtained by interpreting the corresponding update
formula, specified in the concrete semantics, using3-valued logic. The soundness of the
abstract transformers updates to core predicates is guaranteed by construction.

The immediate question is how to update the value of instrumentation predicates?
As mentioned earlier, an instrumentation predicate is defined using a logical formula

over core predicates. It is therefore possible to obtain thevalue of an instrumentation pred-
icate after an update by re-evaluating its defining formula in the updated abstract configu-
ration. However, as shown in [Sagiv et al. 2002], it is possible to achieve better precision
by defining an update formula describing the effect of a transformer on an instrumentation
predicate.

Reps et al. [2003] provide a method for updating instrumentation predicates automat-
ically based on finite differencing. Their approach is able to derive the update formula
for an instrumentation predicate under a transformer from the updates applied to the core
predicates used to define it. This approach, however, is limited when it comes to up-
dating instrumentation predicates using transitive closure (e.g., transitive reachability of
Table IV). This is due to the inherent difficulty in incremental maintenance of transitive
properties in directed graphs [Immerman 1998]. Still, the approach provides sufficiently
precise updates in some special cases (e.g., acyclic graphs).

Technically, the current implementation also has limitations when dealing with alloca-
tion and deallocation, so update formulae for instrumentation predicates have to be pro-
vided in these cases. This is likely to be addressed in futureversions of the tool.

5. VERIFYING SAFETY PROPERTIES

We use the instrumentation predicates listed in Table IV to improve the precision of our
analyses. The following sections list more precise formulations of the formulae of Table III
using instrumentation predicates whenever possible.

5.1 Deadlock

We use thewait for(t1, t2) instrumentation predicate to detect a cyclicwait for depen-
dency. We useslock(t) to track the resource-ordering local property for each thread. Thus,
the resource ordering violation can be formulated as∃t.slock(t). The definition ofslock(t)
uses the predicatelt[id](v1, v2) which records the order between locks according to the
value of theirid fields. Each lock object is assumed to have a unique id recorded in its
id field (e.g., such an id could be provided using thejava.lang.Object’s hashCode()
method). The predicatelt[id](l1, l2) is true when the id ofl1 is less than the id ofl2. The
order between objects can be used for deadlock prevention bybreaking cyclic allocation
requests [Silberschatz and Galvin 1994].

Note that we are recording the order between lockids and not the actual values of these
ids. Thus, there is no requirement that the number of locks would be a priori bounded.

The formula for nested-monitors deadlock is given below:

∃tw : thread, oout, oin.waiting(tw, oin) ∧ held by(oout, tw) ∧ rf [in](oout, oin)
∧ ∀op.((op 6= oout) ∧ rf [in](op, oin) → rf [in](oout, op) ∧ ¬is[in](op))

Intuitively, a nested monitors deadlock occurs when a thread is waiting for an inner
monitor to be released while holding the lock on an outer monitor that prevents access of
other threads to the inner one.
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Predicate Intended Meaning Defining Formula
is[fld](l1) l1 is referenced by the fieldfld ∃t1, t2.(t1 6= t2) →

of more than one object rv[fld](t1, l1) ∧ rv[fld](t2, l2)
r by[fld](l) l is referenced by the fieldfld ∃o.rv[fld](o, l)

of some object
lt[if ld](v1, v2) the value ofif ld of v1 is less than that ofv2 ∃i1, i2.ival[if ld](v1, i1)∧

ival[if ld](v2, i2) ∧ succ∗(i1, i2)
is acquired(l) l is acquired by a thread ∃t.held by(l, t)
is blocked(t) t is blocked on a lock ∃l.blocked(t, l)
is waiting(t) t is waiting on a lock ∃l.waiting(t, l)
slock(t) t violates the resource ordering criterion ∃l1, l2.is thread(t) ∧ blocked(t, l1)∧

held by(l2, t) ∧ ¬lt[id](l2, l1)
wait for(t1, t2) t1 is waiting for a resource held byt2 ∃lb.blocked(t1, lb) ∧ held by(t2, lb)
rf [fld](o1, o2) objecto2 is reachable from objecto1 using rv[fld]∗(o1, o2)

a path offld edges
rt[ref, f ld](t, o) objecto is reachable from threadt ∃ot.rv[ref ](t, ot) ∧ rv[fld]∗(ot, o)

by a path starting with a singleref
edge followed by any number
of fld edges

Table IV. Instrumentation predicates for partial Java semantics.

Technically, the formula above captures a situation in which there exists a threadtw
that is waiting on an inner monitoroin, and is holding an outer monitoroout, such that
the inner monitor is reachable from the outer one, and there is no other pointer-path to the
inner monitor other than the paths from the outer one. That is, the outer monitor dominates
the paths into the inner one.

5.2 Shared Abstract Data Types

We define a set of reachability predicates similar to the onesdefined in [Sagiv et al. 2002].
We use the reachability information to define invariants forADT operations. For example:

—At the end of aput operation — the new item is reachable from the head of the queue.

—At the end of atake operation — the taken item is reachable from the taking thread and
is no longer reachable from the head of the queue.

Examples of the encoding of such invariants are shown in Table VII of Section 7.2.2.
Note that these formulae use actual program labels to capture the notion of theend of an
operation.

5.3 Thread State Errors

We use additional predicates to record thread-state information: ts created(t),
ts running(t), ts blocked(t), ts waiting(t) andts dead(t). These are core predicates
that are updated directly by the instrumented semantics. Inorder to identify thread-state
error properties, we add preconditions identifying when anaction is illegal or suspicious.
These preconditions are listed in Table V. Most of these properties (missing ownership
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<m5>
r_by[x_i]

<q>
r_by[this]

<u0>
r_by[head]
r_by[tail]

rv[head]     rv[tail]

<cns>
at[lt_3]

rv[this]

<prd>
at[lp_6]

rv[x_i] rv[this]

<a1>
at[la_1]

rv[this]

Fig. 10. An abstract configurationC10 in which interference between the consumer and the produceris detected.

properties are the exception) can be viewed as an explicit encoding of a typestate property
([Strom and Yemini 1986]) defining the permitted sequences of method calls for the type
java.lang.Thread. The aforementioned thread-state predicates are used to encode the
states of the typestate automaton. These predicates are a natural example of predicates
used to record past events (e.g.,ts running(t) records the fact that the thread has been
started). Similar predicates are used in [Shaham et al. 2003] to track typestate properties
for compile-time memory management.

5.4 Interference

For simplicity, our formulation of interference assumes that we have statically classified
program labels at which reads and writes occur. An alternative formulation would instru-
ment the semantics to record reads and writes.

Example5.4.1. Assume an erroneous version of the running example (Fig. 2) in which
an unsynchronized version ofput() is used. ConfigurationC10 shown in Fig. 10 demon-
strates a possible interference in the program identified byour analysis. In the configuration
C10 a consumer is trying totake() the last item, and a producer is simultaneously trying
to put() an item.

The consumer thread reached labellt3 and is about to execute the action fornewHead =

head.next. The producer thread, having found that the queue is not empty, reached label
lp6, and is about to execute thetail.next=x i action. The RW-Interference formula
from Table III evaluates to1 for this configuration since both threads reference the same
object〈u0〉. Thus RW-Interference is detected.

It is important to note that if the queue has more than one item, RW-Interference is
not introduced, and our analysis will correctly report thatRW-Interference does not occur
(sincehead andtail refer to different objects).
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Problem Action Precondition Warning
Multiple var.start() rv[var](tr , dt) ∧ ts running(dt) IllegalThreadStateException
starts rv[var](tr , dt) ∧ ts dead(dt) Dead thread cannot be re-started
Premature var.stop() rv[var](tr , dt) ∧ ts created(dt) Thread stopped before started
stop
Missing var.wait() rv[var](tr , l) ∧ ¬held by(l, t) IllegalMonitorStateException
ownership var.notify() rv[var](tr , l) ∧ ¬held by(l, t) IllegalMonitorStateException

rv[var](tr , l) ∧ ¬∃tw .waiting(tw, l) A notify was ignored
Premature var.join() rv[var](tr , dt) ∧ ts created(dt) Thread join before started
join
Late var.setDaemon() rv[var](tr , dt) ∧ ts running(dt) IllegalMonitorStateException
setDaemon

Table V. Preconditions for checking illegal and suspiciousthread interactions.

C11,0 - initial C11,1 - thread inside critical section C11,2 - other threads blocked

r_by[this]at[la_1]
rv[this]

at[l_crit]

is_acquired
 r_by[this]

rv[this]

at[la_1]

rv[this]

held_by

at[l_crit]

is_acquired
 r_by[this]

rv[this]

at[la_1]

rv[this]

held_by

Fig. 11. Configurations arising in mutual exclusion with an unbounded number of threads.

5.5 Unbounded Number of Threads

When a system consists of many identical threads, the state-space can be reduced by ex-
ploiting symmetry.

In model checking, the global state of a system is usually described as a tuple contain-
ing thread program-counters, and value assignments for shared variables. In [Emerson
and Sistla 1993], symmetry is found between process indices. In our framework, thread
names are only determined by thread properties. Thus, thereis no need to explicitly de-
fine permutation-equivalence for symmetry reduction.The mapping to the canonic names
eliminates symmetry in the abstract state space.

We demonstrate the power of our abstraction by taking the example of a critical section
from [Emerson and Sistla 1993], and verifying that themutual exclusionproperty holds for
anunbounded number of threads.

Example5.5.1. Consider theapproveHead() method of class Queue. We would like
to verify mutual exclusion over the critical section protected bysynchronized(this).
For readability of this example we define all labels inside the critical section as a single la-
bellcrit. The property we detect is∃t1, t2.(t1 6= t2)∧at[lcrit](t1)∧at[lcrit](t2). The initial
state for the analysis contains anunbounded number of threadsrepresented by a summary
node. Fig. 11 shows three important abstract configurationsarising in the analysis of the
example.

In addition, using thread names that are only determined by thread properties reduces
the number of equivalent interleavings that have to be considered. For example, consider a
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Fig. 12. Configurations arising with explicit thread names.

program with five threads, each performing a single assignment to a local boolean variable
b initialized to false, setting its value to true. That is, each thread executes the single
statementl1 b = true; l2. When the program terminates, the local boolean variableb
of each thread is set to true. Analyzing this program with explicitly named threads will
result in125 possible interleavings that have to be considered (see Fig.12). Analyzing
the program in our approach will only consider a single (representative) interleaving (see
Fig. 13).

6. PROTOTYPE IMPLEMENTATION

In this section, we briefly describe our prototype implementation and present experimen-
tal results for applying the framework on a few small but interesting example programs.
More elaborate experimental results for the verification ofconcurrent queue algorithms are
provided in the following sections.

We have implemented a prototype of our framework calledTVLA/3VMC [Yahav 2000].
Our implementation is based on the3-valued logic engine ofTVLA [Lev-Ami and Sagiv
2000]. We applied the analyses to several small but interesting programs. Table VI sum-
marizes the programs we tested with: number of configurations created, actual errors (AE),
and reported errors (RE). All analyses terminated in less than 2 hours.
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Fig. 13. Configurations arising with canonical thread names.

It is important to note that the cost of verification for an unbounded number of threads
in our approach is exponential in the number of predicates, while the cost of verification
with explicit thread names is exponential in the number of threads. As a result, verifying
a property for an unbounded number of threads is not only stronger, but sometimes more
efficient than verifying the property for an a priori boundednumber of threads. For ex-
ample, verifying mutual exclusion for the mutex program with 5 explicitly named threads
takes over70 seconds whereas verification for an unbounded number of threads takes only
2 seconds.

In our prototype, the conservative effect of an action is implemented in terms of the
focus andcoerce operations (see [Sagiv et al. 2002] for more details).

Theswap andswap ord programs use two threads to swap items in a linked list.swap
does not use resource ordering, and thus may deadlock,swap ord uses resource ordering,
and thus cannot deadlock.stack andsStack are non-synchronized and synchronized ver-
sions of a Stack ADT manipulated by multiple threads.mutex is a simple program that
uses mutual exclusion to protect a critical section.prodcons andsProdCons are imple-
mentations of a Queue ADT manipulated by producer and consumer threads.DP is an
implementation of thedining philosophersproblem with unbound number of philosopher
threads.

While these example programs are small, the scenarios they explore are rather com-
plicated (e.g., nested monitors). We are encouraged by the fact that for these examples
our analysis terminated with no false alarms. In the following sections, we explore more
realistic example programs.

7. AUTOMATICALLY VERIFYING CONCURRENT QUEUE ALGORITHMS

In this section, we show how theTVLA/3VMC framework can be applied to automatically
verify partial correctness of non-trivial concurrent queue algorithms.

7.1 Concurrent Queue Algorithms

Concurrent FIFO queues are widely used in concurrent systems. Queues are used in
scheduling mechanisms, and as a basis of many concurrent algorithms. Concurrent ma-
nipulation of a shared queue requires synchronization to guarantee consistent results.
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Program Description Properties Config. AE/RE
swap swap elements data races 25 1/1

and deadlock
swapord swap elements data races 48 0/0

with resource ordering and deadlock
stack non-synchronized stack data races 184 1/1
sStack synchronized stack data races 104 0/0
mutex mutual exclusion mutex 41 0/0

nestedMon nested monitors deadlock 42 0/0
prodCons producer consumer data races 416 1/1
sProdCons synchronized producer consumer data races 195 0/0

DP unbounded dining philosophers deadlock 514 0/0

Table VI. Number of configurations, actual errors (AE), and reported errors (RE) for the
programs analyzed.

A naive concurrent queue implementation uses a single shared lock to prevent concur-
rent manipulations of queue contents. Naturally, this limits the level of system concurrency.
Many algorithms were suggested to increase concurrency while maintaining the correct-
ness of queue manipulations [Michael and Scott 1996; Stone 1990; 1992; Prakash et al.
1991; Wing and Gong 1990; Vechev and Yahav 2008]. The algorithms in [Michael and
Scott 1996; Stone 1990; 1992; Prakash et al. 1991] are given without a formal proof of
correctness, and [Wing and Gong 1990] provides a manual formal proof.

We focus on the non-blocking queue and two-lock queue algorithms presented in [Michael
and Scott 1996]. A Java-like code for the queue implementations is given in Fig. 14.

To emulate the intention of [Michael and Scott 1996], our programming model diverges
from Java by assuming a free operation and supporting several operations defined below.
The challenge of memory-management in such concurrent algorithms deserves a separate
discussion that goes beyond the scope of this paper. The interested reader can find more
details in [Michael 2004] and [Vechev et al. 2009].

In this section, we present the concurrent queue algorithmsand the correctness proper-
ties we will verify for these algorithms.

7.1.1 Non-Blocking Queue.Java-like pseudo-code for the non-blocking queue algo-
rithm is shown in Fig. 14(a). The queue uses an underlying singly-linked list which is
pointed by two reference variables — Head and Tail, pointingto the head and tail of the
queue, correspondingly. The list always contains a dummy item at its head to avoid degen-
erate cases.

The algorithm is based on iterated attempts of a thread to perform a queue operation
without being interrupted by other threads. A thread operates on shared variables only us-
ing the compare-and-swap (CAS) primitive which allows it toatomically observe possible
updates by other threads and apply its own update when the value of the shared variable
was not updated by other threads. CAS was introduced on the IBM System 370 [ibm
1983]. It is supported on Intel and Sun SPARC processor architectures.

The CAS primitive takes 3 arguments — an address, an expectedvalue, and a new value;
it then atomically compares the value at the address to the expected value, and if the values
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// Non Blocking Queue
class NonBlockingQueue {

private QueueItem Head;
private QueueItem Tail;
...

public NonBlockingQueue() {
node = new QueueItem()
node.next.ref = NULL
this.Head = this.Tail = node

}

public void enqueue(Object value) {
e1 QueueItem node = new QueueItem(value);
e2 node.value = value;
e3 node.next.ref = NULL;
e4 while(true) { //Keep trying until done
e5 QueueItem tail = this.Tail;
e6 QueueItem next = tail.ref.next;
e7 if (tail == this.Tail) {
e8 if (next.ref == NULL) {
e9 if CAS(tail.ref.next, next,

<node, next.count+1>); {
e10 break; // enqueue done
e11 }
e12 } else {
e13 CAS(this.Tail, tail,

<next.ref, tail.count+1>);
e14 }
e15 }
e16 }
e17 CAS(this.Tail, tail,

<node, tail.count+1>);
e18 }

public Object dequeue() {
Object result = null;

d1 while(true) {
d2 QueueItem head = this.Head;
d3 QueueItem tail = this.Tail;
d4 QueueItem next = head.next;
d5 if (head == this.Head) {
d6 if (head.ref == tail.ref) {
d7 if (next.ref == NULL) {//is empty?
d8 return result;
d9 }
d10 CAS(this.Tail, tail,

<next.ref, tail.count+1>);
d11 } else { //No need to deal with Tail
d12 result = next.ref.value;
d13 if CAS(this.Head, head,

<next.ref, head.count+1>); {
d14 break; // dequeue done
d15 }
d16 }
d17 }
d18 }
d19 free(head.ref);
d20 return result;
d21 }

(a)

// TwoLockQueue.java
class TwoLockQueue {

private QueueItem head;
private QueueItem tail;
private Object headLock;
private Object tailLock;
...

public TwoLockQueue() {
node = new QueueItem();
node.next = null;
this.head = this.hail = node;

}

public void enqueue(Object value) {
lp1 QueueItem x i =

new QueueItem(value);
lp2 synchronize(tailLock) {
lp3 tail.next = x i;
lp4 tail = x i;
lp5 }
lp6 }

public Object dequeue() {
Object x d;

lt1 synchronized(headLock) {
lt2 QueueItem node = this.head;
lt3 QueueItem new head =

this.head.next;
lt4 if (new head != null) {
lt5 x d = new head.value;
lt6 new head = first;
lt7 new head.value = null;
lt8 free(node);

}
lt9 }
lt10 return x d;
lt11 }
}

(b)

// QueueItem.java
class QueueItem {

public QueueItem next;
public Object value;
...

}

(c)

Fig. 14. Java-like pseudo-code for (a) non-blocking queue,(b) two-lock queue, (c) queue
item.
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are equal updates the address to contain the new value. If thevalue at the address is not
equal to the expected value, no update is applied.

CAS-based algorithms may suffer from the “ABA” problem [Michael and Scott 1996] in
which a sequence of read-modify-CAS results with a swap whenit shouldn’t. This happens
when a threadt1 reads a value A of a shared variable, computes a new value, andperforms
a CAS. Meanwhile, another threadt2 changes the value of the shared variable from A to B
and back to A. In order to avoid this problem, each reference variable is augmented with
a modification counter and shared references are only updated through the CAS primitive
which increments the value of the modification counter. Thiscould have been modeled in
Java by adding a wrapper class which contains a reference andan unsigned integer counter.
To simplify the exposition of our figures, we have added a primitive type that consists of a
reference valueref and an integer valuecount for the modification counter. All refer-
ence operations that use only the reference name apply to both components, for example,
the assignment at labele5 assigns the values ofthis.Tail.ref andthis.Tail.count
to tail.ref andtail.count correspondingly. When we specifically update a single
component of the reference variable, we state that explicitly as at labeld6 that performs a
comparison of theref component of two reference variables.

It is worth noting that a variation of the algorithm that usesthe synchronization primi-
tives load-linked/store-conditional (LL/SC) will not require the modification counters. The
CAS primitive is universal [Herlihy 1991] and used in commonarchitectures and we there-
fore chose to focus on implementations using that primitive.

These algorithms can be simplified further by assuming a garbage collector instead of
explicit memory management (see [Vechev et al. 2009; Vechevand Yahav 2008]).

7.1.2 Two-Lock Queue.Fig. 14(b) shows a Java-like code for the two-lock queue al-
gorithm. This algorithm also uses an underlying linked-list, and uses a dummy item at the
list head to simplify special cases. The algorithm uses a separate head lock and tail lock to
separate synchronization of enqueueing and dequeueing threads.

7.1.3 Correctness of Algorithms.The correctness of the queue algorithms in [Michael
and Scott 1996] is established by an informal proof. Safety of the algorithm is shown by
induction, proving that the following properties are satisfied by the algorithm:

P1 The linked list is always connected.

P2 Nodes are only inserted after the last node of the linked list.

P3 Nodes are only deleted from the beginning of the linked list.

P4 Headalways points to the first node in the linked list.

P5 Tail always points to a node in the linked list.

We note that these properties are not the only properties required for showing that the
queue algorithms are indeed correct. Ideally, we would liketo automatically verify that
the queue algorithms are linearizable [Herlihy and Wing 1990]. Indeed, recently, [Amit
et al. 2007; Berdine et al. 2008; Vafeiadis 2009] automatically proved the linearizability of
these algorithms, but this requires techniques that are beyond the scope of this paper. In
addition, we do not address liveness properties of these algorithms. Gotsman et al. [2009]
provide a nice discussion of liveness properties for these algorithms and a technique for
their automatic verification.
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Fig. 15. A concrete configurationC♮
15 with two enqueueing and one dequeueing threads.

In this paper, we focus on proving the above structural properties that are still rather
challenging to verify automatically. In the following sections, we formally state these
claims, and automatically verify them usingTVLA/3VMC .

7.2 Vanilla Verification Attempt

In this section, we describe the basic steps required to verify the concurrent queue algo-
rithms usingTVLA/3VMC .

7.2.1 Representing Program Configurations using First-Order Logical Structures.We
now show how to apply our technique to verify the concurrent queue algorithms.

The non-blockingqueue algorithm uses unsigned integer values as reference time-stamps.
As described in Section 3, we represent integer values usingindividuals of type unsigned
integer, the unary predicatezero(v), the binary predicatesucc(v1, v2), and the binary pred-
icateiv[fld](v1, v2). This allows us to naturally and quite precisely model an integer being
incremented and decremented. It is also possible to supportarbitrary arithmetic operations
on integers, however, the abstraction presented in Section7.3 is not precise enough to
provide useful results when the verified property depends onthe result of such operations.

To ease presentation, we depict nodes that represent unsigned integers as circles with
straight margins.

Example7.2.1. The configurationC♮
15 shown in Fig. 15 corresponds to a global state

of the non-blocking queue program with3 threads: two enqueueing threads and a single
dequeueing thread. The two enqueueing threads are at labele2 and have just allocated new
nodes to be enqueued; each enqueueing thread refers to its node by itsnode field.

All threads in the example use a single shared queue containing 4 items (including the
dummy item). The integer values of the fieldsHead andTail in this configuration are
both0.

7.2.2 Safety.The first step in verifying the properties of Section 7.1.3 inTVLA/3VMC
is to formulate them inFOTC using the predicates defined in Table I.

The immediate question iswhencan the properties be checked. One alternative is to
phrase the properties such that they are global invariants that hold for all configurations
of the queues. Another is to check that the invariants hold when the queue is “stable”,
that is, no operation is currently executing. The latter is similar to checking quiescence-
consistency [Herlihy and Shavit 2008], and is the one we choose here. Table VII pro-
vides the formulation of the properties P1-P5 for the non-blocking queue algorithm. The
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Property Property Formula
P1 tail reachable ∀q : nbq, vt.rv[Tail](q, vt)

from head =⇒ ∃vh.rv[Head](q, vh) ∧ rv[next]∗(vh, vt)
P2 insert after ∀q : nbq, ti : thread, vi, vt.at[e18](ti) ∧ rv[node](ti, vi) ∧ rv[tail](ti, vt)

last ∧rv[this](ti, q) → rv[next](vt, vi) ∧ rv[Tail](q, vi)
P3 delete first ∀q : nbq, td : thread, vd, vh.at[d19](td) ∧ rv[head](td, vd)

∧rv[this](td, q) ∧ rv[Head](q, vh) =⇒ rv[next](vd, vh)
P4 head first ¬∃q : nbq, v, u.rv[Head](q, v) ∧ rv[next](u, v)
P5 tail exists ∀q : nbq.∃v.rv[Tail](q, v)

Table VII. Safety properties for the non-blocking queue algorithm.

at[e2]
rv[node]

rv[this]

at[d2]

rv[this]

zero
succ

succ

iv[Head]

iv[Tail]

iv[next]

rv[Head]

rv[next]

rv[Tail]

Fig. 16. An abstract configurationC15 representing the concrete configurationC♮
15 of

Fig. 15.

formulation of these properties for the two-lock queue onlydiffers in label names. For
each property defined informally in Section 7.1.3, we provide a corresponding formula in
FOTC .

Properties P2-P3 are being checked at the end of their corresponding operations, and as-
sume that the queue is stable (i.e., no other operation is executing concurrently). Properties
P1, P4, and P5 assume that no queue operation is in progress. We use flags to determine
when operations are ongoing (not shown here for simplicity).

In the table, we use the shorthandnbq to abbreviateNonBlockingQueue. For-
mula P1 uses transitive reachability fromHead to require the queue tail is reachable from
the queue head—thus the queue is always connected (existence of a tail element is guaran-
teed by requirement P5). Formula P2 uses the (program) location predicateat[e18](t) in
order to check the requirement only at the end of an insertionoperation, when it is mean-
ingful to check it. In this formula, we treat the local variablenode as a field of the thread
object. Formula P3 similarly uses the location predicateat[d19](t) to bind the requirement
with the end of a deletion operation. Formula P4 requires that there is no queue elementu
such that it precedes the head of the queue. Finally, formulaP5 ensures that a tail element
exists.

7.2.3 Abstraction

Example7.2.2. The abstract configurationC15 shown in Fig. 16 is obtained by apply-
ing canonical abstraction to the concrete configurationC♮

15 of Fig. 15.
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rv[Head]

rv[Tail]

zero

iv[Head]

iv[Tail]

rv[next]

iv[next]

at[e2]
rv[this]

rv[node]

at[e2]

rv[this]

rv[node]

at[d2]
rv[this]

succ succ succ

Fig. 17. A concrete configurationC♮
15,1 that is embedded inC15 and violates queue con-

nectedness (property P1).

The summary thread node represents the two enqueueing threads of the concrete config-
urationC♮

15, the summary unsigned integer node (double-line circle with straight margins)
summarizes all unsigned integers but zero, the third summary node summarizes all queue
items, and the queue object itself.

Note that this abstract configuration represents an infinitenumber of configurations.
For example, it represents any configuration in which an arbitrary number of enqueuing
threads have just allocated new nodes to be enqueued, and aresharing the same queue with
an arbitrary number of dequeueing threads that are at their initial labels.

Unfortunately, this abstract configuration also represents the concrete configurationC♮
15,1

which violates the connectedness property (P1), meaning that we fail to verify that P1
holds. Indeed, since each subformulae of P1’s body evaluates to1/2 over the abstract con-
figurationC15, using Kleene evaluation of boolean operators yields the value 1/2 for P1.
In the next section, we will describe a way to remedy that.

7.3 Refining the Vanilla Solution

In order to verify the desired properties, in this section werefine the abstraction to record
essential information. A natural way to do that would be to record which property for-
mulae hold using nullary predicates. This is a useful technique, also known as predicate
abstraction [Graf and Saidi 1997].TVLA/3VMC also allows to use unary predicates in order
to observe whether subformulae hold for a given individual.This allowsTVLA/3VMC to
provide useful results without changing the set of predicates for each program. We believe
the same distinctions can be used for many programs, and furthermore, these distinctions
correspond to fundamental properties of data-structures (e.g., sharing, reachability). This
paper confirms this by showing that the standard set of distinctions suffices for verifying
all the desired properties of the concurrent queue algorithms.

Technically, refining the abstraction is achieved by introducing the unary predicates of
Table VIII. The additional information recorded refines theabstraction and reduces the set
of concrete configurations that are represented by an abstract configuration.

In principle, some instrumentation predicates could be derived automatically (e.g., [Sha-
ham et al. 2003]), however, for this case study we just use thestandardTVLA/3VMC in-
strumentation predicates.

Predicatesrt[fld, next](t, o) allow us to track reachability information of items inside
the queue. For example, the instrumentation predicatert[Head, next](v) may be used
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C
♮
18

is[this]
r_by[this]
rt[this,n]

rt[Head,n]
r_by[Head]rv[Head]

rt[Head,n]
r_by[Tail]
rt[Tail,n]rv[Tail]

zero
i_by[Head]
i_by[Tail]
i_by[next]

iv[Head]

iv[Tail]

rt[Head,n]
r_by[next]

rv[next]

iv[next]

rt[Head,n]
r_by[next]

rv[next]

iv[next]

rv[next]

iv[next]

at[e2]

rv[this]

r_by[node]
rt[node,n]

rv[node]

at[e2]
rv[this]

r_by[node]
rt[node,n]

rv[node]

at[d2]
rv[this]

succ succ succ

C18

is[this]
r_by[this]
rt[this,n]

rt[Head,n]
r_by[Head]

rv[Head]

r_by[next]
rt[Head,n]
r_by[Tail]
rt[Tail,n]

rv[Tail]

zero
i_by[Head]
i_by[Tail]
i_by[next]

iv[Head]

iv[Tail]

rt[Head,n]
r_by[next]

rv[next]

iv[next]

rv[next]

rv[next]

iv[next]

at[e2]
rv[this]

r_by[node]
rt[node,n]

rv[node]

at[d2]
rv[this]

succ

succ

Fig. 18. Concrete configurationC♮
18 using instrumentation predicates, and its canonical abstractionC18.

Predicate Intended Meaning Defining Formula
r by[fld](l) l is referenced by the fieldfld ∃o.rv[fld](o, l)

of some object
i by[fld](n) n is the integer value offld of some object ∃o.iv[fld](o, n)
is[fld](o) o is shared byfld of two ∃v1, v2.¬eq(v1, v2) ∧ rv[fld](v1, o)

different objects ∧rv[fld](v2, o)
exists[fld](o) there exists an object referenced ∃v1.rv[fld](o, v1)

by fld of o
is acquired(l) l is acquired by some thread ∃t.held by(l, t)

rt[fld, next](o) o is reachable from object referenced ∃t, ot.rv[fld](t, ot)
by fieldfld using path of next fields ∧ rv[next]∗(ot, o)

Table VIII. Instrumentation predicates used in our exampleprogram.

to track reachability of items from the head of the queue using a path ofnextreferences.
These predicates are an adaptation for multi-threaded programs of the reachability instru-
mentation predicates presented in [Sagiv et al. 2002]. Similarly, predicatesis[fld](o) are
an adaptation of sharing predicates of [Sagiv et al. 2002]. The predicatesis acquired(l)
andr by[fld](l) were discussed in Section 4.3. Since these predicates record widely-used
fundamental propertiesof data-structures and thread/lock relationships, they are part of the
standard predicates used inTVLA/3VMC .

Once a collection of instrumentation predicates is defined,we have to specify how these
predicates are updated by program actions. Update formulaefor the instrumentation pred-

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 5, May 2010



34 · E. Yahav and M. Sagiv

Program Description Configs
nbq enqueue unbounded number of enqueue-ing threads 1833
nbq dequeue unbounded number of dequeue-ing threads 1098
nonblockqerr1 err - negated condition at e8 36
nonblockquni err - start with uninitialized queue 17
tlq enqueue unbounded number of enqueueing thrads 982
tlq dequeue unbounded number of dequeuing threads 225
twolockqn single producer and single consumer 975
twolockq err1 err - broken producer synchronization 24

Table IX. Number of configurations explored by analysis of the queue algorithms.

icates used in this case study were supplied manually due to technical limitations of auto-
matic derivation using finite differencing [Reps et al. 2003].

Subformulae of the safety properties are replaced with the corresponding instrumenta-
tion predicate to improve precision.

Example7.3.1. Fig. 18 shows the concrete configurationC♮
18 which is an instrumented

version ofC♮
15, and its canonical abstractionC18. The additional information recorded

by the instrumentation predicatesrt[Head, next](v) andrt[Tail, next](v) allows us to
observe that queue connectedness (property P1) is maintained in the abstract configuration
C18 since P1 evaluates to1. Moreover, this implies that concrete configurations of theform
of C♮

15,1 are no longer represented.

7.4 Experimental Results

Our prototype implementation operates directly on abstract configurations usingabstract
transformers, thereby obtaining actions which are more conservative than the ones ob-
tained by the best transformers. Our experience shows that the abstract transformers used
in the implementation are still precise enough to allow verification of our safety properties.

Table IX presents the analysis results for variations of theconcurrent queue algorithms.
All analyses terminated in less than2 hours.

For the non-blocking queue, we have also tested a version in which the conditional in
label e8 is flipped, i.e, it checks for the next field being non-equal tonull. As another
erroneous version, we have used an uninitialized queue in which no dummy node was
present. Our prototype reported errors in both cases.

For the two-lock queue, we have also tested a version in whichno synchronization is
imposed on producer threads inserting items into the queue.In this version, we show that
it is possible for requirement 1 to be violated, and the underlying linked-list to be broken.

Limitations: Since our tool does not apply any partial-order reductionsand does not
attempt to decrease the level of interleaving, it is currently limited to small concurrent
programs or to ones that are well-synchronized. This is due to the worst-case complexity
of our algorithm which is doubly exponential in the number oflabels.

In addition,TVLA/3VMC does not yet benefit from the latest (experimental) improve-
ments implemented inTVLA [Bogudlov et al. 2007].

A fundamental question in program analysis is how to predictthe precision of a given
analysis on a given program. In principle, this is a hard question. In our setting, we note
that the abstraction ofTVLA/3VMC incurs a significant loss of precision when the safety
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class Container {
public int counter;

}

class Job extends Thread {
Container objref;
public Job incr () {

synchronized(objref) {
objref.counter = objref.counter + 1;

}
return this;

}
public void setref(Container o) {

objref = o;
}
public void run() {

for (;;) {
incr();

}
}

}

class Apprentice {
public static void main(String[] args) {

gl 1: Container container = new Container();
for (;;) {

Job job = new Job();
job.setref(container);
job.start();

}
}

}

(a) Apprentice Challenge Source.

rt[z,successor]rt[z,successor] successor

rt[z,successor]
zero

rt[z,successor]

successor

at[gl_1]
isthread
ready

(b) Initial configuration

Fig. 19. Source code and initial abstract configuration for the Apprentice Challenge.

of the verified program depends on arbitrary arithmetic operations on integer variables. It
is possible to address this loss of precision by integratingour heap abstraction with a more
powerful numerical abstraction (e.g., [Gopan et al. 2005]).

8. SOLVING THE APPRENTICE CHALLENGE

In this section, we describe how our framework is applied forsolving a Java verification
challenge known as the Apprentice Challenge.

8.1 Problem Statement

The apprentice challenge was presented by Moore [Moore and Porter 2002] as a challenge
in verification of Java programs. The challenge is to show that the value of thecounter
variable of theContainer class in Fig. 19(a) increases monotonically (under all possible
schedules).

8.2 Solution

Our solution of the apprentice challenge does not assume anya priori bound on the number
of Job threads or on the value of thecounter field. This should be contrasted with
previous attempts to solve a simplified bounded version of the problem (i.e., the “finite
Apprentice”).
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In our solution, we use the predicates described earlier in Section 3 and Section 7.3. The
model used here could be easily extended to handle the overflow of integer variables (by
introducing a special terminating node in the representation of integers). For simplicity, we
do not introduce such terminating node and assume that integers may increase infinitely.

The initial configuration for the apprentice challenge is shown in Fig. 19(b). In this
configuration, there is a single thread node, correspondingto the main program thread.
This thread is at the initial labelgl1, and is ready to be scheduled. The other nodes in
the configuration represent integer values: one node represents the value zero, and the
summary node summarizes the rest of the integer values.

In order to show that the counter increases monotonically, our model records the value
of thecounter variable on entry toincr(). Technically, this can be thought of as using
a two-vocabulary structure (see e.g., [Jeannet et al. 2004]).

8.3 Results

We appliedTVLA/3VMC to verify that the original Apprentice program satisfies thegoal
property. Verification produced1757 configurations and took approximately120 seconds
and2.46 MB of memory.

The techniques used in [Moore and Porter 2002] are differentthan what we use here,
and they also use a different machine setup for experiments.Therefore a direct comparison
of the running times is not appropriate. However, at least for this example program, we
believe that our approach requires less human effort and fewer computation resources.

We have also appliedTVLA/3VMC to find errors in an erroneous version of the Appren-
tice program in which no synchronization was used byJob threads while performing the
incr() operation. In this analysis, an error was detected after approximately720 seconds,
processing6066 configurations and taking13.8 MB of memory.

Unlike the ACL2 solution for the apprentice challenge [Moore and Porter 2002], our
approach is based on a conservative abstraction of the concrete Java semantics. Generally,
this means that we might produce false alarms even when a property does hold for the
verified program. However, for the Apprentice challenge, weare able to verify the goal
property with no false alarms.

9. RELATED WORK

In this section, we provide a brief survey of closely relatedwork from the areas of shape
analysis and model checking.

Shape Analysis of Concurrent Programs

Shape analysis has been an active research topic for over30 years. Here, we focus our
discussion on shape analysis specifically aimed at concurrent programs, and do not dis-
cuss the large volume of work on shape analysis for sequential programs (e.g., [Jones and
Muchnick 1981; 1982; Chase et al. 1990; Sagiv et al. 1998; Moller and Schwartzbach
2001; Balaban et al. 2005; Berdine et al. 2005; Distefano et al. 2006; Berdine et al. 2007;
Zee et al. 2008; Yang et al. 2008; Calcagno et al. 2009]). The reader is referred to [Sagiv
et al. 2002; Reps et al. 2004] and [Rinetzky 2008] for discussion of work related to shape
analysis of sequential programs.

Thread-Modular analyses.The thread-modular approach of Flanagan et al. [2002] per-
forms assume-guarantee (modular) verification for multi-threaded programs. In principle,
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this modular approach can scale well, as it verifies one thread at a time. However, the
approach relies on user-specified environment assumptionsthat may be challenging to ob-
tain. Combining our approach with a heterogenous abstraction like the ones in [Yahav and
Ramalingam 2004] may provide an automated means for computing environment invari-
ants.

Leino and Müller [2009] present an approach for modular verification of concurrent
object-based programs that is based on dynamic frames and fractional permissions. The
basic idea is similar to [Bornat et al. 2005; O’Hearn 2007] (see below), but is specialized
to object-based programs, and uses verification conditionsin first-order logic rather than
separation logic.

Analyses based on3-valued logic.Our work provides the basis for concurrent shape
analysis using the3-valued logic framework of Sagiv et al. [2002].

In [Amit et al. 2007], the abstractions and tools presented in this paper are extended to
verify linearizability [Herlihy and Wing 1990], a main correctness condition of concurrent
data structures, for a fixed number of threads.

In [Berdine et al. 2008; Manevich et al. 2008], thread quantification and heap decompo-
sition are used to analyze programs with an unbounded numberof threads. Thread quan-
tification adds an extra level of universal quantification toenable analyzing programs with
an unbounded number of threads and heap decomposition is used to abstract away unnec-
essary correlations between resource invariants and localthread states to obtain scalability.
These techniques help the analysis scale and enable the verification of linearizability with
an unbounded number of threads in challenging programs.

Separation-logic based analyses.Separation logic [Ishtiaq and O’Hearn 2001; Reynolds
2002] has been used as a basis for concurrent shape analysis.

Concurrent separation logic [O’Hearn 2007] allows to manually verify race-free heap-
manipulating programs by associating a resource invariantwith every thread-shared sub-
heap. It uses the insight that parts of shared memory are often protected by locks that
guarantee mutual exclusion. When a thread obtains the protecting lock of a subheap, it
owns the subheap, and other threads cannot access it (some refinements of this idea to
allow concurrent reads have been investigated e.g., using fractional permissions [Bornat
et al. 2005]).

Gotsman et al. [2007], employ the idea of associating shared-resources with invariants
to present a thread-modular shape analysis that leverages locks to partition the heap into
a (bounded) number of subheaps. Their approach requires a user-specified association
between subheaps and the locks that protect them to partition the heap, and computes the
resource invariants using a reachability-based heuristic.

Vafeiadis [2009] presents a “value abstraction” that extends the symbolic shape analysis
of Distefano et al. [2006] by recording correlations between equal values. This abstrac-
tion is used in a static analyzer based on RGSep [Vafeiadis 2008] to automatically verify
linearizability of challenging fine-grained concurrent algorithms.

Allocation-site based analyses.Corbett [2000] uses a simple shape analysis of concur-
rent Java programs to reduce their finite-state models. In this analysis, the number of
threads is bounded. The algorithm presented is based on [Chase et al. 1990], which uses
a singleshape graphfor each program location, and uses an abstraction which leads to
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overly imprecise results (e.g., in programs that traverse data structures based on allocation
sites).

There is a wide variety of approaches for static race detection (e.g., [Sterling 1993;
Flanagan and Abadi 1999; Flanagan and Freund 2000; Boyapatiand Rinard 2001; Choi
et al. 2001; Boyapati et al. 2002; Engler and Ashcraft 2003; Flanagan and Freund 2004;
Henzinger et al. 2004; Naik et al. 2006; Pratikakis et al. 2006; Flanagan et al. 2008]). Most
of these approaches are based on allocation-site based abstraction of the heap. Broadly
speaking, our approach does not scale as well as these approaches, but is able to verify
more subtle cases of non-interference by using a finer abstraction of the heap.

Under Approximations.Lal and Reps [2008] present an approach for reducing con-
current analysis under a context bound to sequential analysis. Lahiri et al. [2009] use
context-bounded analysis of concurrent programs based on an SMT solver to automati-
cally detect errors in C programs. Their transformation from a concurrent program with a
fixed context-bound into a sequential program is based on thetranslation of Lal and Reps
[2008]. Their approach is fully automatic, and can handle a subset of C. Additional details
about this line of work can be found in [Lahiri and Qadeer 2008; Atig et al. 2009].

Model Checking

Many approaches were proposed to handle model checking of unbounded data structures.
Traditional approaches consist of manually abstracting the data-structure into a simple
finite state machine representing the states of the data-structure that are relevant to the
verification problem (e.g., [Strom 1983; Strom and Yemini 1986]). As a second phase,
these works use one of the numerous approaches for model-checking concurrent finite-state
programs (e.g., [Cook et al. 2005]), performing various forms of bounded model-checking
(e.g., [Qadeer and Rehof 2005; Ganai and Gupta 2008]), and using predicate abstraction
(e.g., [Das et al. 1999]).

In our framework, rather than having separate model-extraction and model checking
phases, we follow the abstract-interpretation approach [Cousot and Cousot 1977] and cast
our analysis in a syntax-directed manner. Other approachesuse a combination of theorem-
proving and model checking techniques to automatically construct such abstractions [Ab-
dulla et al. 1999; Bensalem et al. 2000; Bensalem et al. 1998].

In the following, we briefly discuss some closely related work that addresses Java pro-
grams or employs some sort of abstraction.

Predicate-abstraction based model checking.Clarke et al. [2006; 2008] present a frame-
work that extends predicate abstraction with ideas fromcounter abstraction[Pnueli et al.
2002], counting the number of threads that are in every (local) state of a process, similar to
the way in which we abstract threads. We believe that our abstraction is more natural for
expressing heap properties and interactions between threads and the heap (see discussion
in [Manevich et al. 2005]).

Das, Dill, and Park [1999] use predicate abstraction to verify the properties of a cache
coherence algorithm and a concurrent garbage-collection algorithm. The garbage collec-
tion algorithm was verified in the presence of a single mutator thread executing concur-
rently with the collector.

Saidi [2000] presents new abstraction predicates but does not have the notion of sum-
mary nodes. Thus, it cannot handle programs with an unbounded number of allocated
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objects. Moreover, our framework presents a model checkingalgorithm that recognizes
abstraction as suggested there.

Bounded model checking.JavaPathFinder [Havelund and Pressburger 2000] and Java2Spin
[Demartini et al. 1999a] translate Java source code to PROMELA representation. The
SPIN model-checker [Holzmann 1995] is then used to verify properties of the PROMELA
program. Both these tools put a bound on the number of allocated objects since it is im-
posed by SPIN. A variant of SPIN named dSPIN [Demartini et al.1999b] supports dynamic
allocation of objects. However, since it uses no abstraction, it can only handle bounded
data-structures and a bounded number of threads. Vechev et al. [2009] use SPIN for model
checking linearizability of concurrent data structures. Clarke et al. [1997] present a method
for the verification of parametric families of systems. A network grammar is used to con-
struct a process invariant that simulates all systems in thefamily. However, it cannot handle
dynamic allocation of objects.

JavaFan [Farzan et al. 2004] is a framework for analyzing multithreaded Java programs
based on the Maude rewriting system [Clavel et al. 2002]. It supports symbolic simulation
of concurrent programs and bounded model checking. However, it does not use abstraction
and cannot be used for verifying programs with an unbounded state space.

Stoller [2000] presents a framework for model checking distributed Java programs. This
framework uses partial-order methods to reduce the size of the explored state-space. How-
ever, it uses no abstraction and thus can only handle boundeddata structures and a bounded
number of threads. We intend to use similar partial-order methods in future versions of our
framework.

10. CONCLUSION AND FUTURE WORK

We have presented a parametric framework for verifying safety properties of concurrent
heap-manipulatingprograms. Our framework is a generalization of existing model-checking
techniques. The framework allows verification of multithreaded programs manipulating
heap-allocated objects, and does not put a bound on the number of allocated objects.

Our framework combines thread scheduling information and information about the shape
of the heap. This leads to error-detection algorithms that are more precise than existing
techniques. Using these techniques, we were able to automatically verify non-trivial prop-
erties of heap-manipulating programs that have not been automatically verified in the past.

In the future, we intend to exploitpartial order reductiontechniques such as [Valmari
1991; Godefroid 1996; Flanagan and Godefroid 2005; Gueta etal. 2007] in order to im-
prove scalability of our analysis.
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A. 2 AND 3-VALUED FOTC

In this appendix, we give a brief summary of2 and3 valuedFOTC . The material presented
here is fairly standard and included only for completeness of presentation.

A.1 Syntax

Formally, the syntax of first-order formulae with transitive closure is defined as follows:

DEFINITION A.1. A formula over thevocabulary P = {eq, p1, . . . , pn} is defined
inductively, as follows:

Atomic Formulae. Thelogical literals 0 and1 are atomic formulae with no free vari-
ables.

For every predicate symbolp ∈ P of arity k, p(v1, . . . , vk) is an atomic formula with
free variables{v1, . . . , vk}.

Logical Connectives. Ifϕ1 andϕ2 are formulae whose sets of free variables areV1 and
V2, respectively, then(ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), and(¬ϕ1) are formulae with free variables
V1 ∪ V2, V1 ∪ V2, andV1, respectively.

Quantifiers. Ifϕ1 is a formula with free variables{v1, v2, . . . , vk}, then(∃v1 : ϕ1) and
(∀v1 : ϕ1) are both formulae with free variables{v2, v3, . . . , vk}.

Transitive Closure. Ifϕ1 is a formula with free variablesV such thatv3, v4 6∈ V , then
(TC v1 : v2)(ϕ1)v3v4 is a formula with free variables(V \ {v1, v2}) ∪ {v3, v4}.

A formula isclosedwhen it has no free variables.

A.2 2-valued Interpretation

In this section, we define the (2-valued) semantics for first-order logic with transitive clo-
sure in the standard way.

DEFINITION A.2. A 2-valued interpretation of the language of formulae overP is a
2-valued logical structureS = 〈US , ιS〉, whereUS is a set ofindividuals andιS maps
each predicate symbolp of arity k to a truth-valued function:

ιS(p) : (US)k → {0, 1}.

An assignmentZ is a function that maps free variables to individuals (i.e.,an assign-
ment has the functionalityZ : {v1, v2, . . .} → US). An assignment that is defined on all
free variables of a formulaϕ is calledcompletefor ϕ. In the sequel, we assume that every
assignmentZ that arises in connection with the discussion of some formulaϕ is complete
for ϕ.

The(2-valued) meaningof a formulaϕ, denoted by[[ϕ]]S2 (Z), yields a truth value in
{0, 1}. The meaning ofϕ is defined inductively as follows:

Atomic Formulae. For an atomic formula consisting of a logical literal l ∈ {0, 1},
[[l]]S2 (Z) = l (wherel ∈ {0, 1}).

For an atomic formula of the formp(v1, . . . , vk),

[[p(v1, . . . , vk)]]
S
2 (Z) = ιS(p)(Z(v1), . . . , Z(vk))
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Logical Connectives. Whenϕ is a formula built from subformulaeϕ1 andϕ2,

[[ϕ1 ∧ ϕ2]]
S
2 (Z) = min([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[ϕ1 ∨ ϕ2]]
S
2 (Z) = max([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[¬ϕ1]]
S
2 (Z) = 1− [[ϕ1]]

S
2 (Z)

Quantifiers. Whenϕ is a formula that has a quantifier as the outermost operator,

[[∀v1 : ϕ1]]
S
2 (Z) = min

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

[[∃v1 : ϕ1]]
S
2 (Z) = max

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

Transitive Closure. Whenϕ is a formula of the form(TC v1 : v2)(ϕ1)v3v4,

[[(TC v1 : v2)(ϕ1)v3v4]]
S
2 (Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

n

min
i=1

[[ϕ1]]
S
2 (Z[v1 7→ ui, v2 7→ ui+1])

We say thatS andZ satisfyϕ (denoted byS,Z |= ϕ) if [[ϕ]]S2 (Z) = 1. We writeS |= ϕ if
for everyZ we haveS,Z |= ϕ.

A.3 3-valued Interpretation

We now generalize Defn. A.2 to define the meaning of a formula with respect to a3-valued
structure.

DEFINITION A.3. A 3-valued interpretation of the language of formulae overP is a
3-valued logical structureS = 〈US , ιS〉, whereUS is a set of individuals andιS maps
each predicate symbolp of arity k to a truth-valued function:

ιS(p) : (US)k → {0, 1, 1/2}.

For an assignmentZ, the(3-valued) meaningof a formulaϕ, denoted by[[ϕ]]S3 (Z), now
yields a truth value in{0, 1, 1/2}. The meaning ofϕ is defined inductively as in Defn. A.2.

We say thatS andZ potentially satisfyϕ, denoted byS,Z |=3 ϕ, if [[ϕ]]S3 (Z) = 1/2 or
[[ϕ]]S3 (Z) = 1. We writeS |=3 ϕ if for everyZ we haveS,Z |=3 ϕ.
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