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The framework combines thread-scheduling informatiomviformation about the shape of the heap. This leads
to verification algorithms that are more precise than engstechniques. The framework also provides a precise
shape-analysis algorithm for concurrent programs. Inreshto most existing verification techniques, we do not
put a bound on the number of allocated objects. The framepadtuces interesting results even when analyzing
programs with an unbounded number of threads. The frameis@fplied to successfully verify the following
properties of a concurrent program:

—Concurrent manipulation of linked-list based ADT presarthe ADT datatype invariant.
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1. INTRODUCTION

Modern languages such as Java and C# provide low-level c@may-control constructs
that enable the programmer to create complicated and polkgsrichronization schemes.
However, these languages provide no means of compile-tinrarstime checking for
the correctness of concurrent behavior. This makes cosctuprogramming in these lan-
guages quite error-prone (e.g., [Vermeulen 1997; Lea 189@éiz et al. 2006]).

The theme of this paper is to develop static analysis tectasidor verifying safety
properties by detecting program configurations that majateachem. This is a different
task than dynamic anomaly-detection techniques, whichat@en a given input (and thus
can only show the presence of errors, not their absence).

1.1 Main Results

In this paper, we present a framework for verifying safetyparties of concurrent heap-
manipulating programs. This framework handles dynamiacalion of objects and ref-
erences to objects. This allows us to analyze programs thetrdically allocate thread
objects, and even programs that create an unbounded nuffrthegads. Dynamic alloca-
tion of threads is common when implementing services irgttis€e.g., [Lea 1997], ch. 6).
For these programs, we can verify properties such as theedséinterference. Handling
dynamically allocated objects also allows us to model comeu programs that manipu-
late linked-lists with sufficient precision to show that yhaaintain subtle properties of
interest.

1.1.1 A Parametric Framework for Verifying Safety Propertiésfe provide a paramet-
ric framework for verifying safety properties of concurtéreap-manipulating programs
(A preliminary version of the framework appeared in [Yah&02]). We use different in-
stances of this framework (see Section 1.1.2) to obtaiicsaatlysis algorithms that have
the ability to verify different safety properties.

The semantics of Java can be described using a structuratmpeal semantics (e.g.,
[Knapp et al. 1998]) in terms afonfigurationg(or states). In our framework, the oper-
ational semantics of Java statements (and conditionskisifsgdl using a meta-language
based on first-order logic with transitive-closure. The saneta-language is also used to
check that a safety property holds in a given configuratiam. feamework then computes
a safe approximation of the (usually infinite) set@dchable configurations.e., configu-
rations that can arise during program execution. This cdefpeulated within the theory
of abstract interpretation [Cousot and Cousot 1977]. Tharntkea is to conservatively
represent many configurations using a sirastract configuration The effect of every
statement (and condition) on an abstract configurationga ttonservatively computed,
yielding another abstract configuration. Also, the framewanservatively verifies that
all the “reachable abstract configurations” satisfy theirddssafety property. Thus, we
may falsely report that a safety property may be violatatsé alarn) but can never miss
a violation.

Our framework is parametric in the following: (i) the defioit of a configuration (Sec-
tions 3.1, 7.2.1); (ii) the (concrete) operational sen@niBection 3.3); (iii) the definitions
of properties to be verified (Sections 3.2, 3.4, 7.2.2); {id manner in which concrete
configurations are abstracted (Section 4.3 and Section 7.3)

Our framework can be viewed as on-the-fly model checkingri@lat al. 1999a] for
verifying safety properties of programs. On-the-fly modetcking does not require the
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while(?) {
Thread t = new Thread(new Wor ker Runner());
t.start();

}

Fig. 1. A program allocating a number of worker threads (wwkm a priori) at a single allocation site, demon-
strating loss of precision in the two-phased approach.

construction of a global state graph as a prerequisite fopgmty verification. In order

to handle dynamic creation and references to objects, wéraserder logical structures

to represent configurations of the program. A simgtigte-space exploratioalgorithm
(see Fig. 5) is used to generate the configuratreashablefrom an initial set of con-
figurations. The effect of every program statement is matlbjeactionsspecified using
first-order logical formulae Our abstract configurations are bounded representations o
logical structures. A (concrete) configuration is autocwdly abstracted into an abstract
configuration.

Our framework should be contrasted with traditional modetaking algorithms in
which a bounded representation is guaranteed by ysoppsitional formulador actions.
Moreover, most model checking techniques perform an atigirawhen the model is
extracted, and apply actions with a fixed number of propmsiti variables ([Clarke et al.
1994; Clarke et al. 1999b]). This could be trivially encodedur framework by using only
nullary predicates (e.g., see [Manevich et al. 2005]). bt,faur framework allows more
general (and natural) modeling of programs by using unadybamary predicates. This is
crucial in order to handle dynamically allocated objectd egferences to objects where
the “name” of the object is unknown at compile-time. Even tisghnique of [Emerson
and Sistla 1993] (formulated for processes rather tharatiserelies on explicit process
names, and thus cannot handle dynamic allocation of presess

ESP [Das et al. 2002] and SLAM [Ball et al. 2001] use a preaggiointer-analysis
phase and use the results of this phase to perform finite-g&atfication of sequential
programs. Separating verification from pointer-analyséy menerally lead to imprecise
results. In contrast, our framework handles concurrengiamos, and applies integrated
verification and pointer analysis which is more precise.

For example, trying to verify correct thread usage for thegpam of Fig. 1 using a
two-phased approach based on points-to analysis would giéhlse-alarm — reporting
that a thread may be started more than ond¢eé égal Thr eadSt at eExcept i on). The
reason for this loss of precision is that all threads alledaitt the same allocation site are
represented using a single “abstract object”. As a reddtstart operation may appear as
being possibly applied multiple times to a single threa@objThe same program would be
successfully verified using the integrated approach in lvthe state of the thread refines
the heap abstraction, and makes observable the fact thstiatti@perations are applied to
different threads.

The reader may find our comparison to related works somewifairun that we only
compare the relative precision of the approaches, and eotghalability. However, in
a practical sense, both our approach and the two-phasedaaby@s are limited. Our ap-
proach will not yet scale (as is) to programs of realistie sand the two-phased approaches
will not be precise enough to verify many properties of inr

ACM Transactions on Programming Languages and Systems3®pNo. 5, May 2010



4 . E. Yahav and M. Sagiv

Nevertheless, we believe that the scalability of our apghamuld be improved without
loss of precision by considering a more limited setting apdubing techniques such as
dynamic partial-order reduction (e.g., [Gueta et al. 2D0&hd staging (e.g., [Fink et al.
2006]). For example, Gotsman et al. [2007] present an aisalyat is potentially more
scalable by considering a more limited setting which respiknowledge about locks (and
cannot handle fine-grained synchronization).

Recently, it was shown that thread-quantification [Berdthal. 2008] and separation
[Manevich et al. 2008] can be used to further scale concustespe analysis. Their ap-
proach is an extension of our approach, where parts of tHebstate are modeled sepa-
rately.

Technically speaking, our framework is a generalizatiofiS#giv et al. 2002] in the
following aspects: (i) Program configurations are used ta@hthe global state of the
program instead of modeling only the relationships betwesap-allocated objects. This
allows us to combine thread scheduling information wittorniation about the shape of
the heap. (ii) Program control-flow is not separately regnésd, but instead the program
location of each thread is maintained in the configuratiomctviallows us to handle an
unbounded number of threads in a natural way. This is ndywatied in first-order logic
as a property of a thread (in contrast to explicit-state rhodecking in which it is exter-
nally coded). Furthermore, it does not require control-flofermation to be computed
in a separate earlier phase. This is an advantage becauisepifeeision in control-flow
computation could lead to imprecise results. (iii) We usestandard interleaving model of
concurrency. A slightly different generalization is usedNlielson et al. 2000], which even
allows the program to modify itself to support the semantidglobile Ambients [Cardelli
and Gordon 1998].

1.1.2 Applications. We have used our framework to verify the properties listddvae

Interference Two threads are said toterferewhen they may both access a shared object
simultaneously, and at least one of them is performing amatgoof the shared object. We
use our framework to locate read-write and write-write ifgeence between threads (see
[Netzer and Miller 1992]). Here, we benefit from the fact ttret analysis keeps track of
both scheduling information and information about the ghafithe heap. For example, in
a two-lock queue (see [Michael and Scott 1996], also showignl14 (b)) we are able to
show that write-write interference is not possible sincéing is never performed on the
same object.

Deadlock Our framework has been used to verify the absence of a feastgpdead-
locks: (i) total deadlocks in which all threads are blockdd) nested monitors dead-
locks, which are very common in Java ([Vermeulen 1997]) fiartial deadlocks created
by threads cyclically waiting for one another.

We are also able to verify that a program complies with a ressordering policy, and
thus cannot produce a deadlock (see [Lea 1997], ch. 8).

Shared ADT Our framework has been used to verify that a shared ADT,hasea
linked-list, preserves ADT properties under concurrenhipalation. Here, the strength
of our technique is obvious, since precise information alioe structure of a scheduling
gueue can be used to precisely reason about thread schedulparticular, our framework
has been applied to verify the concurrent queue algoritmesemted by Michael and Scott
in [Michael and Scott 1996] which are in partimplementedhigitava. uti | . concurr ent
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package of JDK1.5. (a preliminary version of this case sappeared in [Yahav and Sagiv
2003)).

For example, Fig. 2(a) shows a concurrent program using agguiéhe implementation
of the queue is given in Fig. 2(b) and Fig. 3. This program sdugs a running example
throughout this chapter. Our technique is able to show tteptoperties of the queue are
correctly maintained by this program without aiayse alarms Moreover, since the anal-
ysis is conservative, it is guaranteed to report errors waralyzing an ill-synchronized
version of the same queue (not shown here).

Our framework has been also applied to prove the correcufetbe apprentice chal-
lenge, originally presented by J. Moore as a challenge fea Jarification [Moore and
Porter 2002].

Illegal Thread InteractionsThe Java compiler does not prevent the programmer from
introducing thread interactions that are illegal and reisuan exception during program
execution (this is the only runtime checking applied by Jémacorrectness of con-
current behavior). For example — starting a thread more thrage will result in an
I'l I egal Thr eadSt at eExcept i on being thrown. Our framework has been used to detect
such illegal interactions.

1.1.3 Prototype ImplementationWe have implemented a prototype of our framework
calledTVLA/3VMC [Yahav 2000]. In Section 6, we report experimental resulegpplying
this prototype to several small but interesting programs tidén show a detailed case
study of applying our framework to verify the correctnessafcurrent queue algorithms.

Currently, we do not perform interprocedural analysis asslimme that procedures are
inlined. Support for (recursive) procedures can be addeexiiynding the approach de-
scribed by Rinetskey and Sagiv [2001].

The examples used in this paper have been manually mode®d ag3vMC files. It
is possible to translate Java programs directly\aA by using a Soot-based [Vallee-Rai
et al. 1999] front-end for Java developed by R. Manevich.

The main disadvantage of our current implementation isrtbaiptimizations are used,
and thus only small programs can be handled. However, weraaueaged by the preci-
sion of our results and the simplicity of the implementation

While only being able to handle small programs, the fram&wsmseful in practice
when handling small but intricate concurrent heap-maaifind) programs such as con-
current garbage collection algorithms [Vechev et al. 208Y concurrent data structures
[Vechev and Yahav 2008; Amit et al. 2007; Berdine et al. 2008]

In addition, our framework is flexible and powerful and canused for prototyping
analyses that can be later implemented in a more efficienharan

1.1.4 Paper Outline.In Section 2, we give a brief overview of Java’s concurrency
model. Section 3 defines our formal model which uses logitatsires to represent pro-
gram configurations. Section 4 shows how multiple progranfigarations can be con-
servatively represented using a 3-valued logical strectlr Section 5, we show how our
method can be used to detect several common concurrency.drr&ection 6, we describe
the prototype implementation and the results we have ofdaivith it for a few small but
interesting programs. In Section 7, we show how to apply mméwork to verify correct-
ness properties of implementations of concurrent queuwittigns. In Section 8, we apply
our framework to verify the Apprentice Challenge. In Serct® we survey closely related
work. Finally, Section 10 concludes the paper and discussese work.
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cl

ass Producer inplenents Runnable {
protected Queue g;

public void run() {

q but (val 1);

/1 Queue.java

class Queue {
private Queueltem head;
private Queueltemtail;

publ ic void put(int value) {

Ip1 Queuel tem xi = new Queuel ten(val ue);
} Ip2 synchroni zed(this) {
lps if (tail == null) {
cl ass Consuner inplenments Runnable { Ipa tail = xd;
protected Queue g; Ips head = x.i;
S } else {
public void run() { Ipe tail.next = x.;
lp7 tail = x.;
val 2 = g.take(); }
} lps }
} lpo }
public Queueltemtake() {
cl ass Approver inplenments Runnable { Ity synchroni zed(this) {
protected Queue g; Queueltem x.d = nul | ;
lto if (head !'= null) {
public void run() { Its newHead = head. next;
q. approveHead() ; Ity x_d = head;
Its xd.next = null;
} Itg head = newHead;
Ity if (newHead == null) {
class Main { Itg tail = null;
public static void main(String[] args) { }
Ilm; Queue g = new Queue();
Ilmo Thread prd = new Thread(new Producer(q)); ltg }
Ims Thread cns = new Thread(new Consuner(q)); lt1o return x.d;
Imy for(int i =0; i < 3; i++) }
Ims  new Thread(new Approver(q)).start(); public void approveHead() {
lay synchroni zed(this) {
Ilmeg prd.start(); las if (head !'= null)
Ilmz7 cns.start(); las head. approve();
la4
} }
}
@ (b)
Fig. 2. (a) a simple program that uses a queue, (b) simplified Source code for a queue implementation.

/1 Queueltem java
class Queueltem {

private int val ue;

}
}

private Queueltem next;
private bool ean i sApproved;

publ ic void approve() {

Fig. 3. Simplified Java source code for a Queueltem impleatient
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2. JAVA CONCURRENCY MODEL

We now give a brief description of the Java-like concurrepaynitives used in this paper.
The reader is referred to [Gosling et al. 1997; Lea 1997; hatch and Yellin 1997; Goetz
et al. 2006] for more details.

Java contains a few basic constructs and classes speyitieaigned to support concur-
rent programming:

—The clasg ava. | ang. Thr ead, used to initiate and control new activities.
—Thesynchr oni zed keyword, used to implement mutual exclusion.

—The methodswai t , noti fy, andnoti f yAl | defined inj ava. | ang. Obj ect , used to
coordinate activities across threads.

The constructor foThr ead class takes an object implementing taanabl e interface
as a parameter. THRunnabl e interface requires that the object implements ithe()
method.

A thread iscreatedby executing anew Thread() allocation statement. A thread is
startedby invoking thest art () method and starts executing then() method of the
object implementing thBunnabl e interface.

Initially, a program starts with executing thei n() method by the main thread. Java
assumes that threads are scheduled arbitrarily.

The program shown in Fig. 2 contaiBslasses implementing tiRnnabl e interface:
aProducer class, which puts items into a shared queue; a balkimgumer class, which
takes items from a shared queue and does not wait for an itdw@ dfueue is empty; and an
Approver class, which performs some computation on a queue elemapptove it. The
program starts by executing thei n() method, which creates a shared queue, a Producer
thread, a Consumer thread, ahdpprover threads. Threads in the example are started at
labelsims, lmg, andims.

Each Java object has a unique monitor associated with ichnithread can lock or
unlock. Only one thread at a time may hold a lock on a monitorddition, each object
has an associated block-set and wait-set for managingdbitbat are blocked on the ob-
ject’s monitor or waiting on it. When aynchr oni zed( expr) statement is executed by
a thread, the expressionzpr is evaluated, and the resulting object’s monitor is checked
for availability. If the monitor has not beeacquiredby any other thread, successfully
acquiresit. If the monitor has already been acquired by another thrgathe threadt
becomedlockedand is inserted into the monitor’s block-set. A thread mayuat®@ more
than one monitor, and may acquire a monitor more than oncaifors are re-entrant).
When a thread leaves tlsgnchr oni zed block, it unlocksthe monitor associated with it.
When a monitor has been locked more than once (by the sanagjhieis released only
when a matching number ahlockoperations are performed.

In the example shown in Fig. 2, we guarantee that the queumiiqes are atomic by
putting critical code into aynchr oni zed(t hi s) block.

A threadt can wait on an objeetby calling the method. wai t () . Invokingo. wai t ()
placest in o’s wait-set, and releases the monitor lock associated avithowever, it does
not release any other locks thaaicquired. When a thread is in the wait-set of an object,
we say that the threadvgaiting. A waitingthread: can be only released by another thread
invokingo. noti fy(),o.notifyAll () orinterrupt() onthe thread.
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Invokingnot i f y() on an object removes an arbitrary thread from the objectis e,
and makes it available for scheduling. Invokingt i f yAl | () on an object removes all
threads from the wait-set, and makes them available fordadime.

Athreadt should only invokemai t () ,noti fy() andnotifyAl |l () whenitisholding
the object’s lock, otherwise an exception is thrown.

A threadt; may wait for another thread to complete execution arjdin it by invoking
a call tots.join(). If o is not yet started ot is already dead, the call fas.join() is
ignored.

Java uses a variant of no-priority non-blocking monitorsifiBet al. 1995]. In no-
priority monitors a natified thread has no priority over tled threads, or over a thread
just reaching the monitor entrance. Notified threads, l@ddkreads, and entering threads
have the same priority when competing to acquire a lock. dfoee, a notified thread
does not resume execution immediately, but is moved to tbekkdet, and competes to
re-acquire the lock.

For simplicity and readability we make the following sinfpging assumptions:

—We assume the identity of the lock feynchr oni zed( exp) , and the target object of
scheduling-related methods, is given as a single refenearéable rather than a general
reference expression as supported by the Java languadpe pfagram uses a general
expression, we normalize the program by adding a tempogaigive.

—Similarly, we assume the target object of schedulingteelamethods roti fy(),
notifyAll(),wait () etc.)is given as a single reference variable.

—We assume that the memory-model provides sequentialstensy. This assumption
abstracts away from the actual details of the memory modgli@eommon to most
Java verification frameworks. While our framework is exgiasenough for expressing
the lower-level semantics involving the actual memory-gipthis would result in a
significant performance decrease.

—For simplicity, we do not present here the semantics fottiplelacquisitions of a lock
by the same thread.

—We may handle additional Java features such as exceptimhdymamic binding in a
conservative manner.

3. A PROGRAM MODEL

In this section, we lay the ground for our analysis framewdnkSection 3.1, we use log-
ical structures to represent the global state of a muléttheel program. Section 3.2 uses
logical formulae as meta-language to extract interestinggrties of a configuration, such
as mutual exclusion. Then, in Section 3.3, we define a straicsmall-step operational se-
mantics which manipulates configurations using logicainfolae. Finally, in Section 3.4,
we describe the safety properties that are verified in thiepa

3.1 Representing Program Configurations via Logical Structures

First-order logical structures provide a natural formali®r representing the global state
of a heap-manipulating program — individuals of the firater structure correspond to
heap-allocated objects, properties of objects are reptedeising unary predicates, and
relationships between objects using binary predicatéds.dlso possible to use first-order
logical structures to model non heap-allocated objectsh(sis integer values), as well
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as enforce a typing mechanism on objects by using a unarycateds_7'(v) to denote
objects of typer".

A program configuratiorencodes a global state of a program which consists of (i) a
global store, (ii) the program location of every thread, &ii)l the status of locks and
threads, e.qg., if a thread is blocked on a lock. Technichibt-order logic with transitive-
closure is used in this paper to express configurations andphoperties in a parametric
way. Formally, we assume that there is a set of predicate slg#ifor every analyzed pro-
gram, each with a fixed arity. Table | contains the predicasesl to analyze our example
programs.

—The binary predicateg(vy, v2) holds for objects that are equal.

—A unary predicates_T'(v) is used to denote the objects of type In particular, the
unary predicates_thread(t) denotes objects that are threads, i.e., instances of the
j ava. | ang. Thr ead or its subclasses.

—To model integer values, we introduce objects of type ureiginteger, where the unary
predicatezero(v) is used to record the integer with the value zero, and thepjred-
icatesucc(vy, v2) to record successor relationship between integers.

—TFor every potential program location (labétp of a thread;, there is a unary predicate
at[labl(t) which is true whert is atlab.

—For every class field and local varialile d, there is a binary predicate|f1d](v,v2)
records the fact that thfd d of the objectv; points to the objects. For simplicity, we
do not model the stack of a thread, and treat local variabilestioread as fields of the
thread object.

—For every integer valued fieldf | d, there is a binary predicate[i f1d] (v, ve) that rep-
resents the integer value of a field by relating an objedb an individual representing
an integer values.

—The predicategeld_by(l,t), blocked(t,l) andwaiting(t,l) model possible relation-
ships between locks and threadsld_by(l, t) is true when the lock has been acquired
by the thread via a successfuidynchr oni zed statementblocked(t, 1) is true when the
thread: is blocked on the lockas a result of an unsuccessfyinchr oni zed statement.
waiting(t,1) is true when the threatdis waiting for the lockl as a result of invoking a
wai t () call.

Note that predicates in Table | are actually written in a giengay and can be applied
to analyze different programs by modifying the set of lalaeld fields.
A (concrete)program configuratiors a2-valued logical structur€® = (U*%, /%) where:

—U" is the infinite universe of the-valued structure. Each individual Ii® represents an
allocated heap object (some of which may represent thredatie program,). The con-
figuration may also contain an infinite number of individuapresenting the unsigned
integers.

—% is the interpretation function mapping predicates to tireith-value in the structure,
i.e., for every predicate € P of arity k, ./ (p): U?* — {0,1}.

Usually, not all logical structures represent valid pragreonfigurations. Therefore,

TVLA/3VMC allows the programmer to introduce integrity constraipiscified asFO7¢

(first order-logic with transitive closure) formulae [Sagit al. 2002]. The integrity con-
straints for integers are simply the Peano axioms encoded &%) formulae.
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| Predicates | Intended Meaning |
eq(v1,v2) vy equals tovs
1s.T'(v) v is an object of typd”
zero(v) the individualv represents integer value zero
succ(vy, va) vy IS the successor value of
{at[lab](t) : lab € Labels} threadt is at labellab

{rv[fld](v1,v2) : fld € RFields} | field fld of the object; points to the objecty
{iv[fld](v1,v2) : fld € IFields} | field fld of the object; has the value.

held by(l,t) the lock! is held by the threatl
blocked(t,1) the thread is blocked on the lock
waiting(t, ) the thread is waiting on the locK

Table I. Predicates for partial Java semantics.

<u4>
r_by[next]
r_by[tail]

rv[tail]

rv[this]

<a3>
<a2> atfla_1]

@ rv[this] <prd> rv[x_i
< neld by < alip_6)

rv[this]
blocked @

rv[this]

Fig. 4. A concrete configuratiotﬁi.

In this paper, program configurations are depicted as @idegtaphs. Each individual
of the universe is displayed as a hode — objects of type thaeagresented as hexagon
nodes, other objects as round nodes. A unary predicatkich holds for an individual
(node)u is drawn inside the node. In some of the figures, we use node names written
inside angle brackets. Node names are only used for eases#mation and do not affect
the analysis. A true binary predicatéu,, us) is drawn as a directed edge fram to us
labeled with the predicate symbol. For brevity, predicaf@, v2) is not shown. We use
a natural sign () to denote entities of the concrete domain (e(.,denotes a concrete
configuration C).

ExamMPLE 3.1. The configuratioﬁ?i shown in Fig. 4 corresponds to a global state of
the example program with 5 threads: a singleducerthread (labelegrd) that acquired
the queue’s lock, a singnsumethread (labeledns) thatis blocked on the queue’s lock,
and 3approvingthreads ¢1, a2, a3) that haven't performed any action yet. The role of the
predicate_by[f1d](o) will be explained in future sections. For clarity of presgitn, we
omit theRunnabl e objects and present only thread objects.

All threads in the example use a single shared queue comggnitems{u0, ..., u4}.
The binary predicatev[next](o1,02) records for each objeet the target object refer-
enced by itsext field.
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Note that the number of heap allocated objects in a configur& not bounded since
the analyzed program may allocate new non-thread and/eadhindividuals. We do not
place a bound on the number of allocated objects.

3.2 Extracting Properties of Configurations using Logical Formulae

Properties of a configuration can be extracted by evaluatifigst-order logical formulae
with transitive closure and equality over the configuratidppendix A provides a formal
description of such formulae and their evaluation.

For example, the following formula describes the fact tHatk pointed-to by the hi s
field of some thread has been acquired by the thread.

3t, lis_thread(t) A rvlthis](t,1) A held-by(l,t)

For ease of notation, we use the shorthand type.¢ £ Jv.is_type(v) A ¢ (similarly
for universal quantification). This allows us to write thevab formula in a more readable
form as:

3t: thread A.rv[this|(t,1) A held_by(l,t)

For example, the formula
Jt: thread.held_by(l,t)

describes the fact that the lo¢kas been acquired by some thread. Our experience indi-
cates that it is quite natural to express configuration ptagseusing first-order logic.

Transitive closure is useful for expressing reachabikiyt example, to express the fact
that an element;; in the queue; is reachable fronmead through a sequence okxt
fields, we write the formula:

Ju.rvlhead](q, u) A rvlnext]” (u, uq)

Note that the program location of each thread can be usedanraufa by using the ap-
propriate label. For example, consider a labg} which corresponds to a critical section.
We formalize the mutual exclusion requirement using thkfahg formula:

Viq,to: thread.(tl #+ tg) — ﬁ(at[lc”'t](tl) A\ at[lc”‘t](tg))

The above formula could be trivially extended to handldaaltsections with multiple
labels by using a disjunction of the labels in the criticatsm. It can also be extended to
handle threads with different critical sections.

3.3 A Structural Operational Semantics of Configurations

Fig. 5 shows a depth-first search algorithm for exploringadesspace. For each config-
urationC such thatC is not already anemberof the state-spacewe explore every con-
figurationC” that can be produced by applying some action to the currerfigroration
C.

Every resulting configuratio@”, is added to thetate-spaceising set union. The mem-
bership operator used is set-membership, we will later ugenaralized membership op-
erator. In the case of set membership, this algorithm isntisdly the classic state-space

ACM Transactions on Programming Languages and Systems3%pNo. 5, May 2010



12 . E. Yahav and M. Sagiv

initialize(Co) {
WorkSet = Co
}

explore() {
while WorkSet is not enpty {
sel ect and renove C from WorkSet
if not member(C, stateSpace) {
verify(C
stateSpace’ = stateSpace U {C'}
for each action ac
for each C’ such that C =,. C’
WorkSet = WorkSet U {C'}

Fig. 5. State space exploration.

exploration used in model-checking [Clarke et al. 1999ajwklver, in contrast to model-
checking, there is no bound on the number of objects, anefiver the state-space ex-
plored by this algorithm is not guaranteed to be finite. A gmesolution for this problem
is given in Section 4.

Informally, an action is characterized by the following &of information:

—Thepreconditionunder which the action is enabled expressed as a logicallarrhis
formula may also include a designated free varigbl®e denote the “scheduled” thread
on which the action is performed. Our operational semaigioen-deterministic in the
sense that many actions can be enabled simultaneously @nof eimem is chosen for
execution. In particular, it selects the scheduled thrgadrbassignment to,. This
implements the interleaving model of concurrency.

—Enabled actions create a new configuration where the irg&ions of every predicate
p of arity k is determined by evaluating a formulg, (v, v, ..., vx) Which may use
v1, 09, ..., U, andt, as well as all other predicates in

Table Il defines the semantics of concurrency statementsingée running example.
The table lists a precondition and update formulae for eatibra The value of a predicate
p(v1, vz, ..., vx) after the update is given by a formulg,,, ., ... ,). Predicates not given
an update formula are assumed to remain unchanged by tlo@.adthe set of actions is
partitioned into blocking and non-blocking actions. Blouk actions do not affect the
program location. Non blocking actions advance to the nesgam location by updating
theat[lab](ts) predicates for the thread.

A Java statement may be modeled by several alternativenaatiorresponding to the
different behaviors of the statement. When a precondif@mabled, it determines a thread
(denoted by ) that executes the action, and an action to be taken.

The actiongock (var) andblock Lock(var) correspond to the two possible behaviors on
entry to asynchr oni zed(var) block: lock(var) is enabled when there exists no thread
(other than the current thread) that is holding the lockrexfeed byvar, block Lock(var)
is enabled when such a thread exists. The aatidck(var) corresponds to the release of
the lock upon exit of theynchr oni zed(var) block. The actionvait(var) corresponds
to invocation ofvar . wai t () . The actionswoti fy(var) andignoredNoti fy(var) cor-
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| Action | Precondition | Predicate-update
lock(var) =3t # ts.rvfvar](ts,1) Ghetdby(ly,t1) = heldby(li,t1) V (t1 =ts Nl =1)
A held-by(l, t) Polocked(ty 1y) = blocked(ty, 1) A ((tr #ts) V (I # 1))
unlock(var) rvfvar](ts, 1) Ghetdby(ly,t1) = heldby(li,t1) A (t1 #ts Vi # 1)
wait(var) rofvar](ts,l) Cheld.by(ly,t1) = heldby(li,t1) A (tr # s VI #1)
praiting(tlyll) = waiting(tl, l1) \Y (t1 =1s N\ l1 = l)
notify(var) rofvar](ts,l) Cuwaiting(ty 1) = waiting(t,l1) A (t1 # tw V1L #1)
A waiting(tw, ) Ghlocked(ty 1) = blocked(t1,11) V (t1 = tw ANl1 = 1)
ignored rofvar](ts,l)
Notify(var) A =3Ity waiting(tw, 1)
notifyAll(var) | rvlvar](ts,1) Guwaiting(ty 1) = waiting(ti, 1) A (lh #1)
A ty.waiting (tw, 1) Gblocked(ty 1) = blocked(t1,11) V (waiting(ti,11) A (lh = 1))
ignored rofvar](ts,l)
NotifyAll(var) A =3Ity waiting(tw, 1)
block Lock(var) It # te.rvjvar](ts,l) Gblocked(ty 1) = blocked(t1,11) V (t1 =ts Nl1 =1)
A held_by(l,t)

Table II. Operational semantics for concurrency statemeAttions above the two hori-
zontal lines are non-blocking, théock Lock(var) action is blocking.

respond to the possible behaviours when caliag. not i fy() : notify(var) is enabled
when there exists a thread waiting on the lock referenceddpy and the free variable
t,, in its precondition corresponds to non-deterministics@a of the thread to be noti-
fied; ignoredNotify(var) is enabled when no such thread existszifyAll(var) and
ignoredNoti fyAll(var) model similar behavior ofar . noti f yAl | () . Technically, the
translation of a Java statement (and condition) to sevétexinative actions can be per-
formed by a front-end.
In essence, the predicates defined in this section, and #uécpte update formulae we
describe here, are an encoding of the concrete operatiemalrgics. As such, it is up to
the user to make sure that these formulae are a faithful septation of the operational
semantics. We refer to the predicates that are used to etite@encrete operational se-
mantics asore predicatesIn Section 4, we will introduce the notion of instrumentati
predicates that are used to refine the abstraction. Theaeifmtatulae for these can be de-
rived automatically using finite differencing [Reps et &103]. The beauty of the approach
of [Sagiv et al. 2002] (that we inherit here) is the fact the predicate update formulae
specified by the user are ones of the concrete semantics. bE@et transformers are
automatically constructed by interpreting these formohagr 3-valued structures.
Formally, the meaning of actions is defined as follows:

DEFINITION 3.2. Given a configuratio® and an actiomc, we say that’® = (U, 1)

rewrites into a configurationC® = (U, /') (denoted byC*? =,. C¥), if there exists an
assignmeng that satisfies the precondition af: on C*%, and for every € P of arity k

andul,...,uk c U,
) (ur, . ug) =
8
[[cpp(vl,vg,...wk)]]g (Z[v1 = up, v — ug, ..., U — ug))
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wherep, (v1, - - ,v) is the formula forp given in Table 1. We write? = C* if for
some actiore C% =, C%.

In addition, there is a special action that creates a new vidlial u,,.,, and results
in a structureCt’ = (UU{unewt, ). A special predicatés New holds foru,..,, and
thus can be used in the predicate update formulae. The @eieNew is updated by
the allocation action, and only holds (temporarily) for thewly allocated object(s). This
predicate is required in order to distinguish newly alloedtobjects from objects that were
pre-existing in a structure.

We say that a configuratiofi® transitively rewrites into a configuraticﬁ“/ (denoted
by Cf =* Cu') if there exists a (potentially empty) sequence of configpma C? =
Cg,C1,...,C% = C¥ such that foreach < i < n,Ci = CF .

3.4 Safety Properties of Java Programs

Given a set of initial configurations;, the set ofeachableconfiguration€’'r, is the set of
configurations that can be created by transitively rewgiirconfiguration fron€’;. More
formally, a configuratior,. € Cf, iff there existsC; € C;.C; =* C,.

A safety property is formalized using a logical formula. Vely shat a safety property of
a programholdsif all reachable configurations satisfy the formula spenifythe property.

Our analysis described in Section 4.1 aims at automatieellifying safety properties
by guaranteeing to detect configurations where the praseatie violated, if such configu-
rations exist. Moreover, we sometimes also show that adisgproperty at some reachable
configuration holds by showing that a stronger safety prtygeslds.

Table 11l lists some of the formulae used to detect configanstthat violate a safety
property. Formulae for other safety properties may be défamailarly.

In the Read-Write (RW) Interference formula, the first linates that both individuals
t, andt,, are different thread individuals, the second line states titvead:, is at label
Ir and the thread,, is at labellw, and the third line states that the variablg of thread
t,, and variabler, of threadt, reference the same objectNote thatiw is assumed to be
a label of a statement with a writing access, @nd label of a statement with a reading
access.

ExampPLE 3.3. In Fig. 4, the RW-Interference formula evaluate8 for the labeldt;
(newHead = head. next) andipg (tail . next = x.i ) of the example program shown
in Fig. 2. This is due to the fact that synchronization preéséne consumer thregdns)
from being at labelts; when the producer thredgrd) is at labelps.

Even if synchronization was dropped, and the consumer avdluper threads were al-
lowed to be att3 andipg correspondingly, RW-Interference would still evaluate)tm
this configuration sinckead andt ai | refer to different objects.

The Write-Write (WW) Interference formula is similar to tR&V Interference formula.

The Total Deadlock formula requires that for each threthare exists a locksuch that
t is blocked on. This is a strict formulation of the problem that can be galieed (e.g.,
allowing some thread to be in the terminated state).

The Resource Ordering Criterion formula states that thrisisea thread holding a
lock I, and blocked on a lock, such that the ID of; is greater than the ID df.

The Nested Monitors formula states thagt,; is a separation node in the configuration
graph with respect to paths over the field Thus, every n-path from a node in the con-
figuration graph reaching;,, passes through the nodg,;. Therefore, a nested-monitors
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| Formula | Intended Meaning
Ftr, ty : thread, o.(t, # ty) RW Interference between a thredgd)(at labellr
A atlr](ty) A at[lw](tw) readinge,.. fld and a threadt(,) at labellw
A T0[T] (L, 0) A Tv[2](Er, 0) updatingz.,.fld, wherex, andx,,
are pointing to the same object
Ftow1, twa : thread, 0.(ty1 # tw2) WW Interference between a threag {) at labellw;
A at[lwq](t1) A at[lws](t2) writing z,,1 . fld and a threadt(,2) at labellw,
A T0[Zo1] (w1, 0) A 10[X02] (tw2, 0) updatingz.,s.fld, wherez,,; andz,,»
are pointing to the same object
Vt: thread.3l.blocked(t,1) Total Deadlock
3t: thread,ly,ls.blocked(t, ;) Resource Ordering. A threads blocked on a lock
A held_by(la,t) A =lt[id](l2,11) “smaller” than a lock it is holding.
Tty : thread, oput, Oin-waiting(ty, 0, ) Nested Monitors. A threat, is waiting
A held_by(0out, tw) A T0[in]* (0out, Oin) on an objecb;,, while holding the lock
AYop.((0p 7 0out) A To[in]* (0out, 0p) of an objecb,; which structurally contains it,
A rvfin]* (0p, 0in) thus preventing any other thread from notifyihg
— (31, ta.rv[in](ti, 0p) A rvfin](te, op))
t.at[ls](t) A rolvar](t,1) A —held_by(l,t) Missing Ownership. Thread invokingar . wai t () or
var. notify() atlabell, when not holding the lock
referenced by.
See Section 5.2 Shared ADT
See Section 5.3 Thread Interactions

Table Ill.  Violations of safety properties detected in thaper.

deadlock may be created when a thread is waiting,grwhile holding the lock of the
objectoyy;.

The Missing Ownership formula states that there existseatirat labell; which in-
vokesvar . wai t () orvar. notify() anddoes nothold the lock of the objéctferenced
by variablevar.

4. AN ABSTRACT PROGRAM MODEL

The state-space exploration algorithm of Fig. 5 may be sifda in programs with an
unbounded number of objects. In this section, we describethareate a conservative
representation of the concrete model presented in Sectinra3vay that provides both
feasibility and high precision.

In Section 4.1 we us8-valued logical structures to conservatively represenitipie
configurations of a multithreaded program. Section 4.1ek@nts the concept of embed-
ding, which is crucial for proving the correctness of ouragithm. Section 4.2 presents the
abstract semantics derived from the concrete semantissmied in Section 3.3. Finally,
Section 4.3 shows how to improve the precision of our analygiadding instrumentation
predicates.
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<u4>
r_by[next]=1/2
r_by[tail]

<u0>
r_by[head]

rv[this]
blocked

Fig. 6. An abstract configuratiatl representinghe (concrete) configurati(ﬁi of Fig. 4.

4.1 Representing Abstract Program Configurations via 3-Valued Logical Struc-
tures

To make the analysis feasible, we conservatively represeitiple configurations using
a single logical structure but with an extra truth-valy@ denoting values which may be
1 and may b&. The value9) and1 are calleddefinite valuesvhereas the valug/2 is
calledindefinite value We allow an abstract configuration to inclusiemmary nodes.e.,
individuals that represent one or more individuals in aespnted concrete configuration.
Technically, a summary nodehas:(eq(u, u)) = 1/2.

Formally, anabstract configuratiofis a3-valued logical structur€’ = (U, .) where:

—U is the universe of th&-valued structure. Each individual iti represents possibly
many allocated heap objects.

— is the interpretation function mapping each predicate gdritth-value in the struc-
ture, i.e., for every predicate € P of arity k, «(p): U* — {0,1/2,1}. For example,
t(p)(u) = 1/2 indicates that some of the individuals represented Iavel as their
truth values, and some have the truth value

4.1.1 Embedding.We now formally define how configurations are representeaigusi
abstract configurations. The idea is that each individuahfthe (concrete) configuration
is mapped into an individual in the abstract configuratiorordlgenerally, it is possible
to map individuals from an abstract configuration into anvittibal in another less precise
abstract configuration. The latter fact is important for abstract transformer.

Formally, letC' = (U,:) andC’ = (U’,/') be abstract configurations. A function
f: U — U’ such thatf is surjective is said tembedC into C’ if for each predicate of
arity k, and for eachuy, ..., u; € U one of the following holds:

L(p(u17u27 R uk)) = Ll(p(f(ul)v f(uQ)a RS f(uk)))
or

V(p(f(ur), fuz), - f(ur))) = 1/2

We say that”’ represent<”’ when there exists such an embeddjng
One way of creating an embedding functipis by usingcanonical abstractionCanon-
ical abstraction maps concrete individuals to an abstratividual based on the values of
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the individuals’ unary predicates. All individuals havitige same values for unary predi-
cate symbols are mapped lfyinto the same abstract individual.

Example4.1.1. The abstract configuratioi representgoncrete configuratio@i.

We use dashed edges to dray-valued binary predicates, and nodes with double-line
boundaries to represent summary nodes.

The summary node labeled represents the threads, a», as which all have the same
values for the unary predicates. The summary node lahelegresents all queue items
that are not directly referenced by the queue’s head or haite that the abstract config-
urationCg represents many configurations. For example, it represeytgonfiguration
with 3 or more queue items (ag andu, represent exactly one item each, and the sum-
mary nodeu represents at least one item). In a similar fashion, theatistonfiguration
represents configurations with one or more threads thateedilabela; (represented by
the summary node labeled). Note that the RW-Interference condition evaluate$ to
over the abstract configuratiar.

The abstraction mechanism we describe here operates orfiguration as a whole.
This may have obvious limitations on scalability as it unifity applies the same abstrac-
tion to an entire configuration. Alternative approachekide separation and heterogenous
abstraction [Yahav and Ramalingam 2004] applying diffeadastractions to different parts
of a configuration, and heap decomposition [Manevich etG082.

4.2 An Abstract Semantics

We use the same simple algorithm from Fig. 5 for exploratibthe abstract state space.
The operations used by the algorithm are modified to work fstract configurations.
The rewritesrelation is modified to conservatively model the effect ofaation on the
given abstract configuration (possibly representing mlgtconfigurations). In addition,
the state-space exploration now starts Wilbeing the abstraction of initial configurations.

Implementing an algorithm for computing thewrite relation on abstract configurations
is non-trivial because one has to consider all possibldioela on the set of represented
(concrete) configurations.

The best conservative effeof an action (also known as thieduced effecor best ab-
stract transformer of an action) [Cousot and Cousot 197@lefined by the following
3-stage semantics: (i) A concretization of the abstracfigaration is performed, result-
ing in all possible configurationrepresentedy the abstract configuration; (ii) The action
is applied to each resulting configuration; (iii) Abstractiof the resulting configurations
is performed, resulting in a set of abstract configurati@psesentinghe results of the
action.

Our prototype implementation described in Section 6 opsrdirectly on abstract con-
figurations, and obtains actions which are more consegvttian the ones obtained by the
best transformers. Our experience shows that these actierstill precise enough to de-
tect violations of the safety properties as listed in Tah|enlithout producingfalse alarms
on our example programs.

Intuitively, our approach uses partial concretizationgaeration calledocusin [Sagiv
et al. 2002]) to produce a finite set of abstract configurattorwhich the update is applied.
The update is followed by an abstractidiur in [Sagiv et al. 2002]) that produces the set
of abstract configuration that constitute the result of ttea.
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Cr

Fig. 7. Example offVLA/3VMC transformer being more conservative than the best trans-
former.

In Section 6, we show that our abstract transformers ardaggremough to verify the
properties of interest in our example programs. However,t@nsformers may yield
results that are more conservative than the best transfpameshown in the following
example.

Example4.2.1. As a simple example of where our abstract transfaiarer more con-
servative than the best transformer, consider the abstomdigurations shown in Fig. 7.
For simplicity, we show abstract configurations of a segaéptogram in which there are
no thread nodes. In these configurations, the program Vesialy, andz are represented
using unary predicates and the fieldusing a binary predicate. In addition, we use the
predicates|n, z|,r[n, y], andr|n, z] to record transitive reachability from variables, and a
predicatess to record whether a node is shared (pointed to by more thargtesi field).
Given the configuratiod';, we consider the effect of a single statemenh = y. Ap-
plying the action corresponding to this statement to therabisconfiguratiorC; results
in the abstract configuratiofi7. Note that in the configuratio@?, the value for thes
predicate isl /2.

Applying the statement. n = y to the abstract configurati@ry, makes the node pointed
to byy become a shared node, as it is transitively reachable fremalde pointed-to by
x and (directly) reachable from the node pointed-tozbyTechnically, this means that
the value of the s predicate after the update should have beeklowever, our abstract
transformer in this case is conservative and sets the vélieto 1,/2.

DEFINITION 4.1. We say that an abstract configurati@h rewrites into an abstract
configuration C’ (denoted byC'=-,. C’) whereac is an action, if forC' and forC’ there
existsC? andC?’ = (U?, *') such that:(i) C* is in the concretization of’, i.e.,C repre-
sentsC?, (i) C’ is thecanonical abstractioof c?, (i) there exists an assignmeftthat
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initial

conc.
Cs,0,1

after

update
Csi1

after

abs. @ n[this @ rv[this] @ held_b:

@__held_by % <=

Cs2.1 Cs22

Fig. 8. Concretization and predicate-update for an unbedmiimber of threads all per-
forming theapprove Head() method of the running example.

satisfies the precondition af: on C*, and for every € P of arity k anduy, . .., u, € U",

(D) (ur, . ug) =
[op(v1, v, ... 71};6)]]3C(Z[vl U, U > U, ..., U > UL])

wherep, (v1, -+ ,vx) is the formula forp given in Table II, and¢]$ (Z) is the three-
valued evaluation of a formula in a configurationC' under an assignmer#f (see Ap-
pendix A). We writ€' = C’ if for some actioruc C =, C'.

Example4.2.2. The abstract configuratiatk, shown in Fig. 8 represents an un-
bounded number of threads all at late]. The actions for labela; arelock(this) and
block Lock(this).

The infinite set of configuration§Cs 0.1, Cs,0,2,- - - } is the set of (concrete) configu-
rations after concretization. After concretization theganditions of the actions are eval-
uated, the precondition fdock(v) evaluates td and the precondition falock Lock(v)
evaluates t0. Thuslock(v) is applied. The infinite set of configuratiof€s 1 1, Cs 1,2,. - -

} is the set after the application &éck(v). The set of abstract configuratiof€’s 2 1,
Cs2.2 }is the finite set of configurations after abstraction.
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Fig. 9. Instrumentation predicate_blocked(t).

The membership operatotember(C, stateSpace) of Fig. 5 can be modified to check
if the configurationC is already represented by one of the configurationgdmeSpace.
This is an optimization for preventing exploration of redant configurations.

4.3 Instrumentation

Instrumentation predicates record derived propertiesdi¥iduals. Instrumentation predi-
cates are defined using a logical formula over core predicllpdating an instrumentation
predicate is part of the predicate-update formulae of anmct

The information recorded by an instrumentation predicata iconfiguration may be
more precise than evaluating the defining formula of theumséntation predicate over the
configuration. This is known as thastrumentation Principléntroduced in [Sagiv et al.
2002].

The mapping of individuals in a configuration into an abstiadividual of an abstract
configuration is directed by the values of the unary predsaBy adding unary instru-
mentation predicates, one may allow finer distinction betwmdividuals, and thus may
improve the precision of the analysis.

Table IV shows some of the instrumentation predicates wd imsthis paper. We elab-
orate on the use of these predicates in Section 5. The fallppiovides a simple example
of their effect.

Example4.3.1. Consider an unbounded number of threads competangpdre a sin-
gle shared lock. Assume that a threadas already acquired the lock. The configuration
Cy0,1 shown in Fig. 9 corresponds to a state in which some thread td acquire the
lock and consequently became blocked on the lock. In thidigmation, the formula
3t, L.rv[this](t,1) A blocked(t,1) evaluates td /2. ConfigurationCy o » shows the same
global state when the instrumentation predidatélocked(t) is used. Now, one can check
the existence of a blocked thread using the stored valueeoinfitrumentation predicate
is_blocked(t), which evaluates td. Note that in this case evaluation of the original for-
mula over the configuration with instrumentation also eatds tol rather than td /2, but
this is not always the case.
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4.4 Updating Instrumentation Predicates

The updated value of a core predicate is obtained by intengréhe corresponding update
formula, specified in the concrete semantics, usinglued logic. The soundness of the
abstract transformers updates to core predicates is gearhby construction.

The immediate question is how to update the value of instniati®n predicates?

As mentioned earlier, an instrumentation predicate is ddfinsing a logical formula
over core predicates. It is therefore possible to obtaivdhee of an instrumentation pred-
icate after an update by re-evaluating its defining formaléne updated abstract configu-
ration. However, as shown in [Sagiv et al. 2002], it is pdssib achieve better precision
by defining an update formula describing the effect of a fianser on an instrumentation
predicate.

Reps et al. [2003] provide a method for updating instrunt@ngredicates automat-
ically based on finite differencing. Their approach is aldlalérive the update formula
for an instrumentation predicate under a transformer frloenupdates applied to the core
predicates used to define it. This approach, however, igdinivhen it comes to up-
dating instrumentation predicates using transitive alege.g., transitive reachability of
Table IV). This is due to the inherent difficulty in incremahinaintenance of transitive
properties in directed graphs [Immerman 1998]. Still, thpraach provides sufficiently
precise updates in some special cases (e.g., acyclic graphs

Technically, the current implementation also has limitas when dealing with alloca-
tion and deallocation, so update formulae for instruméogtredicates have to be pro-
vided in these cases. This is likely to be addressed in fiergons of the tool.

5. VERIFYING SAFETY PROPERTIES

We use the instrumentation predicates listed in Table I\htprove the precision of our
analyses. The following sections list more precise forrtioe of the formulae of Table 111
using instrumentation predicates whenever possible.

5.1 Deadlock

We use thevait_for(t, t2) instrumentation predicate to detect a cyeli¢it_for depen-
dency. We uselock(t) to track the resource-ordering local property for eachetird hus,
the resource ordering violation can be formulatediaglock(t). The definition ofslock(t)
uses the predicati[id](v1, v2) Which records the order between locks according to the
value of theiri d fields. Each lock object is assumed to have a unique id redardits
i dfield (e.g., such anid could be provided usingjtiaga. | ang. Obj ect 's hashCode()
method). The predicate[id](l1,[2) is true when the id of; is less than the id dk. The
order between objects can be used for deadlock preventidmdaking cyclic allocation
requests [Silberschatz and Galvin 1994].
Note that we are recording the order between liodk and not the actual values of these
i ds. Thus, there is no requirement that the number of locksavoela priori bounded.
The formula for nested-monitors deadlock is given below:

Tty : thread, 0oyt , Oin waiting (ty, 0in) A held_by(oout, tw) A7 fin](0out, 0in)
AYop.((0p # 0out) A7 f[in](0p, 0in) — 7 f[in](0out, 0p) A —is[in](op))

Intuitively, a nested monitors deadlock occurs when a thiisavaiting for an inner
monitor to be released while holding the lock on an outer noonhat prevents access of
other threads to the inner one.
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of some object

Predicate Intended Meaning Defining Formula
1s[f1d)(ly) l; is referenced by the fieldlid Fty,ta.(t1 # t2) —

of more than one object ro[fld)(t1, 1) A rolfld](te,l2)
r_by[fld](1) 1 is referenced by the fieldlld Jo.rv[fld](o,1)

lt[lfld] (Ul, ’Ug)

the value ofi f1d of v, is less than that ofy

diq, is.ival [Zfld] (’Ul7 il)/\
ivalifld)(ve,i2) A succ* (i1, i2)

is_acquired(l)

[ is acquired by a thread

St heldby(l, t)

1s_blocked(t)

t is blocked on a lock

Jl.blocked(t, 1)

is_waiting(t)

t is waiting on a lock

AN.waiting(t, 1)

slock(t)

t violates the resource ordering criterion

iy, la.is_thread(t) A blocked(t, 1)
heldby(la, t) A —ltlid](l2, 1)

wait_for(ty, ta)

t1 is waiting for a resource held by

Alp.blocked(ty,lp) A held_by(ts, 1)

rflfld](o1,02)

objectos is reachable from objeet; using
a path offld edges

ro[fld]* (o1, 02)

rt[ref, fld|(t, o)

objecto is reachable from thread

Jog.rvfref](t,o¢) A ro[fld]* (o, 0)

by a path starting with a single: f
edge followed by any number
of fld edges

Table IV. Instrumentation predicates for partial Java s&ros.

Technically, the formula above captures a situation in Whieere exists a threat,
that is waiting on an inner monitar;,,, and is holding an outer monite,,;, such that
the inner monitor is reachable from the outer one, and tiseme iother pointer-path to the
inner monitor other than the paths from the outer one. Th#tésouter monitor dominates
the paths into the inner one.

5.2 Shared Abstract Data Types

We define a set of reachability predicates similar to the deéised in [Sagiv et al. 2002].
We use the reachability information to define invariantsABfT operations. For example:

—At the end of gout operation — the new item is reachable from the head of thegjueu

—At the end of aake operation — the taken item is reachable from the taking thesal
is no longer reachable from the head of the queue.

Examples of the encoding of such invariants are shown ineT&lll of Section 7.2.2.
Note that these formulae use actual program labels to apternotion of theend of an
operation

5.3 Thread State Errors

We use additional predicates to record thread-state irdoom: ts_created(t),
ts_running(t), ts_blocked(t), ts_waiting(t) andts_dead(t). These are core predicates
that are updated directly by the instrumented semanticerdar to identify thread-state
error properties, we add preconditions identifying wheraetion is illegal or suspicious.
These preconditions are listed in Table V. Most of these @rigs (missing ownership
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r_by[head]
r_by[tail]

Fig. 10. An abstract configuratiafi;o in which interference between the consumer and the prodsicetected.

properties are the exception) can be viewed as an explicitding of a typestate property
([Strom and Yemini 1986]) defining the permitted sequendanaethod calls for the type

j ava. | ang. Thr ead. The aforementioned thread-state predicates are used¢daethe
states of the typestate automaton. These predicates arteiralrexample of predicates
used to record past events (efg running(t) records the fact that the thread has been
started). Similar predicates are used in [Shaham et al.]20QBack typestate properties
for compile-time memory management.

5.4 Interference

For simplicity, our formulation of interference assumeattive have statically classified
program labels at which reads and writes occur. An alteredtirmulation would instru-
ment the semantics to record reads and writes.

Example5.4.1. Assume an erroneous version of the running examigeZJHn which
an unsynchronized version piit () is used. Configuratiof';, shown in Fig. 10 demon-
strates a possible interference in the program identifieglipyanalysis. In the configuration
Chp a consumer is trying toake() the last item, and a producer is simultaneously trying
toput () anitem.

The consumer thread reached lalbygland is about to execute the action f@nwHead =
head. next . The producer thread, having found that the queue is notyemgatched label
Ips, and is about to execute theai | . next =x_ action. The RW-Interference formula
from Table Il evaluates ta for this configuration since both threads reference the same
object(u0). Thus RW-Interference is detected.

It is important to note that if the queue has more than one,iteW-Interference is
not introduced, and our analysis will correctly report tR&Y-Interference does not occur
(sincehead andt ai | refer to different objects).
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Problem Action Precondition Warning
Multiple var.start() ro[var](t,, dt) A ts_running(dt) IllegalT hreadState Exception
starts rofvar|(t,, dt) A ts_dead(dt) Dead thread cannot be re-starteq
Premature | var.stop() ro[var](t,,dt) A ts_created(dt) Thread stopped before started
stop
Missing var.wait() rofvar](t,,1) A —held_by(l,t) Illegal M onitorState Exception
ownership | var.notify() rolvar|(t,,1) A —held_by(l,t) Illegal M onitorState Exception

rolvar](ty, 1) A =3ty . waiting(ty, ) | A notify was ignored

Premature | var.join() rofvar](t,, dt) A ts_created(dt) Thread join before started
join
Late var.setDaemon() | rv[var](t,,dt) A ts-running(dt) Illegal M onitorState Exception
setDaemon

Table V. Preconditions for checking illegal and suspicithusad interactions.

Cll,O - initial

Ch1,1 - thread inside critical section

Ch1,2 - other threads blocked

is_acquired
r_by[this]

is_acquired
r_by[this]

Fig. 11. Configurations arising in mutual exclusion with aaunded number of threads.

5.5 Unbounded Number of Threads

When a system consists of many identical threads, the spatee can be reduced by ex-
ploiting symmetry.
In model checking, the global state of a system is usuallgrilesd as a tuple contain-
ing thread program-counters, and value assignments faedhariables. In [Emerson
and Sistla 1993], symmetry is found between process indicesur framework, thread
names are only determined by thread properties. Thus, ibe@ need to explicitly de-
fine permutation-equivalence for symmetry reductidhe mapping to the canonic names
eliminates symmetry in the abstract state space.
We demonstrate the power of our abstraction by taking thenpleof a critical section
from [Emerson and Sistla 1993], and verifying that thetual exclusiomproperty holds for

anunbounded number of threads

Example5.5.1. Consider thepprove Head() method of class Queue. We would like
to verify mutual exclusion over the critical section prdestbysynchroni zed(t hi s).
For readability of this example we define all labels insidedhtical section as a single la-
bell. ;. The property we detect&, to.(t1 # ta) Aat[lerit](t1) Aat[leriz] (t2). Theinitial
state for the analysis contains anbounded number of thread=spresented by a summary
node. Fig. 11 shows three important abstract configuratioiség in the analysis of the

example.

In addition, using thread names that are only determinedhimat properties reduces
the number of equivalent interleavings that have to be dened. For example, consider a
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tl t2 t3 t4 t5
at[l_1] at[l_1] at[l_1] at[l_1] at[l_1]
initial
step 1 .
<at[| 2]> <at[| 2]> <at[| 2]> <at[| 2]> <at[| 2]>
final

Fig. 12. Configurations arising with explicit thread names.

program with five threads, each performing a single assigiione local boolean variable
b initialized to false, setting its value to true. That is, ledhread executes the single
statement; b = true; l;. When the program terminates, the local boolean variable
of each thread is set to true. Analyzing this program withliekly named threads will
result in 125 possible interleavings that have to be considered (seelBjg. Analyzing
the program in our approach will only consider a single (@spntative) interleaving (see
Fig. 13).

6. PROTOTYPE IMPLEMENTATION

In this section, we briefly describe our prototype implenaéion and present experimen-
tal results for applying the framework on a few small but iatting example programs.
More elaborate experimental results for the verificatiooarfcurrent queue algorithms are
provided in the following sections.

We have implemented a prototype of our framework cailgdA/3vMC [Yahav 2000].
Our implementation is based on tBevalued logic engine of VLA [Lev-Ami and Sagiv
2000]. We applied the analyses to several small but infegeptograms. Table VI sum-
marizes the programs we tested with: number of configuratiogated, actual errors (AE),
and reported errors (RE). All analyses terminated in leas thhours.
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initial step 1 step 2 final

Fig. 13. Configurations arising with canonical thread names

It is important to note that the cost of verification for an anhded number of threads
in our approach is exponential in the number of predicatédlevthe cost of verification
with explicit thread names is exponential in the number oddlds. As a result, verifying
a property for an unbounded number of threads is not onlyngen but sometimes more
efficient than verifying the property for an a priori boundagmber of threads. For ex-
ample, verifying mutual exclusion for the mutex programhaitexplicitly named threads
takes ovef’0 seconds whereas verification for an unbounded number adbriakes only
2 seconds.

In our prototype, the conservative effect of an action isleangented in terms of the
focus andcoerce operations (see [Sagiv et al. 2002] for more details).

The swap andswap_ord programs use two threads to swap items in a linkeddistip
does not use resource ordering, and thus may deadleai,_ord uses resource ordering,
and thus cannot deadlockiack andsStack are non-synchronized and synchronized ver-
sions of a Stack ADT manipulated by multiple threadsutez is a simple program that
uses mutual exclusion to protect a critical sectiprdcons andsProdCons are imple-
mentations of a Queue ADT manipulated by producer and coesthmeads.DP is an
implementation of th&lining philosophergroblem with unbound number of philosopher
threads.

While these example programs are small, the scenarios tgre are rather com-
plicated (e.g., nested monitors). We are encouraged byaittettat for these examples
our analysis terminated with no false alarms. In the follmyéections, we explore more
realistic example programs.

7. AUTOMATICALLY VERIFYING CONCURRENT QUEUE ALGORITHMS

In this section, we show how the/LA/3VMC framework can be applied to automatically
verify partial correctness of non-trivial concurrent gaelgorithms.

7.1 Concurrent Queue Algorithms

Concurrent FIFO queues are widely used in concurrent syste@ueues are used in
scheduling mechanisms, and as a basis of many concurremithigs. Concurrent ma-
nipulation of a shared queue requires synchronization &agniee consistent results.
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| Program | Description | Properties | Config. | AE/RE |

swap swap elements data races 25 1/1
and deadlock

swapord | swap elements data races 48 0/0
with resource ordering and deadlock

stack non-synchronized stack data races 184 1/1

sStack | synchronized stack data races 104 0/0

mutex mutual exclusion mutex 41 0/0

nestedMon| nested monitors deadlock 42 0/0

prodCons | producer consumer data races 416 1/1

sProdCons| synchronized producer consumer data races 195 0/0

DP unbounded dining philosophers|  deadlock 514 0/0

Table VI. Number of configurations, actual errors (AE), aadarted errors (RE) for the
programs analyzed.

A naive concurrent queue implementation uses a single gdhack to prevent concur-
rent manipulations of queue contents. Naturally, thisthrttie level of system concurrency.
Many algorithms were suggested to increase concurrendg wiaintaining the correct-
ness of queue manipulations [Michael and Scott 1996; St686;11992; Prakash et al.
1991; Wing and Gong 1990; Vechev and Yahav 2008]. The alyostin [Michael and
Scott 1996; Stone 1990; 1992; Prakash et al. 1991] are givtout a formal proof of
correctness, and [Wing and Gong 1990] provides a manualdiqunoof.

We focus on the non-blocking queue and two-lock queue alyns presented in [Michael
and Scott 1996]. A Java-like code for the queue implemenntatis given in Fig. 14.

To emulate the intention of [Michael and Scott 1996], ourgrgeanming model diverges
from Java by assuming a free operation and supporting deygeaations defined below.
The challenge of memory-management in such concurrentitdgts deserves a separate
discussion that goes beyond the scope of this paper. Thestee reader can find more
details in [Michael 2004] and [Vechev et al. 2009].

In this section, we present the concurrent queue algoridmmghe correctness proper-
ties we will verify for these algorithms.

7.1.1 Non-Blocking QueueJava-like pseudo-code for the non-blocking queue algo-
rithm is shown in Fig. 14(a). The queue uses an underlyinglgilinked list which is
pointed by two reference variables — Head and Tail, pointinthe head and tail of the
gueue, correspondingly. The list always contains a dumemy dt its head to avoid degen-
erate cases.

The algorithm is based on iterated attempts of a thread tioipera queue operation
without being interrupted by other threads. A thread ogsrah shared variables only us-
ing the compare-and-swap (CAS) primitive which allows iatomically observe possible
updates by other threads and apply its own update when the @dlthe shared variable
was not updated by other threads. CAS was introduced on tik3Bstem 370 [ibm
1983]. It is supported on Intel and Sun SPARC processoriaathres.

The CAS primitive takes 3 arguments — an address, an expealee, and a new value;
it then atomically compares the value at the address to thectsd value, and if the values
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/1 Non Bl ocki ng Queue

cl ass NonBl ocki ngQueue {
private Queuel tem Head;
private Queueltem Tail;

publ i c NonBl ocki ngQueue() {
node = new Queuel ten()
node. next.ref = NULL
this.Head = this.Tail = node

}

public void enqueue(Cbj ect value) {

e;  Queueltem node = new Queuel ten{val ue);
e> node.val ue = val ue;

e3 node.next.ref = NULL;

ey while(true) { //Keep trying until done

es Queueltemtail = this.Tail;

eg Queueltem next = tail.ref.next;

er if (tail ==this.Tail) {

es if (next.ref == NULL) {

e9 if CAS(tail.ref.next, next,
<node, next.count+1>); {

e1o break; // enqueue done

€11

e12 } else {

e13 CAS(this.Tail, tail,

<next.ref, tail.count+1>);

e14 }

e1s }

€16

}
ey7 CAS(this.Tail, tail,
<node, tail.count+1>);
e1s }

public oject dequeue() {
bj ect result = null;
dy while(true) {

do Queuel tem head = this. Head;
ds Queueltemtail = this.Tail;
dy Queuel t em next = head. next;
ds if (head == this.Head) {
dg if (head.ref == tail.ref)
dr if (next.ref == NULL) {//is enpty?
ds return result;
dg }
dyo CAS(this.Tail, tail,
<next.ref, tail.count+1>);
di1 } else { //No need to deal with Tail
dia result = next.ref.val ue;
di3 if CAS(this.Head, head,
<next.ref, head.count+1>); {
dya break; // dequeue done
dis }
die }
di7 }
dig

dig free(head.ref);
dso return result;
dz1 }

/1 TwoLockQueue. j ava

cl ass TwoLockQueue {
private Queuel tem head;
private Queueltemtail;
private Object headlLock;
private Object tail Lock;

publ i c TwoLockQueue() {
node = new Queuelten();
node. next = null;
this.head = this.hail = node;

}

public void enqueue(Obj ect value) {
Ip1 Queueltem x.i =

new Queuel ten(val ue);
Ip2 synchroni ze(tail Lock) {

Ips tail.next = xd;
o tail = x.;
Ips }
Ipes }
public Object dequeue() {
bj ect x.d;
Ity synchroni zed( headLock) {
It Queuel tem node = this. head;
Its Queuel t em new_head =
t hi s. head. next;
Ity if (newhead !'= null) {
Its x_.d = new.head. val ue;
Itg newhead = first;
Ity new.head. val ue = nul | ;
Itg free(node);
}
ltg
It1o return x.d;
lt11 }
}

(b)

(@)

/1 Queueltem java

class Queueltem {
public Queueltem next;
public Object val ue;

(©)

Fig. 14. Java-like pseudo-code for (a) non-blocking qué)etwo-lock queue, (c) queue

item.
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are equal updates the address to contain the new value. Vatbe at the address is not
equal to the expected value, no update is applied.

CAS-based algorithms may suffer from the “ABA’ problem [Mael and Scott 1996]in
which a sequence of read-modify-CAS results with a swap vittetrouldn't. This happens
when a thread, reads a value A of a shared variable, computes a new valu@eafaims
a CAS. Meanwhile, another threagchanges the value of the shared variable from A to B
and back to A. In order to avoid this problem, each referermc@ble is augmented with
a modification counter and shared references are only upttateugh the CAS primitive
which increments the value of the modification counter. Tligld have been modeled in
Java by adding a wrapper class which contains a referencaramasigned integer counter.
To simplify the exposition of our figures, we have added a fiiimtype that consists of a
reference value ef and an integer valueount for the modification counter. All refer-
ence operations that use only the reference name apply lhacbotponents, for example,
the assignment at labej assigns the values ohi s. Tai | . ref andt hi s. Tai | . count
totail.ref andtail.count correspondingly. When we specifically update a single
component of the reference variable, we state that exgladt at labells that performs a
comparison of the ef component of two reference variables.

It is worth noting that a variation of the algorithm that usles synchronization primi-
tives load-linked/store-conditional (LL/SC) will not ree the modification counters. The
CAS primitive is universal [Herlihy 1991] and used in comnaonhitectures and we there-
fore chose to focus on implementations using that primitive

These algorithms can be simplified further by assuming aaggizollector instead of
explicit memory management (see [Vechev et al. 2009; VeaheWwahav 2008]).

7.1.2 Two-Lock QueueFig. 14(b) shows a Java-like code for the two-lock queue al-
gorithm. This algorithm also uses an underlying linked-bs1d uses a dummy item at the
list head to simplify special cases. The algorithm uses ars¢é@head lock and tail lock to
separate synchronization of enqueueing and dequeueradhr

7.1.3 Correctness of AlgorithmsThe correctness of the queue algorithms in [Michael
and Scott 1996] is established by an informal proof. Saféthe algorithm is shown by
induction, proving that the following properties are satis by the algorithm:

P1 The linked list is always connected.

P2 Nodes are only inserted after the last node of the linlstd li
P3 Nodes are only deleted from the beginning of the linked lis
P4 Headalways points to the first node in the linked list.

P5 Tail always points to a node in the linked list.

We note that these properties are not the only propertiasrestifor showing that the
queue algorithms are indeed correct. Ideally, we would ftkautomatically verify that
the queue algorithms are linearizable [Herlihy and Wing@99ndeed, recently, [Amit
et al. 2007; Berdine et al. 2008; Vafeiadis 2009] autom#igaoved the linearizability of
these algorithms, but this requires techniques that arerubthe scope of this paper. In
addition, we do not address liveness properties of thesgitlgns. Gotsman et al. [2009]
provide a nice discussion of liveness properties for thégerithms and a technique for
their automatic verification.
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iv[Tail]

ivinext] \

ivinext]

v[next]

v[this]
v[this]

iv[Head]

Fig. 15. A concrete configuraticﬂilf5 with two enqueueing and one dequeueing threads.

In this paper, we focus on proving the above structural ptegeethat are still rather
challenging to verify automatically. In the following se&mts, we formally state these
claims, and automatically verify them usimyLA/3VMC.

7.2 Vanilla Verification Attempt

In this section, we describe the basic steps required téyvire concurrent queue algo-
rithms usingTVLA/3VMC .

7.2.1 Representing Program Configurations using First-OrdericagStructures.We
now show how to apply our technique to verify the concurrergige algorithms.

The non-blocking queue algorithm uses unsigned integaegas reference time-stamps.
As described in Section 3, we represent integer values usitigiduals of type unsigned
integer, the unary predicatero(v), the binary predicateucc(v, v2), and the binary pred-
icateiv[f1d](v1,v2). This allows us to naturally and quite precisely model aeget being
incremented and decremented. It is also possible to suppattary arithmetic operations
on integers, however, the abstraction presented in Seét®ms not precise enough to
provide useful results when the verified property dependtemesult of such operations.

To ease presentation, we depict nodes that represent edsigiegers as circles with
straight margins.

Example7.2.1. The configuratio@f5 shown in Fig. 15 corresponds to a global state
of the non-blocking queue program wishthreads: two enqueueing threads and a single
dequeueing thread. The two enqueueing threads are atlabetl have just allocated new
nodes to be enqueued; each enqueueing thread refers tal@dpdasnode field.

All threads in the example use a single shared queue comggdhitems (including the
dummy item). The integer values of the fieldsad andTai | in this configuration are
both0.

7.2.2 Safety.The first step in verifying the properties of Section 7.1.3ULA/3VMC
is to formulate them iF"O”“ using the predicates defined in Table I.

The immediate question iwhencan the properties be checked. One alternative is to
phrase the properties such that they are global invari@atshiold for all configurations
of the queues. Another is to check that the invariants holdnthe queue is “stable”,
that is, no operation is currently executing. The latternsilar to checking quiescence-
consistency [Herlihy and Shavit 2008], and is the one we sbdtere. Table VIl pro-
vides the formulation of the properties P1-P5 for the narcking queue algorithm. The
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| | Property | Property Formula
P1 | tail reachable| Vq : nbq, v..rv[Taill(q, ve)
from head = Jup.rv[Head](q, vn) A rvnext]* (vp, vy)
P2 | insertafter | Vq: nbq,t; : thread, v;, vs.at[e1s)(t;) A ro[nodel(t;, v;) A roltail] (t;, vt)
last Arv[this](t;, q) — rvlnext](ve, v;) A rv[Tail](q, vi)

P3 | delete first Vq : nbq, tq : thread, vq, v,.at[dig](tq) A rolhead](tq, va)
Arv[this](ta, q) Arv[Head|(q,vy) = rv[next](vq, vp)

P4 | head first —3q : nbq, v, u.rv[Head](q,v) A rv[next](u,v)

P5 | tail exists Vq : nbg.Fv.rv[Taill(q,v)

Table VII. Safety properties for the non-blocking queuepaitiym.

vTail

S iHead) - suee
. .Vlnode] X Civ[Head] RS
.. mthis] iv[Tail] ) §ch>©
T =\ S
rv[this] . o .iv[next]. B

Fig. 16. An abstract configuratiof;; representing the concrete configurati@ﬁ) of
Fig. 15.

formulation of these properties for the two-lock queue adilfers in label names. For
each property defined informally in Section 7.1.3, we prewaccorresponding formula in
FOTC,

Properties P2-P3 are being checked at the end of their pomdig operations, and as-
sume that the queue is stable (i.e., no other operation @iérg concurrently). Properties
P1, P4, and P5 assume that no queue operation is in progressséiflags to determine
when operations are ongoing (not shown here for simplicity)

In the table, we use the shorthanély to abbreviatedNonBl ocki ngQueue. For-
mula P1 uses transitive reachability fratiead to require the queue tail is reachable from
the queue head—thus the queue is always connected (exdsitadail element is guaran-
teed by requirement P5). Formula P2 uses the (program)docptedicatest[e;s](t) in
order to check the requirement only at the end of an insedpmration, when it is mean-
ingful to check it. In this formula, we treat the local variebode as a field of the thread
object. Formula P3 similarly uses the location predie@ié,o)(¢) to bind the requirement
with the end of a deletion operation. Formula P4 requiretttiee is no queue elememt
such that it precedes the head of the queue. Finally, forRblansures that a tail element
exists.

7.2.3 Abstraction

Example7.2.2. The abstract configuratiofy; shown in Fig. 16 is obtained by apply-
ing canonical abstraction to the concrete configuraﬂ@pof Fig. 15.
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rv[Tail]

. W[Headll I iv[next]

rv[this] rvinext

rv[this]

rv[this]

rv[node]

Fig. 17. A concrete configuratioﬁl“&1 that is embedded if';5 and violates queue con-
nectedness (property P1).

The summary thread node represents the two enqueueingshottine concrete config-
urationC’1h5, the summary unsigned integer node (double-line circla giitaight margins)
summarizes all unsigned integers but zero, the third supwmade summarizes all queue
items, and the queue object itself.

Note that this abstract configuration represents an infimit@ber of configurations.
For example, it represents any configuration in which antrartyi number of enqueuing
threads have just allocated new nodes to be enqueued, astubaireg the same queue with
an arbitrary number of dequeueing threads that are at thigalilabels.

Unfortunately, this abstract configuration also represtvg concrete configurati«ﬁf‘fg,,1
which violates the connectedness property (P1), meaniaigvile fail to verify that P1
holds. Indeed, since each subformulae of P1’s body evaltaie2 over the abstract con-
figurationC5, using Kleene evaluation of boolean operators yields theevig/2 for P1.

In the next section, we will describe a way to remedy that.

7.3 Refining the Vanilla Solution

In order to verify the desired properties, in this sectionrefine the abstraction to record
essential information. A natural way to do that would be toord which property for-
mulae hold using nullary predicates. This is a useful teghaj also known as predicate
abstraction [Graf and Saidi 1997VLA/3VMC also allows to use unary predicates in order
to observe whether subformulae hold for a given individddlis allowsTVLA/3VMC to
provide useful results without changing the set of pre@isédr each program. We believe
the same distinctions can be used for many programs, arttefunbre, these distinctions
correspond to fundamental properties of data-structwrgs, (sharing, reachability). This
paper confirms this by showing that the standard set of dt#ins suffices for verifying
all the desired properties of the concurrent queue algosth

Technically, refining the abstraction is achieved by intrcidg the unary predicates of
Table VIII. The additional information recorded refines #iestraction and reduces the set
of concrete configurations that are represented by an abstrafiguration.

In principle, some instrumentation predicates could bezddrautomatically (e.g., [Sha-
ham et al. 2003]), however, for this case study we just usetdnedardrvVLA/3VMC in-
strumentation predicates.

Predicatest[fid, next](t, 0) allow us to track reachability information of items inside
the queue. For example, the instrumentation predicd#cad, next|(v) may be used
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b
ClS
r_by[node]
r_by[next]
rv[this] rt{Head,n]
r_by[Tail]
rt[Tail,n]
rv[this] . \
rv[Head] rv_[n'exf] L ’
ri{Head,n] 7\  rvinextj rt[Head,n] suee
r_by[Head] r_by[next] Vi .
zero
. i_by[Head] .suee,
iv[next] i_by[Tail]
iv[Tail] i_by[next]
~—
Cis

Fig. 18. Concrete configuraticﬁi’f8 using instrumentation predicates, and its canonical attstn C 5.

| Predicate | Intended Meaning | Defining Formula
r by f1d](1) lis referenced by the fieldld Fo.rv[fld](o,1)
of some object
1-by[fld](n) n is the integer value ofid of some object Jo.iv[fid](o,n)
is[fld](o o is shared byfid of two Fuy, va.meq(vy, v2) A rv[fld] (v, 0)
different objects Arv[fld](ve, 0)
exists|[fld](o) | there exists an object referenced For.rv[fld](o,v1)
by fld of o
is_acquired(l) | lis acquired by some thread Jt.held by(l,t)
rt[fld, next](o) | o is reachable from object referenced 3t, op.rv[fld](t, 0r)
by field f1d using path of next fields A rv[next]* (o, 0)
Table VIII. Instrumentation predicates used in our exanppdgram.

to track reachability of items from the head of the queue@sipath ofnextreferences.
These predicates are an adaptation for multi-threadedg@mgof the reachability instru-
mentation predicates presented in [Sagiv et al. 2002]. I&ilyi predicatess|fid](o) are
an adaptation of sharing predicates of [Sagiv et al. 2008 firedicatess_acquired(l)
andr_by[f1d](l) were discussed in Section 4.3. Since these predicatesiratmely-used
fundamental propertiesf data-structures and thread/lock relationships, theyart of the
standard predicates usedTi\LA/3VMC .

Once a collection of instrumentation predicates is definedhave to specify how these
predicates are updated by program actions. Update fornfdlee instrumentation pred-
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Program | Description | Configs |
nbgenqueue | unbounded number of enqueue-ing thre4ads 1833
nbgdequeue | unbounded number of dequeue-ing threads 1098

nonblockgerrl | err - negated condition at €8 36
nonblockquni | err - start with uninitialized queue 17
tlg_enqueue unbounded number of enqueueing thrads 982
tlg_dequeue unbounded number of dequeuing threads 225
twolockgn single producer and single consumer 975
twolockgerrl | err - broken producer synchronization 24

Table IX. Number of configurations explored by analysis &f thueue algorithms.

icates used in this case study were supplied manually deekmical limitations of auto-
matic derivation using finite differencing [Reps et al. 2D03

Subformulae of the safety properties are replaced with ¢ineesponding instrumenta-
tion predicate to improve precision.

Example7.3.1. Fig. 18 shows the concrete configura&(fg which is an instrumented
version 0f055, and its canonical abstractidrls. The additional information recorded
by the instrumentation predicates H ead, next|(v) andrt[Tail, next|(v) allows us to
observe that queue connectedness (property P1) is maidtiaithe abstract configuration
(15 since P1 evaluates fo Moreover, this implies that concrete configurations offtren
of 055_’1 are no longer represented.

7.4 Experimental Results

Our prototype implementation operates directly on abstanfigurations usingbstract
transformers thereby obtaining actions which are more conservativa tha ones ob-
tained by the best transformers. Our experience showshbahstract transformers used
in the implementation are still precise enough to allowfigation of our safety properties.

Table IX presents the analysis results for variations oftthrecurrent queue algorithms.
All analyses terminated in less tharours.

For the non-blocking queue, we have also tested a versiorhiohwthe conditional in
label eg is flipped, i.e, it checks for the next field being non-equahtdl. As another
erroneous version, we have used an uninitialized queue iohwio dummy node was
present. Our prototype reported errors in both cases.

For the two-lock queue, we have also tested a version in wiichynchronization is
imposed on producer threads inserting items into the quieudis version, we show that
it is possible for requirement 1 to be violated, and the ulydwey linked-list to be broken.

Limitations Since our tool does not apply any partial-order reductiand does not
attempt to decrease the level of interleaving, it is culyelinited to small concurrent
programs or to ones that are well-synchronized. This is dubd worst-case complexity
of our algorithm which is doubly exponential in the numbetadfels.

In addition, TVLA/3VMC does not yet benefit from the latest (experimental) improve-
ments implemented imVLA [Bogudlov et al. 2007].

A fundamental question in program analysis is how to prettiietprecision of a given
analysis on a given program. In principle, this is a hard gaesIn our setting, we note
that the abstraction ofVLA/3VMC incurs a significant loss of precision when the safety
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class Container {
public int counter;

}

class Job extends Thread {
Cont ai ner objref;
public Job incr () {
synchroni zed(objref) {
objref.counter = objref.counter + 1;

return this;

public void setref(Container o) {
objref = o;

public void run() {
for (53) {

incr();

}
}

class Apprentice {
public static void main(String[] args) {

gl .1: Cont a! r]er contai ner = new Cont ai ner (); [z, successon
for (1) { Zero
Job job = new Job();

job. setref(container);
job.start(); . successor

at[gl_1]
isthread
ready

. successor

(a) Apprentice Challenge Source. (b) Initial configuration
Fig. 19. Source code and initial abstract configurationtierApprentice Challenge.

of the verified program depends on arbitrary arithmetic apens on integer variables. It
is possible to address this loss of precision by integratintgheap abstraction with a more
powerful numerical abstraction (e.g., [Gopan et al. 2005])

8. SOLVING THE APPRENTICE CHALLENGE

In this section, we describe how our framework is appliedsfaving a Java verification
challenge known as the Apprentice Challenge.

8.1 Problem Statement

The apprentice challenge was presented by Moore [Moore artdf2002] as a challenge
in verification of Java programs. The challenge is to showtt@value of theount er
variable of theCont ai ner class in Fig. 19(a) increases monotonically (under all ipbess
schedules).

8.2 Solution

Our solution of the apprentice challenge does not assuma prigri bound on the number
of Job threads or on the value of theount er field. This should be contrasted with
previous attempts to solve a simplified bounded version efpitoblem (i.e., the “finite
Apprentice”).

ACM Transactions on Programming Languages and Systems3®pNo. 5, May 2010



36 . E. Yahav and M. Sagiv

In our solution, we use the predicates described earlieei& 3 and Section 7.3. The
model used here could be easily extended to handle the ovesflmteger variables (by
introducing a special terminating node in the represeriaif integers). For simplicity, we
do not introduce such terminating node and assume thatrg@gay increase infinitely.

The initial configuration for the apprentice challenge iswh in Fig. 19(b). In this
configuration, there is a single thread node, corresponidirije main program thread.
This thread is at the initial labg]l ;, and is ready to be scheduled. The other nodes in
the configuration represent integer values: one node repieshe value zero, and the
summary node summarizes the rest of the integer values.

In order to show that the counter increases monotonicaliynwodel records the value
of thecount er variable on entry té ncr () . Technically, this can be thought of as using
a two-vocabulary structure (see e.g., [Jeannet et al. 2004]

8.3 Results

We appliedTVLA/3VMC to verify that the original Apprentice program satisfies ¢gjoal
property. Verification producetl757 configurations and took approximatel§0 seconds
and2.46 MB of memory.

The techniques used in [Moore and Porter 2002] are diffeiert what we use here,
and they also use a different machine setup for experim&htsefore a direct comparison
of the running times is not appropriate. However, at leasttics example program, we
believe that our approach requires less human effort andrfeeamputation resources.

We have also applietvLA/3VMC to find errors in an erroneous version of the Appren-
tice program in which no synchronization was usedlby threads while performing the
i ncr () operation. In this analysis, an error was detected aftemaqpately720 seconds,
processin@066 configurations and taking3.8 MB of memory.

Unlike the ACL2 solution for the apprentice challenge [Me@nd Porter 2002], our
approach is based on a conservative abstraction of theetentava semantics. Generally,
this means that we might produce false alarms even when agyogoes hold for the
verified program. However, for the Apprentice challenge,are able to verify the goal
property with no false alarms.

9. RELATED WORK

In this section, we provide a brief survey of closely relateatk from the areas of shape
analysis and model checking.

Shape Analysis of Concurrent Programs

Shape analysis has been an active research topic for3oweears. Here, we focus our
discussion on shape analysis specifically aimed at conupregrams, and do not dis-
cuss the large volume of work on shape analysis for sequ@ntigrams (e.g., [Jones and
Muchnick 1981; 1982; Chase et al. 1990; Sagiv et al. 1998;lévi@nd Schwartzbach
2001; Balaban et al. 2005; Berdine et al. 2005; Distefand. @086; Berdine et al. 2007;
Zee et al. 2008; Yang et al. 2008; Calcagno et al. 2009]). €hdear is referred to [Sagiv
et al. 2002; Reps et al. 2004] and [Rinetzky 2008] for disicusef work related to shape
analysis of sequential programs.

Thread-Modular analysesThe thread-modular approach of Flanagan et al. [2002] per-
forms assume-guarantee (modular) verification for mblteadded programs. In principle,
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this modular approach can scale well, as it verifies one the¢a time. However, the
approach relies on user-specified environment assumghanmay be challenging to ob-
tain. Combining our approach with a heterogenous absbratikie the ones in [Yahav and
Ramalingam 2004] may provide an automated means for congpativironment invari-

ants.

Leino and Muller [2009] present an approach for modulaifieation of concurrent
object-based programs that is based on dynamic frames actibfral permissions. The
basic idea is similar to [Bornat et al. 2005; O’Hearn 200€g(below), but is specialized
to object-based programs, and uses verification conditiofisst-order logic rather than
separation logic.

Analyses based o#rvalued logic. Our work provides the basis for concurrent shape
analysis using th-valued logic framework of Sagiv et al. [2002].

In [Amit et al. 2007], the abstractions and tools presentetthis paper are extended to
verify linearizability [Herlihy and Wing 1990], a main cattness condition of concurrent
data structures, for a fixed number of threads.

In [Berdine et al. 2008; Manevich et al. 2008], thread quaaiion and heap decompo-
sition are used to analyze programs with an unbounded nuaofltlereads. Thread quan-
tification adds an extra level of universal quantificatioeit@ble analyzing programs with
an unbounded number of threads and heap decompositionddaabstract away unnec-
essary correlations between resource invariants andtluesld states to obtain scalability.
These techniques help the analysis scale and enable tlieatesn of linearizability with
an unbounded number of threads in challenging programs.

Separation-logic based analyseSeparation logic [Ishtiag and O’Hearn 2001; Reynolds
2002] has been used as a basis for concurrent shape analysis.

Concurrent separation logic [O’Hearn 2007] allows to mdlyugerify race-free heap-
manipulating programs by associating a resource invawihtevery thread-shared sub-
heap. It uses the insight that parts of shared memory are pfieected by locks that
guarantee mutual exclusion. When a thread obtains thegbirgelock of a subheap, it
owns the subheap, and other threads cannot access it (s@imaments of this idea to
allow concurrent reads have been investigated e.g., usaatidnal permissions [Bornat
et al. 2005]).

Gotsman et al. [2007], employ the idea of associating shegsdurces with invariants
to present a thread-modular shape analysis that leverages o partition the heap into
a (bounded) number of subheaps. Their approach requiresrsspscified association
between subheaps and the locks that protect them to parttiiteoheap, and computes the
resource invariants using a reachability-based heuristic

Vafeiadis [2009] presents a “value abstraction” that essathe symbolic shape analysis
of Distefano et al. [2006] by recording correlations betwegual values. This abstrac-
tion is used in a static analyzer based on RGSep [Vafeiadi8]20 automatically verify
linearizability of challenging fine-grained concurrerg@iithms.

Allocation-site based analyse&orbett [2000] uses a simple shape analysis of concur-
rent Java programs to reduce their finite-state models. ignathalysis, the number of
threads is bounded. The algorithm presented is based os¢Gaal. 1990], which uses
a singleshape graptfor each program location, and uses an abstraction whialslea
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overly imprecise results (e.g., in programs that traveeda structures based on allocation
sites).

There is a wide variety of approaches for static race detede.g., [Sterling 1993;
Flanagan and Abadi 1999; Flanagan and Freund 2000; BoyapatRinard 2001; Choi
et al. 2001; Boyapati et al. 2002; Engler and Ashcraft 2008n&gan and Freund 2004;
Henzinger et al. 2004; Naik et al. 2006; Pratikakis et al.&®0anagan et al. 2008]). Most
of these approaches are based on allocation-site baseddaiiost of the heap. Broadly
speaking, our approach does not scale as well as these appspdut is able to verify
more subtle cases of non-interference by using a finer atistneof the heap.

Under ApproximationsLal and Reps [2008] present an approach for reducing con-
current analysis under a context bound to sequential asalysahiri et al. [2009] use
context-bounded analysis of concurrent programs based @M solver to automati-
cally detect errors in C programs. Their transformatiomfi@ concurrent program with a
fixed context-bound into a sequential program is based otrdhslation of Lal and Reps
[2008]. Their approach is fully automatic, and can handletzsst of C. Additional details
about this line of work can be found in [Lahiri and Qadeer 2088 et al. 2009].

Model Checking

Many approaches were proposed to handle model checkingoofumtled data structures.
Traditional approaches consist of manually abstractimgdéata-structure into a simple
finite state machine representing the states of the datatste that are relevant to the
verification problem (e.g., [Strom 1983; Strom and Yemin8&p. As a second phase,
these works use one of the numerous approaches for modekingeoncurrentfinite-state
programs (e.g., [Cook et al. 2005]), performing variousrfeiof bounded model-checking
(e.g., [Qadeer and Rehof 2005; Ganai and Gupta 2008]), and psedicate abstraction
(e.g., [Das et al. 1999]).

In our framework, rather than having separate model-etitra@nd model checking
phases, we follow the abstract-interpretation approactu$ct and Cousot 1977] and cast
our analysis in a syntax-directed manner. Other approaceea combination of theorem-
proving and model checking techniques to automaticallystroiet such abstractions [Ab-
dulla et al. 1999; Bensalem et al. 2000; Bensalem et al. 1998]

In the following, we briefly discuss some closely related kvitrat addresses Java pro-
grams or employs some sort of abstraction.

Predicate-abstraction based model checki@arke et al. [2006; 2008] present a frame-
work that extends predicate abstraction with ideas fommnter abstractiofiPnueli et al.
2002], counting the number of threads that are in every [(Jatate of a process, similar to
the way in which we abstract threads. We believe that ouradtgin is more natural for
expressing heap properties and interactions betweendheral the heap (see discussion
in [Manevich et al. 2005]).

Das, Dill, and Park [1999] use predicate abstraction tofyéhie properties of a cache
coherence algorithm and a concurrent garbage-collectgmrithm. The garbage collec-
tion algorithm was verified in the presence of a single mutdteead executing concur-
rently with the collector.

Saidi [2000] presents new abstraction predicates but doekave the notion of sum-
mary nodes. Thus, it cannot handle programs with an unbaelndmber of allocated
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objects. Moreover, our framework presents a model checkiggrithm that recognizes
abstraction as suggested there.

Bounded model checkingavaPathFinder [Havelund and Pressburger 2000] and Jaiva2S
[Demartini et al. 1999a] translate Java source code to PROMiEpresentation. The
SPIN model-checker [Holzmann 1995] is then used to veri§pprties of the PROMELA
program. Both these tools put a bound on the number of aéldaabjects since it is im-
posed by SPIN. A variant of SPIN named dSPIN [Demartini e¢@99b] supports dynamic
allocation of objects. However, since it uses no abstragiiocan only handle bounded
data-structures and a bounded number of threads. Vechey22@09] use SPIN for model
checking linearizability of concurrent data structurelarie et al. [1997] present a method
for the verification of parametric families of systems. Awetk grammar is used to con-
struct a process invariant that simulates all systems ifath@y. However, it cannot handle
dynamic allocation of objects.

JavaFan [Farzan et al. 2004] is a framework for analyzingithtgaded Java programs
based on the Maude rewriting system [Clavel et al. 2002pp®rts symbolic simulation
of concurrent programs and bounded model checking. Howi¢daes not use abstraction
and cannot be used for verifying programs with an unbountid space.

Stoller [2000] presents a framework for model checkingritisted Java programs. This
framework uses partial-order methods to reduce the sizeeaéxplored state-space. How-
ever, it uses no abstraction and thus can only handle bowdadadtructures and a bounded
number of threads. We intend to use similar partial-ordehods in future versions of our
framework.

10. CONCLUSION AND FUTURE WORK

We have presented a parametric framework for verifyingtggieoperties of concurrent
heap-manipulating programs. Our framework is a genet#izaf existing model-checking
techniques. The framework allows verification of multitaed programs manipulating
heap-allocated objects, and does not put a bound on the mariléocated objects.

Our framework combines thread scheduling information afmrmation about the shape
of the heap. This leads to error-detection algorithms thataore precise than existing
techniques. Using these techniques, we were able to autaihaverify non-trivial prop-
erties of heap-manipulating programs that have not beemaatically verified in the past.

In the future, we intend to explofartial order reductiontechniques such as [Valmari
1991; Godefroid 1996; Flanagan and Godefroid 2005; Guesh €007] in order to im-
prove scalability of our analysis.
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A. 2 AND 3-VALUED FOT¢

In this appendix, we give a brief summary2dind3 valuedFO”“ . The material presented
here is fairly standard and included only for completenégsesentation.

A.1 Syntax
Formally, the syntax of first-order formulae with transitiglosure is defined as follows:

DEFINITION A.1. A formula over thevocabulary P = {eq,p1,...,pn} is defined
inductively, as follows:

Atomic Formulae. Théogical literals 0 and 1 are atomic formulae with no free vari-
ables.

For every predicate symbel € P of arity k, p(v1, ..., v) is an atomic formula with
free variables{vy, ..., v, }.

Logical Connectives. Ip; andy- are formulae whose sets of free variables Breand
V4, respectively, thefipr A p2), (v1 V p2), and(—y1) are formulae with free variables
ViU Vs, Vi U Va, and Vi, respectively.

Quantifiers. Ifp; is a formula with free variable$v;, vo, . . ., v }, then(3v; : p1) and
(Vu1 : q) are both formulae with free variabl€s., vs, ..., vy }.

Transitive Closure. lfp; is a formula with free variable¥” such thats, v, ¢ V, then
(T'C vy : v2)(p1)v3vy is a formula with free variable6l \ {v1,v2}) U {vs, v4}.

A formula isclosedwhen it has no free variables.

A.2 2-valued Interpretation

In this section, we define the{alued) semantics for first-order logic with transitivel
sure in the standard way.

DEFINITION A.2. A2-valued interpretation of the language of formulae ovéris a
2-valued logical structure S = (U*, %), whereU? is a set ofindividuals and:® maps
each predicate symbplof arity  to a truth-valued function:

Ls(p): (Us)k —{0,1}.

An assignmentZ is a function that maps free variables to individuals (iam,assign-
ment has the functionalit§ : {vy,vs,...} — U?). An assignment that is defined on all
free variables of a formule is calledcompletefor ¢. In the sequel, we assume that every
assignmeng that arises in connection with the discussion of some faarmpus complete
for .

The (2-valued) meaningof a formulay, denoted byj]5 (Z), yields a truth value in
{0,1}. The meaning af is defined inductively as follows:

Atomic Formulae. For an atomic formula consisting of a ladititeral I € {0,1},
[115(Z) =1 (wherel € {0,1}).
For an atomic formula of the form(vy, . .., vx),
[[p(vlv e 7Uk)]]§(Z) = Ls(p)(Z(Ul)’ R Z(Uk))
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Logical Connectives. Whenis a formula built from subformulag; and s,
[pr A 02]3(2) = min([e1]3(2), [p2]5(2))
[prV 92]5(2) = max([1]5(2), [2]5(2))
[~0113(2) = 1~ [¢1]3(2)
Quantifiers. Whepp is a formula that has a quantifier as the outermost operator,
[vor : ¢1]5(2) = fgjns[[@l]]zs(z[vl = ul)
[Bor: @1]3(2) = £%§ﬂ¢1ﬂ5(2[01 = ul)

Transitive Closure. Wheg is a formula of the form{T'C' vy : v2)(p1)vsv4,

[(TC vy : v2)(p1)vsva]5 (Z) =

n

max min[[cpl]]g(Z[Ul > Ui, U2 > Wit1])
n>1lu,...,upy1 € U, =1
Z(v3) = u1, Z(va) = Uny1

We say thats and Z satisfy ¢ (denoted bys, Z |= ¢) if [¢]5(Z) = 1. We writeS |= ¢ if
for everyZ we haveS, Z E .

A.3 3-valued Interpretation

We now generalize Defn. A.2 to define the meaning of a formutla kespect to &-valued
structure.

DEFINITION A.3. A 3-valued interpretation of the language of formulae ovéris a
3-valued logical structure S = (U*, %), whereU* is a set of individuals and® maps
each predicate symbplof arity & to a truth-valued function:

B(p): (US* = {0,1,1/2}.

For an assignment, the(3-valued) meaningof a formulayp, denoted byy]5 (Z), now
yields a truth value i{0, 1,1/2}. The meaning o is defined inductively as in Defn. A.2.
We say that and Z potentially satisfy o, denoted bys, Z |=3 o, if [p]5(Z) = 1/2 or

[¢]5(Z) = 1. We writeS |=3 ¢ if for everyZ we haveS, Z |=3 ¢.
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