
Electronic Notes in Theoretical Computer Science 89 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 14 pages

Automatically Verifying Concurrent Queue
Algorithms

Eran Yahav Mooly Sagiv

School of Computer Science,
Tel-Aviv University, Tel-Aviv, Israel
{yahave,msagiv}@post.tau.ac.il

Abstract

Concurrent FIFO queues are a common component of concurrent systems. Using a
single shared lock to prevent concurrent manipulations of queue contents reduces system
concurrency. Therefore, many algorithms were suggested to increase concurrency while
maintaining the correctness of queue manipulations. This paper shows how to automati-
cally verify partial correctness of concurrent FIFO queue algorithms using existing abstract
interpretation techniques. In particular, we verify all the safety properties originally speci-
fied for two concurrent queue algorithms without imposing an a priori bound on the number
of allocated objects and threads.

1 Introduction

Concurrent FIFO queues are widely used in concurrent systems. Queues are used in
scheduling mechanisms, and as a basis of many concurrent algorithms. Concurrent
manipulation of a shared queue requires synchronization to guarantee consistent re-
sults. An ill synchronized concurrent queue may be subject to read-write conflicts,
write-write conflicts, or both.

Many algorithms were suggested to increase concurrency while maintaining the
correctness of queue manipulations [9,15,10,18,14]. The algorithms in [9,15,10,14]
are given without a formal proof of correctness, and [18] provides a manual formal
proof.

In this paper, we show how the TVLA/3VMC framework can be applied to
automatically verify partial correctness of non-trivial concurrent queue algorithms.
We focus on the non-blocking queue and two-lock queue algorithms presented in
[9]. A Java-like code for the queue implementations is given in Fig.1. To emu-
late the intention of [9], our programming model diverges from Java by assuming
sequentially consistent memory model and supporting a free operation.

One of the attractive features of TVLA/3VMC is that it provides an expressive
formalism for expressing concrete semantics, and includes automatic features for

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume89.html


Yahav and Sagiv

deriving finite abstract representations. This framework is conservative, however,
it may and sometimes does fail to verify a property although the property holds on
all execution paths of the program. Therefore, it is not clear that applying such a
method to the concurrent queue algorithms will produce useful results.

The imprecision in TVLA/3VMC occurs due to the fact that the system ab-
stracts many of the dynamically allocated objects and threads into a single summary
representation. While this often results with a loss of precision, when we succeed,
the property is guaranteed to hold for the program with any number of allocated
objects and threads. Furthermore, even when the number of allocated threads is
bounded, verifying the abstracted version may mitigate the state explosion prob-
lem when the bound on the number of threads is large.

It is worth noting that the fact that the formalism of TVLA/3VMC supports
general first-order logic, as opposed to propositional logic used in model-checking,
allows one to naturally define the behavior of heap-manipulating programs.

Main Contributions This is a case study showing how the TLVA/3VMC sys-
tem of [20,12] is used to verify properties of the non-trivial concurrent queue algo-
rithms presented in [9].

Related Work Das, Dill, and Park [5] have used predicate abstraction to verify
the properties of a cache coherence algorithm and a concurrent garbage-collection
algorithm. The garbage collection algorithm was verified in the presence of a single
mutator thread executing concurrently with the collector.

Many approaches were proposed to handle verification of unbounded data struc-
tures. Traditional approaches consist of manually abstracting the data-structure into
a simple finite state machine representing the states of the data-structure that are rel-
evant to the verification problem (e.g., [16,17]). Other, more recent approaches, use
a combination of theorem-proving and model-checking techniques to automatically
construct such abstractions [1,2,3].

This case-study differs from our previous work in [20] in three aspects: (i) we
verify all the safety properties for the non-blocking queue and two-lock queue;
(ii) verification is performed on a model of the original program; (iii) we only use
standard refinement of the abstraction (instrumentation predicates such as sharing
and reachability) and not hand-crafted abstraction for the specific programs.

Limitations Since our tool does not apply any partial-order reductions and does
not attempt to decrease the level of interleaving, it is currently limited to small
concurrent programs or to ones that are well-synchronized. This is due to the worst-
case complexity of our algorithm which is doubly exponential in the number of
labels.

A fundamental question in program analysis is how to predict the precision of
a given analysis on a given program. In principle, this is a hard question, we note
that the abstraction in TVLA/3VMC significantly loses information when arbitrary
arithmetic operations on integer variables are performed which affect the safety of
the algorithm.

2



Yahav and Sagiv

2 Concurrent Queue Algorithms

In this section, we present the concurrent queue algorithms and the correctness
properties we will verify for these algorithms.

2.1 Non-Blocking Queue

Java-like pseudo-code for the non-blocking queue algorithm is shown in Fig.1(a).
The queue uses an underlying singly-linked list which is pointed by two reference
variables — Head and Tail, pointing to the head and tail of the queue correspond-
ingly. The list always contains a dummy item at its head to avoid degenerate cases.

The algorithm is based on iterated attempts of a thread to perform a queue op-
eration without being interrupted by other threads. A thread operates on shared-
variables only using the compare-and-swap (CAS) primitive which allows it to
atomically observe possible updates by other threads and apply its own update
when the value of the shared variable was not updated by other threads.

The CAS primitive takes 3 arguments — an address, an expected value, and a
new value, it then atomically compares the address to the expected value, and if the
values are equal updates the address to contain the new value. If the address value
is not equal to the expected value, no update is applied.

CAS-based algorithms may suffer from the “ABA” problem [9] in which a se-
quence of read-modify-CAS results with a swap when it shouldn’t. This happens
when a threadt1 reads a value A of a shared variable, computes a new value and pre-
forms a CAS. Meanwhile, another threadt2 changes the value of the shared variable
from A to B and back to A. In order to avoid this problem, each reference variable
is augmented with a modification counter and shared references are only updated
through the CAS primitive which increments the value of the modification counter.
This could have been modeled in Java by adding a wrapper class which contains
a reference and an unsigned integer counter. To simplify the exposition of our fig-
ures, we have added a primitive type that consists of a reference-valueref and
an integer valuecount for the modification counter. All reference operations that
use only the reference name apply to both components, for example, the assignment
at labele5 assigns the values ofthis.Tail.ref andthis.Tail.count to
tail.ref and tail.count correspondingly. When we specifically update a
single component of the reference variable, we state that explicitly as at labeld6

which performs a comparison of theref component of two reference variables.

2.2 Two-Lock Queue

Fig. 1(b) shows a Java-like code for the two-lock queue algorithm. This algorithm
also uses an underlying linked-list, and uses a dummy item at the list head to sim-
plify special cases. The algorithm uses a separate head lock and tail lock to separate
synchronization of enqueueing and dequeueing threads.

3



Yahav and Sagiv

// Non Blocking Queue
class NonBlockingQueue {

private QueueItem Head;
private QueueItem Tail;
...

public NonBlockingQueue() {
node = new QueueItem()
node.next.ref = NULL
this.Head = this.Tail = node

}

public void enqueue(Object value) {
e1 node = new QueueItem(value);
e2 node.value = value;
e3 node.next.ref = NULL;
e4 while(true) { //Keep trying until done
e5 tail = this.Tail;
e6 next = tail.ref.next;
e7 if (tail == this.Tail) {
e8 if (next.ref == NULL) {
e9 if CAS(tail.ref.next, next,

<node, next.count+1>); {
e10 break // enqueue done
e11 }
e12 } else {
e13 CAS(this.Tail, tail,

<next.ref, tail.count+1>);
e14 }
e15 }
e16 }
e17 CAS(this.Tail, tail,

<node, tail.count+1>);
e18 }

public Object dequeue() {
Object result = null;

d1 while(true) {
d2 head = this.Head;
d3 tail = this.Tail;
d4 next = head.next;
d5 if (head == this.Head) {
d6 if (head.ref == tail.ref) {
d7 if (next.ref == NULL) {//is empty?
d8 return result;
d9 }
d10 CAS(this.Tail, tail,

<next.ref, tail.count+1>);
d11 } else { //No need to deal with Tail
d12 result = next.ref.value;
d13 if CAS(this.Head, head,

<next.ref, head.count+1>); {
d14 break; // dequeue done
d15 }
d16 }
d17 }
d18 }
d19 free (head.ref);
d20 return result;
d21 }

(a)

// TwoLockQueue.java
class TwoLockQueue {

private QueueItem head;
private QueueItem tail;
private Object headLock;
private Object tailLock;
...

public TwoLockQueue() {
node = new QueueItem();
node.next = null;
this.head = this.hail = node;

}

public void enqueue(Object value) {
lp1 QueueItem x i =

new QueueItem(value);
lp2 synchronize(tailLock) {
lp3 tail.next = x i;
lp4 tail = x i;
lp5 }
lp6 }

public Object dequeue() {
Object x d;

lt1 synchronized(headLock) {
lt2 QueueItem node = this.head;
lt3 QueueItem new head =

this.head.next;
lt4 if (new head != null) {
lt5 x d = new head.value;
lt6 new head = first;
lt7 new head.value = null;
lt8 free (node);

}
lt9 }
lt10 return x d;
lt11 }
}

(b)

// QueueItem.java
class QueueItem {

public QueueItem next;
public Object value;
...

}

(c)

Fig. 1. Java-like pseudo-code for (a) non-blocking queue, (b) two-lock queue, (c)
queue-item.

4



Yahav and Sagiv

2.3 Correctness of Algorithms

The correctness of the queue algorithms in [9] is established by an informal proof.
Safety of the algorithm is shown by induction, proving that the following properties
are satisfied by the algorithm:

P1 The linked list is always connected.

P2 Nodes are only inserted after the last node of the linked list.

P3 Nodes are only deleted from the beginning of the linked list.

P4 Headalways points to the first node in the linked list.

P5 Tail always points to a node in the linked list.

In the following sections, we formally state these claims, and automatically
verify them using TVLA/3VMC.

3 Vanilla Verification Attempt

In this section, we describe the basic steps required to verify the concurrent queue
algorithms using TVLA/3VMC.

3.1 Representing Program Configurations using First-Order Logical Structures

First-order logical structures provide a natural formalism for representing the global
state of a heap-manipulating program — individuals of the first-order structure cor-
respond to heap-allocated objects, properties of objects are represented using unary
predicates, and relationships between objects using binary predicates. It is also
possible to use first-order logical structures to model non heap-allocated objects, as
well as enforce a typing mechanism on objects by using a unary predicateis T (v)
to denote objects of typeT .

Below, we show how this is done for the concurrent queue algorithms.
A program configurationencodes a program’s global state, which consists of:

(i) a global store, (ii) the program-location of every thread, and (iii) the status of
locks and threads, e.g., if a thread is holding a lock. For every analyzed program, we
assume that there is a set of predicate symbolsP , each with fixed arity. Formally,
aprogram configurationis a2-valued logical structureC\ = 〈U \, ι\〉, where

• U \ is the potentially infinite universe of individuals. Each individual inU \ rep-
resents a heap-allocated object (some of which may represent the threads of the
program, and the configuration may also contain an infinite number of individu-
als representing the unsigned integers).

• ι\ is the interpretation function mapping predicates to their truth-value in the
structure, i.e., for every predicatep ∈ P of arity k, ι\(p) : U \k → {0, 1}.
In this paper, we use thenatural symbol (\) to denote entities of the concrete

domain.

5



Yahav and Sagiv

Predicates Intended Meaning
eq(v1, v2) v1 equals tov2

is T (v) v is an object of typeT

{rv[fld](o1, o2) : fld ∈ Fields} field fld of the objecto1 points to the objecto2

{iv[fld](o1, o2) : fld ∈ Fields} integer value of fieldfld of the objecto1 is o2

{at[lab](t) : lab ∈ Labels} threadt is at labellab

heldBy(l, t) the lockl is held by the threadt
blocked(t, l) the threadt is blocked on the lockl

zero(n) the individualn represents zero
succ(n1, n2) n2 is the successor ofn1

Table 1
Predicates for the semantics of a Java fragment.

Fig. 2. A concrete configurationC\
2 with two enqueueing and one dequeueing threads.

Usually, not all logical structures represent valid program configurations, there-
fore TVLA/3VMC allows the programmer to introduce integrity constraints speci-
fied asFOTC (first order-logic with transitive closure) formulae [12]. The integrity
constraints for integers are simply the Peano axioms encoded usingFOTC formu-
lae.

Table1 presents some of the predicates used to analyze the example programs.
Predicates in the table are written in a generic way and can be applied to analyze
different Java programs by modifying the set of labels and fields.

The non-blocking queue algorithm uses unsigned integer values as reference
time-stamps. To allow fields of integer values we introduce objects of type unsigned-
integer, and a binary predicateiv[fld](v1, v2) that represents the integer value of a
field by relating an objectv1 to an individual representing an integer valuev2.

It is also possible to support arbitrary arithmetic operations on integers, how-
ever, the abstraction presented in Sec.4 is not precise enough to provide useful
results when the verified property depends on the result of such operations.

In this paper, program configurations are depicted as directed graphs. Each indi-
vidual of the universe is displayed as a node — objects of type thread are presented
as hexagon nodes, objects representing unsigned integers are presented as circles
with straight margins, round nodes represent objects of other types which are not

6



Yahav and Sagiv

Property Property Formula
P1 tail reachable ∀q : nbq, vt.rv[Tail](q, vt)

from head → ∃vh.rv[Head](q, vh) ∧ rv[next]∗(vh, vt)

P2 insert after ∀q : nbq, ti : thread, vi, vt.at[e18](ti) ∧ rv[node](ti, vi) ∧ rv[tail](ti, vt)

last ∧rv[this](ti, q) → rv[next](vt, vi) ∧ rv[Tail](q, vi)

P3 delete first ∀q : nbq, td : thread, vd, vh.at[d19](td) ∧ rv[head](td, vd)

∧rv[this](td, q) ∧ rv[Head](q, vh) → rv[next](vd, vh)

P4 head first ¬∃q : nbq, v, u.rv[Head](q, v) ∧ rv[next](u, v)

P5 tail exists ∀q : nbq.∃v.rv[Tail](q, v)

Table 2
Safety properties for non-blocking queue algorithm.

distinguished for ease of presentation. The name of a unary predicate, which is not
a type predicate, which holds for an individual (node) is drawn inside the node. A
binary predicatep(u1, u2) which evaluates to1 is drawn as directed edge fromu1

to u2 labelled with the predicate symbol.

Example 3.1 The configurationC\
2 shown in Fig.2 corresponds to a global state

of the non-blocking queue program with3 threads: two enqueueing threads and a
single dequeueing thread. The two enqueueing threads are at labele2 and have just
allocated new nodes to be enqueued, each enqueueing thread refers to its node by
its node field.

All threads in the example use a single shared queue containing 4 items (in-
cluding the dummy item). The integer values of the fieldsHead andTail in this
configuration are both0. For brevity, predicateeq(v1, v2) is not shown.

TVLA/3VMC allows to define a small-step operational semantics. The mean-
ing of a program is defined as a transition-system, consisting of labels and actions.
Informally, an action consists of apreconditionunder which the action isenabled,
and a set of predicate-update formulae which determine the values of predicates
in successor configurations. Actions may also create or remove individuals of the
universe [20,12]. Supplemental information on actions is available from [19].

3.2 Safety

The first step in verifying the properties of Sec.2.3in TVLA/3VMC is to formulate
them inFOTC using the predicates defined in Table1. In Table2 these formulae
are given for the non-blocking queue algorithm. The formulation of these proper-
ties for the two-lock queue only differs in label names. For each property defined
informally in Sec.2.3, we provide a corresponding formula inFOTC .

In the table we use the shorthand notation∀v : type.ϕ , ∀v.is type(v) → ϕ.
For brevity, we also use the shorthandnbq to stand forNonBlockingQueue .

Formula P1 uses transitive reachability fromTail andHead to require that
each object that is reachable from the queue tail (including the tail node itself) is

7



Yahav and Sagiv

also reachable from the queue head – thus the queue is always connected. Note
that requirement P5 guarantees that a tail element always exists. Formula P2 uses
the (program) location predicateat[e18](t) in order to check the requirement only
at the end of an insertion operation, when it is meaningful. In this formula, we treat
the local variablenode as a field of the thread object. Formula P3 similarly uses
the location predicateat[d19](t) to bind the requirement with the end of a deletion
operation. Formula P4 simply requires that there is no queue elementu such that
it precedes the head of the queue. Finally, formula P5 requires that a tail element
exists.

3.3 Abstraction

In this section, we present a conservative abstract semantics [4] abstracting the
concrete semantics of Sec.3.1.

Abstract Configurations We conservatively represent multiple concrete pro-
gram configurations using a single logical structure with an extra truth-value1/2
which denotes values which may be1 and may be0. We allow an abstract con-
figuration to includesummary nodes, i.e., individuals that represent one or more
individuals in a represented concrete configuration. Technically, a summary node
u hasι(eq(u, u)) = 1/2.

Formally, anabstract configurationis a3-valued logical structureC = 〈U, ι〉
where:

• U is the potentially infinite universe of the3-valued structure. Each individual in
U represents possibly many objects.

• ι is the interpretation function mapping predicates to their truth-value in the
structure, i.e., for every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}.

Canonic Abstraction We now formally define how configurations are repre-
sented using abstract configurations. The idea is that each individual from the
(concrete) configuration is mapped into an individual in the abstract configuration.
More generally, it is possible to map individuals from an abstract configuration
into an individual in another less precise abstract configuration. The latter fact is
important for our abstract transformer.

Formally, letC = 〈U, ι〉 andC ′ = 〈U ′, ι′〉 be abstract configurations. A func-
tion f : U → U ′ such thatf is surjective is said toembedC into C ′ if for each
predicatep of arity k, and for eachu1, . . . , uk ∈ U one of the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f(u1), . . . , f(uk))) or ι′(p(f(u1), . . . , f(uk))) = 1/2

One way of creating an embedding functionf is by usingcanonic abstraction.
Canonic abstraction maps concrete individuals to an abstract individual based on
the values of the individuals’ unary predicates. All individuals having the same
values for unary predicate symbols are mapped byf to the same abstract individ-
ual. Canonic abstraction guarantees that the resulting abstract configuration is of

8



Yahav and Sagiv

Fig. 3. An abstract configurationC2 representing the concrete configurationC\
2 of Fig. 2.

Fig. 4. A concrete configurationC\
2,1 that is embedded inC2 and violates queue connect-

edness (property P1).

bounded size.
We use dashed-edges to draw1/2-valued binary predicates, and nodes with

double-line boundaries to represent summary nodes.

Example 3.2 The abstract configurationC2 shown in Fig.3 is obtained by apply-
ing canonic abstraction to the concrete configurationC\

2 of Fig. 2.
The summary thread-node represents the two enqueueing threads of the con-

crete configurationC\
2, the summary unsigned-integer node (double-line circle with

straight margins) summarizes all unsigned integers but zero, the third summary
node summarizes all queue items, and the queue object itself.

Note that this abstract configuration represents an infinite number of configura-
tions. For example, it represents any configuration in which an arbitrary number of
enqueuing threads have just allocated new nodes to be enqueued, and are sharing
the same queue with an arbitrary number of dequeueing threads that are at their
initial labels.

Unfortunately, this abstract configuration also represents the concrete configu-
rationC\

2,1 which violates the connectedness property (P1), meaning that we fail to
verify that P1 holds. Indeed, since each subformulae of P1’s body evaluates to1/2
over the abstract configurationC2, using Kleene evaluation of boolean operators
yields the value1/2 for P1. In the next section, we will see a way to remedy that.

9



Yahav and Sagiv

C\
5

C5

Fig. 5. Concrete configurationC\
5 using instrumentation predicates, and its canonic ab-

stractionC5.

4 Refining the Vanilla Solution

In order to verify the desired properties, in this section we refine the abstraction to
record essential information. A natural way to do that would be to record which
property-formulae hold using nullary predicates. This is a useful technique, also
known as predicate abstraction [7]. TVLA/3VMC allows to also use unary pred-
icates in order to observe whether subformulae hold for a given individual. This
allows TVLA/3VMC to provide useful results without changing the set of predi-
cates for each program. We believe that the same distinctions can be used for many
programs, furthermore, these distinctions correspond to fundamental properties of
data-structures (e.g., sharing, reachability). This paper confirms this by showing
that the standard set of distinctions suffices for verifying all the desired properties
for the concurrent queue algorithms.

Technically, refining the abstraction is achieved by introducing the unary pred-
icates of Table3. The additional information recorded refines the abstraction and
reduces the set of concrete configurations that are represented by an abstract con-
figuration.

We refer the reader to [12] for a more elaborate discussion of instrumentation
predicates.

In principle, some instrumentation predicates could be derived automatically
(e.g., [6]), however, for this case study we just use the standard TVLA/3VMC
instrumentation predicates.

Predicatesrt[fld, n](t, o) (we usen as a shorthand fornext in the predicate

10



Yahav and Sagiv

Predicate Intended Meaning Defining Formula

r by[fld](l) l is referenced by the fieldfld ∃o : rv[fld](o, l)

of some object
i by[fld](n) n is the integer value offld of some object ∃o : iv[fld](o, l)

is[fld](o) o is shared byfld of two ∃v1, v2.¬eq(v1, v2) ∧ rv[fld](v1, o)

different objects ∧rv[fld](v2, o)

exists[fld](o) there exists an object referenced ∃v1.rv[fld](o, v1)

by fld of o

is acquired(l) l is acquired by some thread ∃t : heldBy(l, t)

rt[fld, n](o) o is reachable from object referenced ∃t, ot : rv[fld](t, ot)

by fieldfld using path of next fields ∧ rv[next]∗(ot, o)

Table 3
Instrumentation predicates used in our example program.

name) allow us to track reachability information of items inside the queue. For
example, the instrumentation predicatert[Head, n](v) may be used to track reach-
ability of items from the head of the queue using a path ofnextreferences. These
predicates are an adaptation for multi-threaded programs of the reachability instru-
mentation predicates presented in [12]. Similarly, predicatesis[fld](o) are an adap-
tation of sharing predicates of [12]. The predicatesis acquired(l) andr by[fld](l)
were originally introduced in [20], and predicatesexists[fld](o) used there but not
explicitly mentioned in the paper. Since these predicates record widely-usedfun-
damental propertiesof data-structures and thread/lock relationships, they are part
of the standard predicates used in TVLA/3VMC.

Subformulae of the safety properties are replaced with the corresponding in-
strumentation predicate to improve precision.

Example 4.1 Fig. 5 shows the concrete configurationC\
5 which is an instrumented

version ofC\
2, and its canonic abstractionC5. The additional information recorded

by the instrumentation predicatesrt[Head, n](v) andrt[Tail, n](v) allows us to
observe that queue connectedness (property P1) is maintained in the abstract con-
figurationC5 since P1 evaluates to1. Moreover, this implies that concrete configu-
ration of the form ofC\

2,1 are no longer represented.

4.1 Abstract Semantics

Implementing an abstract semantics directly manipulating abstract configurations is
non-trivial since one has to consider all possible relations on the (possibly infinite)
set of represented concrete configurations.

The bestconservative effect of a program statement [4] is defined by the fol-
lowing 3-stage semantics: (i) a concretization of the abstract configuration is per-
formed, resulting in all possible configurationsrepresentedby the abstract config-
uration; (ii) the program statement is applied to each resulting concrete configura-
tion; (iii) abstraction of the resulting configurations is performed, resulting with a

11



Yahav and Sagiv

Program Configs Space Time Comments
(MB) (sec)

nbq enqueue 1833 14.2 727 unbounded number of enqueue-ing threads
nbq dequeue 1098 5.3 309 unbounded number of dequeue-ing threads
nonblockqerr1 36 0.1 11 err - negated condition at e8
nonblockquni 17 0.1 3 err - start with uninitialized queue
tlq enqueue 982 10 6162 unbounded number of enqueueing thrads
tlq dequeue 225 4.1 304 unbounded number of dequeuing threads
twolockqn 975 7.5 577 single producer and single consumer
twolockq err1 24 0.1 30 err - broken producer synchronization

Table 4
Analysis results for variations of the queue algorithms — number of configurations

explored, space requirements, and analysis time.

set of abstract configurationsrepresentingthe results of the program statement.

5 Prototype Implementation

Our prototype implementation operates directly on abstract configurations using
abstract transformers, thereby obtaining actions which are more conservative than
the ones obtained by the best transformers. Our experience shows that the abstract
transformers used in the implementation are still precise enough to allow verifica-
tion of our safety properties.

Update formulae for the instrumentation predicates used in this case study were
derived automatically using finite differencing [11].

Table 4 presents the analysis results for various variations of the concurrent
queue algorithms.

For the non-blocking queue, we have also tested a version in which the con-
ditional in labele8 is flipped, i.e, it checks for the next field being non-equal to
null. As another erroneous version, we have used an uninitialized queue in which
no dummy node was present. Both cases reported errors.

For the two-lock queue, we have also tested a version in which no synchroniza-
tion is imposed on producer threads inserting items into the queue. In this version,
we show that it is possible for requirement 1 to be violated, and the underlying
linked-list to be broken.

6 Conclusion

We believe the tool is mature enough to be applied to many other challenging ex-
amples at the same ease. Our recent experiments with a front-end translating Java
program to TVMs are encouraging with this respect.

12



Yahav and Sagiv

class Producer implements Runnable {
protected Queue q;
...
public void run() {

...
q.enqueue(val);

}
}
class Consumer implements Runnable {

protected Queue q;
...
public void run() {

...
val = q.dequeue();

}
}
class Main {

public static void main(String[] args) {
NonBlockingQueue q = new NonBlockingQueue();
...
new Thread(new Producer(q)).start();
new Thread(new Consumer(q)).start();
...
}

}

Fig. A.1. simple program using the queue.

A Additional Sources

References

[1] P. A. Abdulla, A. Annichini, S. Bensalem, and A. Bouajjani. Verification of infinite-
state systems by combining abstraction and reachability analysis.Lecture Notes in
Computer Science, 1633, 1999.

[2] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre, H. Rueß, J. Rushby,
V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of
SAL. In LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages 187–
196, June 2000. Proceedings available athttp://shemesh.larc.nasa.gov/
fm/Lfm2000/Proc/ .

[3] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A tool for the verification of
invariants.LNCS, 1427, 1998.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282, New York, NY, 1979. ACM Press.

[5] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In11th Int.
Conf. on Computer-Aided Verification. Springer-Verlag, July 1999. Trento, Italy.

[6] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Abstraction
techniques and complexity results. InProc. Static Analysis Symposium, 2003.

[7] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.LNCS, 1254:72–
83, 1997.

13

http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/
http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/


Yahav and Sagiv

[8] N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like structures.
In Program Flow Analysis: Theory and Applications, chapter 4, pages 102–131.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[9] M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. InProceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC ’96), pages 267–275, New York, USA,
May 1996. ACM.

[10] S. Prakash, Y. Lee, and T. Johnson. A non-blocking algorithm for shared queues using
Compare-and-Swap. InProceedings of the 1991 International Conference on Parallel
Processing, pages 68–75, 1991.

[11] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static
analysis. InIn Proc. European Symp. on Programming, 2003.

[12] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems (TOPLAS), 24(3):217–
298, 2002.

[13] H. Saidi. Model checking guided abstraction and analysis. InProceedings of the 7th
International Static Analysis Symposium (SAS ’00), 2000.

[14] J. M. Stone. A simple and correct shared-queue algorithm using Compare-and-Swap.
In Proceedings of Supercomputing ’90, pages 495–504, 1990.

[15] J. M. Stone. A non-blocking Compare-and-Swap algorithm for a shared circular
queue. In S. Tzafestas et al., editors,Parallel and Distributed Computing in
Engineering Systems, pages 147–152. Elsevier Science Publishers, 1992.

[16] R. E. Strom. Mechanisms for compile-time enforcement of security. InProc. of the
10th Annual ACM Symposium on Principles of Programming Lanuages, pages 276–
284, Austin, TX, January 1983.

[17] R. E. Strom and S. Yemini. Typestate: A programming language concept for
enhancing software reliability.tose, SE-12(1):157–171, January 1986.

[18] J. M. Wing and C. Gong. A library of concurrent objects and their proofs of
correctness. Technical Report CMU–CS–90–151, Carnegie-Mellon University, 1990.

[19] E. Yahav.http://www.cs.tau.ac.il/ ∼yahave .

[20] E. Yahav. Verifying safety properties of concurrent Java programs using3-valued
logic. In Proc. of 27th POPL, pages 27–40, March 2001.

14

http://www.cs.tau.ac.il/~yahave

	Introduction
	Concurrent Queue Algorithms
	Non-Blocking Queue
	Two-Lock Queue
	Correctness of Algorithms

	Vanilla Verification Attempt
	Representing Program Configurations using First-Order Logical Structures
	Safety
	Abstraction

	Refining the Vanilla Solution
	Abstract Semantics

	Prototype Implementation
	Conclusion
	Additional Sources
	References

