
Effective Typestate Verification in the Presence of

Aliasing

STEPHEN J. FINK and ERAN YAHAV

IBM T. J. Watson Research Center

and

NURIT DOR1

IBM Haifa Research Lab

and

G. RAMALINGAM2 and EMMANUEL GEAY

IBM T. J. Watson Research Center

This paper addresses the challenge of sound typestate verification, with acceptable precision,
for real-world Java programs. We present a novel framework for verification of typestate proper-
ties, including several new techniques to precisely treat aliases without undue performance costs.
In particular, we present a flow-sensitive, context-sensitive, integrated verifier that utilizes a para-
metric abstract domain combining typestate and aliasing information. To scale to real programs
without compromising precision, we present a staged verification system in which faster verifiers
run as early stages which reduce the workload for later, more precise, stages.

We have evaluated our framework on a number of real Java programs, checking correct API
usage for various Java standard libraries. The results show that our approach scales to hundreds
of thousands of lines of code, and verifies correctness for 93% of the potential points of failure.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Alias Analysis, Program Verification, Typestate

1. INTRODUCTION

In the software development lifecyle, early defect identification increases productiv-
ity by reducing development costs and improving software quality and reliability.
Development organizations employ a variety of tools to identify defects early, rang-
ing from testing and dynamic analysis to program verification techniques. One

1Author’s current affiliation: Panaya Inc.
2Author’s current affiliation: Microsoft Research, India.

This is a revised and extended version of a paper presented at ISSTA 2006 in Portland, Maine.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. 17, No. 2, 4 2007, Pages 1–34.

2 · Stephen J. Fink et al.

class of partial program verification techniques addresses checking if programs sat-
isfy specified safety properties (e.g. [Dwyer and Clarke 1994; Naumovich et al.
1999; Corbett et al. 2000; DeLine and Fähndrich 2001; Ball and Rajamani 2001;
Foster et al. 2002; Flanagan et al. 2002; Ashcraft and Engler 2002; Ramalingam
et al. 2002; Das et al. 2002; Field et al. 2003]). Defects related to these safety
properties can lead to run-time failures, and may be difficult to cover with normal
testing practices.
Typestate [Strom and Yemini 1986] is an elegant framework for specifying a class

of temporal safety properties. In the typestate model, a finite-state automaton
encodes legal program state changes, and transitions to automaton error states in-
dicate violations of safety properties. Typestates can encode correct usage rules for
many common libraries and application programming interfaces (APIs) (e.g. [Wha-
ley et al. 2002; Alur et al. 2005]). For example, typestate can express the property
that a Java program should not read data from java.net.Socket until the socket
is connected.
This paper addresses the challenge of typestate verification, with acceptable pre-

cision, for real-world Java programs. We focus on sound verification3; if the verifier
reports no problem, then the program is guaranteed to satisfy the desired prop-
erties. However, if the verifier reports potential problems, they may or may not
indicate actual program errors. Imprecise analysis can lead a verifier to produce
“false positives”: reported problems that do not indicate an actual error. Users
will quickly reject a verifier that produces too many false positives.
While the most sophisticated and precise analyses can reduce false positives, such

analyses typically do not scale to real programs. Real programs typically rely on
large and complex supporting libraries, which the analyzer must process in order
to reason about program behavior.
This paper presents several new typestate verification techniques, ranging from

the simple but imprecise, to the fairly precise but somewhat expensive. We also
present a staged typestate verification approach, which exploits verifiers with vary-
ing cost/precision trade-offs. Early stages employ the efficient but imprecise analy-
ses; subsequent stages employ progressively more expensive and precise techniques.
Each progressively more precise stage focuses on verifying only “parts” of the pro-
gram that previous stages failed to verify.
The key technical challenge facing typestate verification for Java concerns pointer

aliasing. Since all structured data in Java is heap-allocated, almost all interesting
operations involve pointer dereferencing. Further, Java libraries encourage layers of
encapsulation around data, which leads to multiple levels of pointer dereferencing.
In order to prove that a program manipulates an object correctly, the verifier must
cut through the tangle of alias relationships by which the program manipulates the
object of interest.
Researchers have developed a variety of efficient flow-insensitive may-alias (pointer)

analysis techniques (e.g. [Das 2000; Heintze and Tardieu 2001; Steensgaard 1996])
that scale to fairly large programs. These analyses produce a statically bounded
(abstract) representation of the program’s runtime heap and indicate which abstract

3Our implementation is sound with respect to a subset of the full Java language, excluding con-
currency, reflection, and other language features discussed later.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 3

objects each pointer-valued expression in the program may denote. Unfortunately,
these scalable analyses have a serious disadvantage when used for verification. They
require the verifiers to model any operation performed through a pointer dereference
conservatively as an operation that may or may not be performed on the possible
target abstract objects identified by the pointer analysis – this is popularly known
as a “weak update” as opposed to a “strong update” [Chase et al. 1990].
To support strong updates and more precise alias analysis, we present a frame-

work to check typestate properties by solving a flow-sensitive, context-sensitive
dataflow problem on a combined domain of typestate and pointer information. As
is well-known [Cousot and Cousot 1979], a combined domain allows a more precise
solution than could be obtained by solving each domain separately. Furthermore,
the combined domain allows the framework to concentrate computational effort on
alias analysis only where it matters to the typestate property. This concentration
allows more precise alias analysis than would be practical if applied to the whole
program.

1.1 Contributions

The main contributions of this paper are:

a flow-sensitive, context-sensitive, integrated verifier that utilizes a parametric
abstract domain that combines typestate and points-to abstractions.

two new techniques to handle destructive updates, utilizing information from
a preceding flow-insensitive may points-to analysis. Specifically,

a uniqueness analysis that can strengthen the results of the may points-to
analysis to support “strong updates” under certain conditions, and
a focus operation, similar in spirit to the one used in shape analysis [Sagiv
et al. 2002], that enables the analysis to use strong updates in certain cases.

Though inspired by shape analysis techniques, our focus operation applies to
a more efficient, abstract domain, and results in analyses that are orders of
magnitude more scalable than typical shape analyses.

a practical staged approach for sound typestate checking; the algorithm passes
information from one stage to the next, in order to reduce work in latter stages.

an empirical evaluation of the efficiency and precision of various verification
techniques. The empirical results shed light on the relative importance of var-
ious techniques for treating aliases, and demonstrate the validity of a staged
approach.

Our algorithms combine a preliminary flow-insensitive pointer analysis with an in-
terprocedural abstract interpretation based on “functional” context-sensitive anal-
ysis, as defined by Sharir and Pneuli [Sharir and Pneuli 1981].
Our implementation handles the full Java language, excluding concurrency, sub-

ject to caveats described regarding dynamic language features such as reflection.
The experimental results show that the staged solver verifies correctness for 93%
of the potential points of failure, running in under 10 minutes across a suite of
moderately-sized programs.
The rest of this paper is organized as follows: Sec. 2 provides an informal overview

of the various challenges in typestate verification, and sketches our solutions. Sec. 3,

ACM Journal Name, Vol. 17, No. 2, 4 2007.

4 · Stephen J. Fink et al.

init // initGFED@ABC connect() //

close()

��

getInputStream(),
getOutputStream()))

connONMLHIJK
BCED

getInputStream(),
getOutputStream()

GF��
close() // closedWVUTPQRS

getInputStream()
uu

errGFED@ABC
EDBC

∗

@AOO

Fig. 1. Partial typestate specification for java.net.Socket.

Sec. 4 and Sec. 5 present the abstractions and techniques formally. Sec. 6 presents
the empirical evaluation. Sec. 7 reviews related work, and Sec. 8 concludes.

2. OVERVIEW

2.1 Typestate Verification

A typestate property can be specified using a finite state automaton. States in the
automaton correspond to typestates which an object can occupy during execution.
The automaton also contains a designated typestate err corresponding to an erro-
neous state of the object. Transitions in the automaton correspond to observable
operations that may change the object’s typestate. In this paper, we focus on ob-
servable operations corresponding to method invocations. The goal of typestate
checking is to statically verify that no object reaches its error typestate during any
program execution.
Fig. 1 shows a finite state automaton providing a partial specification for the

java.net.SocketAPI. This automaton shows, for example, that calling getInputStream()
is only legal after a preceding call to connect().
Fig. 2 presents a program that exercises Java Sockets, I/O streams, and Iterators.

Our goal is to verify that the program

never calls getInputStream() or getOutputStream() on a Socket unless it is
connected,

never calls read() on a closed stream, and

always calls hasNext() on an Iterator before calling next().

In the example program, some typestate properties (e.g.Iterators) could be veri-
fied relatively easily by local, intra-procedural reasoning. Unfortunately, any local
alias analysis can be easily defeated by unknown side effects from procedure calls.
Other properties require more powerful (and costly) techniques. In particular,

socket usage in the example requires an interprocedural analysis with relatively
precise alias analysis, since the socket objects flow across procedure boundaries
and through complex collection data structures. The analysis needs to infer the

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 5

class Sender {
public static Socket createSocket() {
return new Socket();

}
public static Collection createSockets() {
Collection result = new LinkedList();
for (int i = 0; i < 5; i++) {

result.add(new Socket());
}
return result;

}
public static Collection readMessages() throws IOException {
Collection result = new ArrayList();
FileInputStream f = new FileInputStream("/tmp/foo.txt");

// ...
f.read();

// ...
return result;

}
public static void talk(Socket s) throws IOException {
Collection messages = readMessages();

PrintWriter o = new PrintWriter(s.getOutputStream(),true);
for (Iterator it=messages.iterator();it.hasNext();) {

Object message = it.next();
o.print(message);

}
o.close();

}
public static void example() throws IOException {
InetAddress ad=InetAddress.getByName("tinyurl.com/cqaje");
Socket handShake = createSocket();

handShake.connect(new InetSocketAddress(ad, 80));
InputStream inp = handShake.getInputStream();

Collection sockets = createSockets();

for (Iterator it = sockets.iterator(); it.hasNext();) {
Socket s = (Socket) it.next();
s.connect(new InetSocketAddress(addr, 80));

talk(s);
}
talk(handShake);

}
}

Fig. 2. Program with correct usages of common APIs.

typestates of the Socket objects in the collection. Specifically, the analysis needs
to determine that any Socket passed to talk() has been connected.

2.2 Outline of our Algorithm

Our verification system is a composite verifier built out of several composable veri-
fiers of increasing precision and cost. Each verifier can run independently, but the
composite verifier stages analyses in order to improve efficiency without compro-
mising precision. The early stages use the faster verifiers to reduce the workload
for later, more precise, stages.

All of our verifiers use the results of a preceding flow-insensitive, selectively
context-sensitive subset-based pointer analysis. This analysis produces a conser-
vative approximation of the heap, and induces a partition of concrete objects into
abstract objects ; as is typical, the pointer analysis creates names for abstract objects

ACM Journal Name, Vol. 17, No. 2, 4 2007.

6 · Stephen J. Fink et al.

Flow-ins.
feasibility

check

Initial
verification

scope

Intra-
procedural

verifier

Unique
verifier

Integrated
verifier

Possible failure
points

Fig. 3. Overview of framework stages.

based on static allocation sites and the governing context-sensitivity policy 4. The
flow-insensitive alias analysis can be performed relatively efficiently, and scales to
large programs (e.g. [Heintze and Tardieu 2001; Lhoták and Hendren 2003]).
Given a program and a typestate property, we consider all operations in the

program that may cause a transition to an error state as points of potential failure
(PPF). We consider a pair (o, p) where o is an abstract object, and p a point of
potential failure, as a separate verification problem. We refer to such pairs as
potential failure pairs. We define a verification scope to be a set of potential failure
pairs.
Our verification system starts by initializing the verification scope to contain all

matching pairs of abstract typestate objects and potential points of failure. The
verification scope is then gradually reduced by a sequence of stages, as shown in
Fig. 3. Each stage may successfully eliminate potential failure pairs by verifying for
a pair (o, p) that a failure cannot occur for objects represented by o at the point p.
Each composable verifier exploits separation [Das et al. 2002; Yahav and Rama-

lingam 2004]: it performs the typestate checking separately for each abstract object
of the appropriate type in the program. It accepts as a parameter a verification
scope which holds information from the preceding stages about which potential
failure pairs remain unverified.
Each verifier restricts its attention to the verification scope, and produces an up-

dated verification scope for the subsequent phase. The system reports any potential
failure pairs that remain after the last stage as potential errors.
The stages in our framework are sequenced by increasing cost and precision. In

the following discussion we briefly describe each of these stages. Later, we present
a more detailed description of the algorithms.

2.2.1 Flow-Insensitive Feasibility Checking. Prior to any flow-sensitive analy-
sis, the first stage prunes the verification scope using an extremely efficient flow-
insensitive error-path feasibility check. The flow-insensitive pointer analysis pro-
vides the set of observable operations that may occur for each abstract object. The
flow-insensitive verifier determines if it is possible for the abstract object to reach
the err state in the typestate automaton, using this set of operations.
Any abstract object that does not exhibit a feasible error-path could be consid-

ered as verified.
In our running example, the FileInputStreamobject allocated in readMessages()

is pruned at this stage, as the program never invokes close() for this abstract ob-
ject, and thus it can never reach an error state (for “read() after close()”).
This stage, however, is unable to verify the correct usage of the Iterators or

Sockets in the example program.

4 Sec. 6 gives details on our implementation’s context-sensitivity policy.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 7

2.2.2 Intraprocedural Verifier. The intraprocedural verifier is a flow-sensitive
verifier that restricts the scope of each verification attempt to a single procedure.
The verification starts at the beginning of each procedure assuming an arbitrary
unknown initial context (state). Method calls are treated conservatively, without
analyzing the method. This essentially works well for “local” objects, which are
pointed-to by local variables only. The intraprocedural verifier uses the same ab-
straction as the integrated verifier (see Sec. 2.2.4 and Sec. 5).
When the intraprocedural verifier is able to verify all uses of an abstract object

in the program, we can avoid interprocedural verification for that object. This is
often the case for typestate objects that do not escape the method in which they
are allocated.
For example, the intraprocedural verifier can verify that all Iterators in our run-

ning examples are used correctly. Applying the intraprocedural verifier as an early
stage eliminates the need for verification of the Iterators in the running example
by the latter, more expensive interprocedural solvers.

2.2.3 Strong Updates: Uniqueness Analysis. While a flow-insensitive alias anal-
ysis suffices to check feasibility of an error-path (as in Sec. 2.2.1), it generally does
not suffice for verifying typestate properties. A flow-insensitive analysis produces
only may alias information and not must alias information. Therefore, an analyzer
that directly uses the results of a flow-insensitive analysis must use “weak updates”
to handle assignments and operations via a pointer.
Using “weak updates” precludes verification of many typestate properties. For

example, it is insufficient for verifying the typestate property of Fig. 1. Using only
may alias information, the analyzer cannot guarantee that a connect() operation
occurs on the same concrete object as a subsequent getInputStream() operation.
Hence, such analysis cannot verify this property.
We present a verifier based on flow-insensitive alias analysis, but that uses a novel

uniqueness analysis to allow strong updates in some scenarios. Uniqueness analysis
strengthens the information obtained via flow-insensitive may points-to analysis
by identifying unique abstract objects that represent a single concrete object at a
given point of the program. For the purpose of typestate checking, a pointer that
may-point to a single target which is a unique abstract object may be assumed to
must-point to that abstract object.
Consider the invocation of a method, via a pointer p, that may alter the typestate

of the receiver object. If the following two conditions hold, then the analysis can
apply a strong update to change the typestate of the receiver object:

(a) the points-to set for p consists of a single abstract object

(b) this abstract object represents a single concrete object5.

Consider an abstract object S representing a particular (context-sensitive) alloca-
tion site A. This abstract object represents all concrete objects that are allocated at
A. The Unique solver performs a flow- and context-sensitive analysis with a simple

5For purposes of typestate checking, we may safely ignore the possibility of the pointer p being
null, which will result in a null-pointer dereference exception. If desired, null-pointer checking is
done separately.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

8 · Stephen J. Fink et al.

abstraction to determine if more than one object allocated at A can be simulta-
neously alive. If not, then the abstract object S represents at most one concrete
object at that program point, and the verifier can exploit strong updates at that
point if condition (a) mentioned above also holds.
For example, the Unique verifier can verify the correct use of the socket pointed-

to by handShake in the method example(), despite the fact that this object is used
interprocedurally (and hence could not be handled by the intraprocedural verifier
of the previous section).
Uniqueness analysis is of general use in our framework, and later stages incorpo-

rate the technique. This novel analysis compares favorably to existing techniques
for computing unique abstract locations, as it relies on flow- and context-sensitive
analysis of a pruned program with respect to the tracked abstract object (see dis-
cussion in Sec. 7).

2.2.4 Integrated Verifier. The Integrated verifier improves upon the Unique ver-
ifier by performing flow- and context-sensitive verification with an abstraction that
combines aliasing information with typestate information. The use of a combined
domain is more precise than separately performing typestate checking and flow-
sensitive alias analysis, as is common with abstract interpretation over combined
domains [Cousot and Cousot 1979].
For example, flow-sensitivity of alias information enables strong-updates in cases

such as the one below, where the Unique verifier fails because the abstract file
object does not qualify as unique.

Collection files = ...

while (...) {
File f = new File();

files.add(f);

f.open();

f.read();

}

Since all our verifiers exploit separation, it suffices to focus on the problem of
verifying usage for a single abstract object. The Integrated verifier utilizes an
abstract domain that captures information about the typestate of the given abstract
object, as well as information about a set M of pointer access paths that definitely
point to the given abstract object, and a set MN of pointer access paths that
definitely do not point to the given abstract object. The domain also includes
a boolean flag indicating if there may exist other access paths, not mentioned in
M , that may point to the given abstract object. Sec. 5 presents a more complete
description of the abstraction.
A key element of the integrated verifier’s abstraction is the use of a focus op-

eration [Sagiv et al. 2002], which is used to dynamically (during analysis) make
distinctions between objects that the underlying basic points-to analysis does not
distinguish. For example, consider the loop in the method example() in our run-
ning example. The verifier utilizes two or more abstract objects to represent the set
of all (5) Socket objects created by the createSockets() method (even though
the flow-insensitive pointer analysis represents them by a single abstract object):

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 9

one abstract object represents the Socket pointed to by s, and the other abstract
objects represent the remaining Sockets.
This enables the use of strong updates, allowing verification for all Sockets in the

running example, despite their flow through a collection and across procedures.

3. TYPESTATE CHECKING FRAMEWORK

This section presents a framework for typestate checking which enables declaration
of different levels of abstractions.
First, we sketch an instrumented concrete semantics for this problem. Intuitively,

given a typestate property, our semantics instruments the program state, state♮

to include for every object, o♮, its typestate from the property definition. The
instrumented semantics verifies that an object never reaches its error typestate.
Next, we present a parameterized conservative abstraction that allows us to define

the family of abstractions used by the various verifiers in our framework.

3.1 Instrumented Concrete Semantics

We assume a standard concrete semantics which defines a program state and eval-
uation of an expression in a program state. The semantic domains are defined in a
standard way as follows:

L♮ ⊆ objects♮

v♮ ∈ Val = objects ♮ ∪ {null}
ρ♮ ∈ Env = VarId → Val

h♮ ∈ Heap = objects♮ × FieldId → Val

state♮ = 〈L♮, ρ♮, h♮〉 ∈ States = 2objects
♮

× Env×Heap

where objects ♮ is an unbounded set of dynamically allocated objects, VarId is a set
of local variable identifiers, and FieldId is a set of (instance) field identifiers.
A program state keeps track of the set of allocated objects (L♮), an environment

mapping local variables to values (ρ♮), and a mapping from fields of allocated objects
to values (h♮).
We also define the notion of an access path as follows: A pointer path γ ∈ Γ =

FieldId∗ is a (possibly empty) sequence of field identifiers. The empty sequence is
denoted by ǫ. We use the shorthand fk where f ∈ FieldId to mean a sequence of
length k of accesses along a field f . An access path p ≡ x.γ ∈ VarId × Γ is a pair
consisting of a local variable x and a pointer path γ.
We denote by APs all possible access paths in a program. The r-value of access

path p, denoted by state♮[p], is recursively defined using the environment and heap
mappings, in the standard manner. Intuitively, for an access path p, state♮[p] is the
set of objects to which p refers.
We formally define a typestate property as follows.

Definition 3.1. A typestate property F is represented by a finite state automa-
ton F = 〈Σ,Q, δ, init,Q\{err}〉 where Σ is the alphabet of observable operations, Q
is the set of states, δ is the transition function mapping a state and an operation to
a successor state, init ∈ Q is a distinguished initial state, err ∈ Q is a distinguished
error state for which for every σ ∈ Σ, δ(err, σ) = err, and all states in Q \ {err}

ACM Journal Name, Vol. 17, No. 2, 4 2007.

10 · Stephen J. Fink et al.

are accepting states. Given a sequence of operations we say that it is valid when it
is accepted by F , and invalid otherwise.

Our instrumented concrete semantics instruments every concrete state 〈L♮, ρ♮, h♮〉
with an additional mapping typestate♮ : L♮ → Q that maps an allocated object to
its typestate.

For a given state state♮ = 〈L♮, ρ♮, h♮〉, we define a function AP ♮

state♮ : L
♮ → 2APs

as a mapping between allocated objects and the access paths that evaluate to them,
i.e. AP ♮(o♮) = {e | state♮[e] = o♮}. When the state is clear from context, we omit
it and simply write AP♮(o♮).
A state of the instrumented concrete semantics is therefore a tuple 〈L♮, ρ♮, h♮, typestate♮〉.

Example 3.2. Given the property of Fig. 1, the instrumented concrete state
before the first call to s.connect() in example() contains six objects: one object o♮0
allocated during the invocation of createSocket(), and five other objects o♮1, . . . , o

♮
5,

allocated during the invocation createSockets(). The values of typestate♮ and the
function AP♮(o♮0) are:

typestate♮(o♮0) = conn AP♮(o♮0) = {handShake}

typestate♮(o♮1) = init AP♮(o♮1) = {s, sockets.head}

typestate♮(o♮i) = init AP♮(o♮i) = {sockets.head.nexti−1}
where(i = 2, ..5)

The instrumented semantics updates the typestate of the object in a natural way.
When the object is first allocated, its typestate is mapped to the initial state of
the typestate automaton. Then, on every observable event, the object typestate is
updated accordingly.
In this paper, we consider method invocations as observable events which can

change typestate. We use an instrumented semantics where the typestate changes
during the method call. When the first instruction of the called method executes,
the object has already transitioned to the appropriate typestate. If the called
method in turn calls other methods that cause typestate transitions, the instru-
mented semantics tracks these transitions as well.

3.2 Abstract Semantics

The instrumented concrete semantics uses an unbounded set of objects with an un-
bounded set of (unbounded) access paths. In this section, we describe a parameter-
ized abstract semantics that allows us to conservatively represent the instrumented
concrete semantics with various degrees of precision and cost.
Our abstract semantics uses a combination of two representations to abstract

heap information: (i) a global heap-graph representation encoding the results of
a flow insensitive points-to analysis; (ii) enhanced flow-sensitive must points-to
information integrated with typestate checking.

3.2.1 Flow-insensitive May Points-to Information. The first component of our
abstraction is a global heap graph, obtained through a flow-insensitive, context-
sensitive subset based may points-to analysis [Andersen 1994]. This is fairly stan-
dard and provides a partition of the set objects ♮ into abstract objects. In this
discussion, we define an instance key to be an abstract object name assigned by the

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 11

flow-insensitive pointer analysis. The heap graph provides for an access path e, the
set of instance keys it may point-to and also the set of access paths that may be
aliased with e.
Our analysis framework can work with any pointer analysis that provides a

points-to solution mapping abstract pointers to abstract objects. Of course, there
exist many variants of flow-insensitive pointer analysis depending on context-sensitivity
policies [Grove and Chambers 2001]. Section 6 describes the pointer analysis variant
used in our current implementation.
The heap graph representation of the running example contains two instance keys

for type Socket: one representing the object allocated in createSocket, denoted
by o

♮
0 in Example 3.2, and another one, for the second allocation site, representing

all five objects in the sockets collection.

3.2.2 Parameterized Typestate Abstraction. Our parameterized abstract repre-
sentation uses tuples of the form: 〈o, unique, typestate,APmust ,May ,APmustNot 〉
where:

o is an instance key.

unique indicates whether the corresponding allocation site has a single concrete
live object.

typestate is the typestate of instance key o.

APmust is a set of access paths that must point-to o.

May is true indicates that there are access paths (not in the must set) that
may point to o.

APmustNot is a set of access paths that do not point-to o.

This parameterized abstract representation has four dimensions, for the length and
width of each access path set (must and must-not). The length of an access path set
indicates the maximal length of an access path in the set, similar to the parameter
k in k-limited alias analysis. The width of an access path set limits the number of
access paths in this set.
An abstract state is a set of tuples. We observe that a conservative representation

of the concrete program state must obey the following properties:

(a) An instance key can be indicated as unique only if it represents a single object
for this program state.

(b) The access path sets (the must and the must-not) do not need to be complete.
This does not compromise the soundness of the staged analysis due to the
indication of the existence of other possible aliases.

(c) The must and must-not access path sets can be regarded as another heap
partitioning which partitions an instance key into the two sets of access paths:
those that a) must alias this abstract object, and b) definitely do not alias this
abstract object. If the must-alias set is non-empty, the must-alias partition
represents a single concrete object.

(d) If May = false, the must access path is complete; it contains all access paths
to this object.

(e) If an object occupies a typestate T , the corresponding abstract state must also
indicate the same typestate, T .

ACM Journal Name, Vol. 17, No. 2, 4 2007.

12 · Stephen J. Fink et al.

This can be formally stated as follows:

Definition 3.3. A tuple 〈o, unique, typestate,APmust,May,APmustNot〉 is a

sound representation of object o♮ at instrumented state istate♮ when:

o = ik(o♮)

∧ unique ⇒ {x♮ ∈ live(istate♮) | ik(x♮) = o} = {o♮}

∧ typestate = typestate♮(o♮) ∧ APmust ⊆ AP♮(o♮)

∧ (¬May ⇒ (APmust = AP♮(o♮)))

∧ APmustNot ∩ AP♮(o♮) = ∅

where ik is an abstraction mapping a concrete object to the instance key that repre-
sents it, and live(istate♮) is defined to be {x♮ | AP♮(x♮) 6= ∅}.

Note that the set live(istate♮) in the above definition identifies the set of all non-
garbage objects in the state istate♮, i.e. the set of all objects reachable via at least
one access path. As we explain in Sec. 4, our implementation is actually based on a
refined definition, where live(istate♮) corresponds to the set of all objects reachable
via at least one live access path (i.e., an access path that may be used in the future).
This allows us to ignore reachable objects that will not be used in the future and
can be treated as garbage.

Definition 3.4. An abstract state istate is a sound representation of a concrete
state istate♮ = 〈L♮, ρ♮, h♮, typestate♮〉 if for every object o♮ ∈ L♮ there exists a tuple
in istate that provides a sound representation of o♮.

3.3 Base Abstraction

The Base (least precise) abstraction is an instance of the parameterized abstraction
with zero length and width, for both the must and the must-not access path sets
(and hence May = true in all tuples). In addition, this abstraction does not track
uniqueness. This yields a typestate checking algorithm, similar to [Das et al. 2002]
in its alias handling, that cannot verify any property that requires strong updates.
For simplicity, we denote each tuple in this abstraction as 〈o, typestate〉

Example 3.5. A base abstraction representing the concrete state described in
Example 3.2 contains two instance keys: o0 representing o

♮
0 and o1..5 representing

the five objects o
♮
i , i = 1, 2, ..5 in the sockets collection and the following three

tuples: 〈o0, init〉, 〈o0, conn〉, 〈o1..5, init〉.

This analysis is an iterative flow- and context-sensitive propagation, that tracks
tuples starting with an initial 〈o, init〉 generated at an allocation. The analysis only
needs to handle observable operations and propagates tuples according to typestate
changes. The result of an observable operation associated with event op on the tuple
〈o, typestate〉 are two tuples: The previous tuple and the tuple 〈o, δ(typestate, op)〉.
Tuples are never removed; all operations are handled as weak updates. The first
tuple in Example 3.5 demonstrates the results of a weak-update. It represents that
o
♮
0, in Example 3.2, may be in the init state, which is not feasible in any concrete
state at this program point.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 13

4. UNIQUENESS ANALYSIS

The Unique verifier extends the Base abstraction, adding an abstraction which
determines whether more than one concrete object corresponding to a given instance
key can be simultaneously alive. This information allows the verifier to use strong
updates under certain conditions. We refer to this analysis as uniqueness analysis.

In terms of the abstraction tuples introduced in Sec. 3, the Unique verifier makes
use of only the instance key, uniqueness flag, and the typestate. (Thus the must-
point-to set and must-not-point-to set are always empty, and the May flag is always
true.) Hence, we will represent each tuple as a triple 〈o, unique, typestate〉.

The analysis works as follows. The first time an allocation site with an instance
key k is executed (during analysis), it generates the tuple 〈k, true, init〉. If, dur-
ing the analysis, any tuple 〈k, true, typestate〉 reaches the same (context-sensitive)
allocation site, the allocation site will generate the tuple 〈k, false, typestate〉.
Note that our notion of a unique object differs from the notion of a unique pointer

as it often appears in the literature [Crary et al. 1999]. Our unique object corre-
sponds to a single live object created at a particular allocation site, although there
may exist multiple pointers to it. In contrast, a unique pointer usually denotes a
pointer which does not alias any other pointer within a particular scope.

To make the above technique effective for allocation sites that are in a loop, it is
necessary to find a way to “kill” the tuples where possible. This verifier utilizes a
preliminary liveness analysis, computed prior to typestate checking, that determines
a conservative approximation of which instance keys may be live at each program
point. Whenever a tuple p for an instance key o flows to a program point where o
cannot be live, p can be removed soundly.

The framework admits any form of liveness analysis, which can be plugged into
the verifier. Our current implementation uses a simple bottom-up interprocedural
liveness analysis, based on the results of the preliminary flow-insensitive, partially
context-sensitive pointer analysis.

This approach is effective in two situations. First, singleton pattern objects
clearly retain their unique predicates, and so enjoy strong updates everywhere. The
Java standard libraries use singleton patterns frequently. For example, consider the
EMPTY SET.iterator() object which appears in the Java Collections framework.
This singleton object tends to flow everywhere in the program that uses collections,
defeating the pruning optimizations described earlier. However, the unique predi-
cate allows the solvers to efficiently treat this object with strong updates, without
resorting to expensive access-path tracking.

Additionally, the liveness analysis allows unique analysis to succeed for a ubiqui-
tous pattern: an allocated object dies before its allocation site executes again. In
practice, we have found that a simple liveness analysis catches many of these cases.

For tuples not marked unique, this verifier degenerates into the Base verifier
of Sec. 3.3. For example, while uniqueness handles the handshake socket in the
running example, uniqueness cannot show that the Sockets in the collection are used
correctly. The instance key that represents all the Socket objects in the sockets

collection is, naturally, not unique. Therefore, when the statement s.connect() is
analyzed, the typestate of the abstract Socket object is weakly-updated, indicating
that a socket may occupy the conn state or the init state. These tuples propagate to

ACM Journal Name, Vol. 17, No. 2, 4 2007.

14 · Stephen J. Fink et al.

the statement s.getOutputStream() in talk(), causing the verifier to imprecisely
report a possible error.
Note that in the example, although verifying usage of the handshake object does

not rule out errors at many potential points of failure, the staged verifier will
remove pairs involving the handshake object from the running verification scope.
This would reduce the computational workload for the next stage.

5. INTEGRATED TYPESTATE AND ALIAS ANALYSIS

In this section, we describe two verifiers that make use of the access-path sets in
the tuple representation.
We first describe the APFocus verifier, our most precise analysis. This analysis

uses the three remaining tuple components, APmust , May , and APmustNot , to
track alias relationships precisely with flow- and context-sensitive analysis. With
this more precise information, the solver can potentially apply strong updates based
on must-point-to information and avoid spurious updates based on must-not-point-
to information. Furthermore, we describe a merge operator to avoid redundant
work, and discuss how the abstractions give a measure of path sensitivity for com-
mon scenarios involving virtual method dispatch.
We begin by presenting the flow functions for the APFocus verifier.

5.1 Update Functions

The APFocus verifier updates the tuple state when propagating information through
statements that may affect tracked alias or typestate relations. Table I shows how
a tuple is transformed by the interpretation of various statements.
The interpretation of an allocation statement “v = new T()” with instance key

o will generate a tuple 〈o, true, init , {v}, false, ∅〉 representing the newly allocated
object. When May is false, the APmustNot component is redundant and, hence,
initialized to be empty.
When a typestate method is invoked, we can (1) use the APmustNot information

to avoid changing the typestate of the tuple where possible, (2) use the APmust
information to perform strong updates on the tuple where possible, and (3) use the
uniqueness information also to perform strong updates where possible.
When a tuple reaches the allocation site that created it, we generate two tuples,

one representing the newly created object, and one representing the incoming tuple.
We change the uniqueness flag to false for reasons explained earlier. For assignment
statements, we update the APmust and APmustNot as appropriate.
Note that since we place a finite bound on access path lengths, there are a

finite number of possible abstract states, so fixed-point iteration terminates. The
number of possible abstract states is exponential in the access path bound. The
flow functions are distributive since they propagate only one tuple at a time.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

E
ff
ectiv

e
T
y
p
esta

te
V
erifi

ca
tio

n
in

th
e
P
resen

ce
o
f
A
lia
sin

g
·

1
5

Stmt S Resulting abstract tuples

observable operation
e.op()
as op ∈ Σ where o ∈ pt(e)

〈o,unique, δ(typestate , op),APmust ,May ,APmustNot 〉 if e 6∈ APmustNot ∧ (e ∈ APmust ∨May)
〈o,unique, typestate,APmust ,May ,APmustNot 〉 if e ∈ APmustNot ∨(e 6∈ APmust ∧¬(unique∧pt(e) =
{o}) ∧May)

v = new T() where o = Stmt S
〈o, false, typestate,APmust \ {v.γ | γ ∈ Γ},May,APmustNot ∪ {v}〉
〈o, false, init , {v}, false, ∅〉

v = null 〈o,unique, typestate,APmust \ {v.γ | γ ∈ Γ},May,APmustNot ∪ {v}〉

v.f = null 〈o,unique, typestate,APmust \ {e′.f.γ | mayAlias(e′, v), γ ∈ Γ},May ,APmustNot ∪ {v.f}〉

v = e 〈o,unique, typestate,APmust ∪ {v.γ | e.γ ∈ APmust },May ,APmustNot \ {v|e 6∈ APmustNot }〉

v.f = e

AP ′

must := APmust ∪ {v.f.γ | e.γ ∈ APmust}
〈o,unique, typestate,AP ′

must ,May ∨ ∃v.f.γ ∈ AP ′

must .∃p ∈ AP .mayAlias(v, p) ∧ p.f.γ 6∈
AP ′

must ,APmustNot \ {v.f |e 6∈ APmustNot }〉

Table I. Transfer functions for statements indicating how an incoming tuple 〈o,unique , typestate,APmust ,May ,APmustNot 〉 is transformed, where
pt(e) is the set of instance keys pointed-to by e in the flow-insensitive solution, v ∈ VarId. mayAlias(e1, e2) iff pointer analysis indicates e1 and e2 may
point to the same instance key.

A
C
M

J
o
u
rn

a
l
N
a
m
e
,
V
o
l.

1
7
,
N
o
.
2
,
4
2
0
0
7
.

16 · Stephen J. Fink et al.

5.2 Focus Operation

We now describe the focus operation, which improves the precision of the analysis.
As a motivating example, consider the statement s.connect() in the loop in the
method example() in our running example. We have an incoming tuple represent-
ing all of the sockets in the collection, and, hence, we cannot apply a strong update
to the tuple, which can subsequently cause a false positive. The focus operation
replaces the single tuple with two tuples, one representing the object that s points
to, and another tuple to represent the remaining sockets. Formally, consider an
incoming tuple 〈o, unique, typestate,APmust , true,APmustNot 〉 at an observable
operation e.op(), where e 6∈ APmust , but e may point to o (according to the flow-
insensitive points-to solution). The analysis replaces this tuple by the following two
tuples:

〈o, unique, typestate,APmust ∪ {e}, true,APmustNot 〉
〈o, unique, typestate,APmust , true,APmustNot ∪ {e}〉

In the example under consideration, the statement s.connect() is reached by
the tuple 〈o1..5, false, init, ∅, true, ∅〉. Focusing replaces this tuple by the following
two tuples:

〈o1..5, false, init, {s}, true, ∅〉
〈o1..5, false, init, ∅, true, {s}〉

The invocation of connect() is analyzed after the focusing. This allows for a strong
update on the first tuple and no update on the second tuple resulting in the two
tuples:

〈o1..5, false, conn, {s}, true, ∅〉
〈o1..5, false, init , ∅, true, {s}〉

We remind the reader that the unique component tuple merely indicates if mul-
tiple objects allocated at the allocation site o may be simultaneously alive. A tuple
such as 〈o1..5, false, conn, {s}, true, ∅〉, however, represents a single object at this
point, namely the object pointed to by s, which allows us to use a strong update.
The analysis applies this focus operation whenever it would otherwise perform

a weak update for a typestate transition. Thus, focus splits the dataflow facts
tracking the two typestates that normally result from a weak update.

5.3 Focus and polymorphism

Polymorphism is the distinguishing feature of object-oriented languages; an object’s
behavior depends on its concrete type rather than it’s declared type. Polymorphic
call sites present an interesting and widespread difficulty for the integrated typestate
checking.
Consider the following snippet of code:

Collection c = ...

for (Iterator it=c.iterator(); it.hasNext();){
it.next();

}

The Java Collections API often returns one of two Iterator implementations,
depending on whether the collection is empty. Thus, the calls to both hasNext and

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 17

next are polymorphic. This effectively introduces a path-sensitivity issue, where
the two dynamic dispatch sites play the role of correlated branches in traditional
path-sensitive discussions.
As in ESP [Das et al. 2002], we could introduce path-sensitive predicates that

encode the direction of dynamic dispatch. Instead, our focus algorithms exploit
information from the tuple to avoid propagation at polymorphic call sites.
In particular, before the call to hasNext, if we have the tuple 〈o, false, init, ∅, true, ∅〉

(in which case o represents one of the two possible concrete Iterator implementa-
tions) then the focus operation will result in two tuples after the call to hasNext:

t1 = 〈o, false, hasNext, {it}, true, ∅〉
t2 = 〈o, false, init, ∅, true, {it}〉

The flow functions for call edges exploit alias information to avoid propagating
tuples down infeasible paths. In particular, the flow function for the call to it.next
will not propagate t2 to the next operation, since t2 indicates that it must-not alias
o. Thus, focus avoids a spurious transition to err.
Intuitively, focus introduces a notion of path-sensitivity, where a path corresponds

to a dynamic dispatch governed by alias relationships for tracked objects.

5.4 Discarding Access Paths

As explained earlier, we enforce limits on the length and the number of access paths
allowed in the APmust and APmustNot components to keep the number of tuples
generated finite. We designed the abstract domain specifically to discard access-
path information soundly, allowing heuristics that trade precision for performance
but do not sacrifice soundness. This feature is crucial for scalability; the analysis
would suffer an unreasonable explosion of dataflow facts if it soundly tracked every
possible access path, as in much prior work [Dor et al. 2004; Landi and Ryder 1992;
Choi et al. 1993; Emami et al. 1994].
We can always safely discard access path elements from the APmustNot com-

ponent, since the flow functions do not rely on the must-not set being complete.
Additionally, we can safely discard elements from the APmust component by set-
ting the May component to be true, indicating that the APmust set does not
contain all possible aliases.
There are a variety of possible heuristic options for limiting the number of tuples.

For example, ESP’s “property simulation” introduced lossy joins, to merge tuples
that do not differ in the typestate property of interest [Das et al. 2002].
Our current implementation uses a different heuristic. It discards the prior

APmustNot paths when applying a focus operation, maintaining the more pre-
cise information from the most recent focus. This is based on intuition that in most
cases the extra precision from focus will manifest at the next typestate change.
This heuristic avoids a common exponential blowup in state due to a sequence of
focus operations, and seems to perform well in practice.

5.5 The APMust Verifier

APMust is a simpler version of APFocus engine that makes use of the APmust com-
ponent, but not the APmustNot component. Thus, the APmustNot component
is always an empty set in this abstraction. Since it does not use the APmustNot ,

ACM Journal Name, Vol. 17, No. 2, 4 2007.

18 · Stephen J. Fink et al.

foo(Collection c) {
FileComponent f = new FileComponent(); // AllocSite1

c.add(f);

if (?) {
x1 = f;

}
if (?) {

x2 = f;

}
if (?) {

x3 = f;

}
...

if (?) {
xk = f;

}
(1) ...

}

Fig. 4. Example that manifests an exponential blowup due to must-path factoids without nor-
malization.

it does not use focus either (since focus is ineffective without the APmustNot).
Other aspects of this engine, such as the transfer functions, can be obtained in a
straightforward way from the description of APFocus.

We include the APMust verifier for comparison in the next section, to help eval-
uate the contribution of the focus operation.

5.6 Join Operation

The RHS tabulation algorithm ([Reps et al. 1995]) assumes that dataflow facts in
the domain are independent, and uses set union as the join operation. Our abstract
domain can be treated similarly, propagating each tuple independently. However,
this approach can lead to an exponential blowup of work, as typical in path-sensitive
analyses.

Consider the example in Figure 4. In this example, at program point (1), the
must-path abstraction will maintain tuples with must-sets containing all subsets of
{x1,. . . , xk}. The aliasing relationship effectively encodes each of the possible 2k

paths through this method.

We therefore use a slight generalization of the RHS algorithm which supports join
operations other than set union. Using such join operations potentially allows us to
sacrifice the precision guaranteed by the original algorithm in favor of scalability.
Additionally, we show that we can apply a join operator without losing precision.

Observe that our abstractions induce a partial order over tuples, where one tuple
may represent strictly more precise information than another.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 19

Definition 5.1. (Tuple partial order) Consider two tuples

t1 = 〈o1, unique1, typestate1,AP1
must,May1,AP1

mustNot〉

t2 = 〈o2, unique2, typestate2,AP2
must,May2,AP2

mustNot〉

We say that t1 is more precise than t2 and write t1 � t2 when the following condi-
tions hold:

o1 = o2

typestate1 = typestate2

May2

¬unique1 ∨ unique2

AP1
must ⊇ AP2

must

AP1
mustNot ⊇ AP2

mustNot.

It is easy to see that if all these conditions hold, each component of tuple t1 holds
the same or more precise information than the corresponding component of t2. So,
any program states represented by t1 are also redundantly represented by t2. If
both t1 and t2 reach the same program point (in the same context), there is no
additional precision gained in propagating tuple t1, since the less precise tuple t2
covers these cases and represents a lower bound on the eventual least fixed-point.
As an extreme example, consider the tuple 〈AllocSite1, false, init, ∅, true, ∅〉.

This tuple represents the least precise must and must-not information (empty sets
of access paths), the least precise may information (may bit is true) and least precise
unique information (unique bit is false).
Note that if May2 = false, then the AP2

must set holds exactly the set of expres-
sions which name the corresponding object and typestate. There is no other tuple
with more precise information than t2.
In the example of Fig. 4, note that the following three tuples (among others) will

propagate to program point (1):

t1 = 〈AllocSite1, true, init, {x1}, true, ∅〉
t2 = 〈AllocSite1, true, init, {x2}, true, ∅〉
t3 = 〈AllocSite1, true, init, {x1, x2}, true, ∅〉

Since t3 � t1, we may propagate t1 and kill the (more precise) tuple t3. This
does not lose precision compared to propagating all three tuples, since the final
least fixed point will be bounded by the precision of the less precise tuples t1 and
t2.
Alternatively, we could instead introduce join operators which sacrifice precision

to accelerate convergence. For example, the ESP system [Das et al. 2002] presented
property simulation, which aggressively merges facts associated with a particular
typestate. In our abstractions, an analogous strategy could merge the access-path
information regarding all facts describing a particular abstract object in a particular
typestate.
Note that in our abstractions, these redundant facts can arise from any statement

that modifies aliases, and not just at control-flow merge points. Our solver applies
the merge operator at every program point.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

20 · Stephen J. Fink et al.

The partial order over tuples induces a Hoare order over abstract states. Given
two abstract states a1 and a2, we say that a1 is more precise than a2, and write
a1 ⊑ a2, when for every tuple ti1 in a1 there exists a tuple tj2 in a2 such that ti1 � t

j
2.

Our framework can be instantiated with any sound join operation, that is, with
any join operation ⊔ that guarantees a1 ∪ a2 ⊑ a1 ⊔ a2.

5.7 Using the Structure of the Verified Property

The verifiers we described in previous sections are all sound for any arbitrary type-
state property. In this section, we consider properties of a certain structure, and
show that they can be checked using a specialized, more efficient, verifier.
The general idea is to exploit the nature of the property being verified for devising

a more efficient verifier. We now consider the class of omission closed typestate
properties, originally introduced in [Field et al. 2003].
Informally, a property is omission closed if the set of sequences accepted by the

property automaton is closed with respect to omissions: any sequence obtained by
omitting one or more operations from an accepted sequence of operations is also
accepted.

Definition 5.2. A property represented by an automaton F is said to be omission-
closed when for all sequences α, β, γ ∈ Σ∗, if α, β, γ is valid then αγ is also valid.

We observe that for this class of properties, it is sound to perform a strong-
update based only on may points-to information, without considering must points-
to information. This provides a sound verifier that permits strong updates without
maintaining any must points-to information.
The intuition is that for omission closed properties, assuming a strong-update is

actually the worst-case assumption. Any error sequence that is present when using
weak updates is also present when using strong updates.
Omission closed properties have a finite set of forbidden subsequences ξ1, ξ2, . . . , ξk

such that a sequence α is invalid iff α contains some ξi as a subsequence.
This, together with the fact that our abstraction represents objects at different

states by separate tuples, guarantees that we will observe any invalid sequence by
using strong-updates.
Any sequence that is found using weak-updates has a sub-sequence that only

uses strong-updates. Therefore, if there is an invalid sequence using weak-updates,
it has an invalid sub-sequence that only uses strong updates.
Note that for other classes of properties, such as repeatable enabling sequence

([Field et al. 2003]) properties, a verifier that only uses strong-updates is unsound.

Example 5.3. Consider the property that requires that an InputStream is not
read from after it has been closed. Assume that the property automaton has an al-
phabet Σ = {read, close} and that the valid sequences of events can be characterized
by the regular expression read∗; close.
This property is omission closed, as any valid sequence of calls remains valid even

when some calls are omitted from it (i.e., for any valid sequence, it is possible to
omit either a close or a read and maintain its validity).
Consider the program of Fig. 5. Since we know that the verified property is

omission-closed, we can use a solver that employs strong-updates based on may-

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 21

InputStream x1 = new InputStream(...); // AllocSite1 {〈AllocSite1, init〉}
if (?)

x2 = x1;

x1.read(); {〈AllocSite1, init〉}
x1.close(); {〈AllocSite1, init〉, 〈AllocSite1, closed〉}
x2.read(); {〈AllocSite1, closed〉, 〈AllocSite1, err〉}

Fig. 5. Example program demonstrating the use of strong-updates for omission closed properties.
Figure shows the abstract state after every typestate-relevant statement when using weak-updates.
Note that the invalid sequence would have also been observed when using only strong updates.

information. This means that after the call to close in the program, we will only
maintain the state 〈AllocSite1, closed〉 instead of the set

〈AllocSite1, closed〉, 〈AllocSite1, init〉

Note that this still allows us to observe that the call to x2.read leads to an error
state.

6. EXPERIMENTAL RESULTS

6.1 Implementation

The preliminary flow-insensitive pointer analysis provides a mostly context-insensitive
field-sensitive Andersen’s analysis [Andersen 1994], enhanced with a selective ob-
ject sensitivity policy [Milanova et al. 2005]. The pointer analysis relies on an SSA
register-transfer language representation of each method, which gives a measure of
flow-sensitivity for points-to sets of local variables [Hasti and Horwitz 1998]. The
pointer analysis names each context-sensitive allocation site as an instance key, and
builds the call graph on-the-fly.
The pointer analysis uses a mostly context-insensitive policy; most methods are

represented by exactly one context. However, some methods are cloned to dis-
ambiguate pointer flow in specific contexts. Most significantly, Java collection
classes and I/O stream containers are treated with unlimited depth (up to recur-
sion) object-sensitivity [Milanova et al. 2005]. That is, for each allocation site of a
Java collection or I/O stream, the analysis creates a context (clone) for each method
of the class, representing said method when invoked on an object from that partic-
ular allocation site. Furthermore, the analysis recursively applies object-sensitive
cloning to all objects allocated in such methods. As a result, the contents of Java
collections from different allocation sites are fully disambiguated, eliminating a ma-
jor source of pointer analysis pollution.
Additionally, the pointer analysis adds one-level of call-string context to calls to

a few library factory methods, including arraycopy, and clone statements. These
methods tend to badly pollute pointer flow precision if handled without context-
sensitivity.
The analysis deals with reflection by tracking objects to casts, as in [Fink et al.

2004; Livshits et al. 2005] . When an object is created by a reflective call (e.g.
Class.newInstance or Constructor.newInstance), the analysis assumes (un-
soundly) that the object will be cast to a declared type before being accessed. The

ACM Journal Name, Vol. 17, No. 2, 4 2007.

22 · Stephen J. Fink et al.

analysis tracks these flows, and infers the type of object created by newInstance

based on the declared type of relevant casts. While technically unsound, we be-
lieve that this approximation is accurate for the vast majority of reflective factory
methods in Java programs. Our current implementation does not resolve calls via
Method.invoke nor field accesses through java.lang.reflect.Field. In general,
precise but conservative treatment of reflection remains a difficult challenge, beyond
the scope of this work.
The system uses a substantial library of models of native code behavior for the

standard libraries. We have built up these native method models over years of de-
velopment of the analysis infrastructure in various products. We have no guarantee
that our native method models are complete or adequate. A systematic way to
model native methods or deal soundly with unmodelled methods remains a chal-
lenge, beyond the scope of this work.
For these experiments, we configure the analysis to ignore some system libraries

such as java.awt and javax.swing. In our current implementation, if these li-
braries are included in the analysis scope, the treatment of reflection causes the
computed call graph to blow up immensely, beyond our ability to scale the types-
tate verification. We believe that these libraries generally do not have side effects
that affect the typestate properties considered here, but clearly this omission is a
potential source of unsoundness. Of course, when dealing with the full Java lan-
guage, many other sources of unsoundness also apply, including concurrency, the
potential for dynamic class loading of unanticipated code, and unmodelled native
methods. Based on all these factors, we believe that excluding the GUI libraries
is a reasonable choice for both a realistic tool and for this empirical evaluation.
Fully sound precise verification of any property for the full Java language remains
a difficult and unsolved problem.
The flow-sensitive combined typestate and alias analysis builds on a general Reps-

Horwitz-Sagiv (RHS) IFDS tabulation solver implementation [Reps et al. 1995]. We
have enhanced the standard IFDS solver in straightforward ways to handle Java’s
exceptional control-flow and polymorphic dispatch without undue precision loss.

6.2 Sparsification

To make the analysis scale, we rely on a lightweight sparsification[Ramalingam
2002] optimization prior to solving the IFDS problem. Consider an integrated
verifier using access-paths bounded by depth k. We first consult the flow-insensitive
points-to graph to conservatively determine all program variables that may appear
in access-paths of depth at most k, which point to typestate objects of interest for
a given property. Next, we perform a context-insensitive mod-ref analysis over the
call graph, to determine those call graph nodes which may write to such variables;
call these the relevant nodes. We prune the call graph to include only those nodes
from which some relevant node is reachable, since the other nodes cannot modify
the IFDS solution.
This pruning is particularly important for the LocalFocus verifier. Exploiting

the pruning, the LocalFocus verifier can avoid making conservative assumptions for
every method call, thus greatly increasing its precision.
We assume that methods from the standard libraries will not directly transition to

err, and apply sparsification accordingly. This assumption introduces yet another

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 23

Table II. Call graph characteristics for benchmarks.

Benchmark Classes Methods Bytecode Stmts Contexts

bcel 751 4070 236,271 6011
gj 209 2253 131,288 2358
javacup 102 567 45,510 813
jbidwatcher 492 2723 180,492 3641
jlex 90 369 38,019 610
jpat-p 39 115 10,910 133
l2j 583 3443 209,184 4766
lucene 719 3540 224,478 5238
portecle 623 2992 210,543 4762
rhino-a 169 1150 81,388 1427
sablecc-j 362 2027 88,982 2476
schroeder-m 104 481 25,020 696
soot-c 651 2682 137,537 3105
specjvm98 627 3465 290,272 5654
symjpack-t 52 204 73,826 224
toba-s 132 610 52,985 838
tvla 331 1992 132,422 9331

total 6036 32,683 2,169,127 52,083

potential source of unsound results. We are not aware of any cases where this
assumption does not hold for the typestate properties considered here. Of course,
the analysis still must analyze all relevant library code to account for typestate
transitions to non-err states, and aliases induced by the libraries.
In the staged verifier, we exploit results from early stages to improve sparsification

in latter stages in two ways. First, if an early stage verifies that a particular
statement does not transition to err, latter stages incorporate this information to
improve sparsification. Second, if an early stage proves that a particular abstract
object never causes an error, latter stages ignore tuples for that abstract object
entirely.

6.3 Benchmarks

Table II lists the benchmarks employed in this study. Apache Bcel is a byte-
code toolkit with a sample verifier. Java cup and JLex are a parser generator
and lexical analyzer, respectively, for Java. Jbidwatcher is an online auction tool.
L2j is Multi-User Dungeon game server. Apache lucence is a text search en-
gine. Portecle is a GUI application for managing secure keys and certificates.
SPECjvm98 is a collection of client-oriented applications. TVLA is a research vehicle
for abstract interpretation. The remainder of the benchmarks come from the Ashes
suite, described at the Ashes web page 6.
The Table reports size characteristics restricted to methods discovered by on-

the-fly call graph construction. The call graph includes methods from both the
application and the libraries; for many programs the size of the program analyzed is
dominated by the standard libraries. The table also reports the number of (method)
contexts in the call graph. Recall that the context-sensitivity policy models some
methods with multiple contexts.

6http://www.sable.mcgill.ca/ashes/

ACM Journal Name, Vol. 17, No. 2, 4 2007.

24 · Stephen J. Fink et al.

Table III. Typestate properties.

Name Description

Enumeration Call hasNextElement before nextElement

InputStream Do not read from a closed InputStream

Iterator Do not call next without first checking hasNext

KeyStore Always initialize a KeyStore before using it
PrintStream Do not use a closed PrintStream

PrintWriter Do not use a closed PrintWriter

Signature Follow initialization phases for Signatures
Socket Do not use a Socket until it is connected
Stack Do not peek or pop an empty Stack

URLConn Illegal operation performed when already connected
Vector Do not access elements of an empty Vector

Table III lists intuitive descriptions of the typestate properties verified in the
experiments. For Stack and Vector, we check typestate automata to enforce
that the program does not access elements of an empty collection directly after an
explicit “clear” operation, or for newly created empty collections. Typestate cannot
address the harder problem of verifying empty stacks or vectors in general.

6.4 Methodology

The experiments evaluate the following verification algorithms:

FI: flow-insensitive analysis (Sec. 2.2.1)

LocalFocus: the intraprocedural analysis (Sec. 2.2.2)

Base: the base analysis (Sec. 3.3)

Unique: the analysis using the unique reasoning (Sec. 4)

APMust: the integrated analysis without focus (Sec. 5)

APFocus: the integrated analysis with focus (Sec. 5.)

Staged: a staged analysis consisting of three stages: LocalFocus, Unique, and
APFocus.

Note that each verifier performs the FI analysis as a first step, since it is extremely
fast and can prune the workload based on the “verification scope” passed from the
previous stage. The experiments use an access-path depth limit of 2, and unlimited
access-path set width.
All experiments ran on an IBM Intellistation Z pro with two 3.06 GHz Intel Xeon

CPUs and 3.62 GB of RAM, running Windows XP. The analysis implementation,
consisting of roughly 200,000 lines of Java code, ran on the IBM J2RE 1.4.2 for
Windows, with a max heap of 800MB.

6.5 Results

Figure 6 shows the percentage of warnings, as a percentage of total number of
statements that the callgraph indicates might transition to err (points of potential
failure (PPF)). The number shown above each bar in the figure is the total number
of PPFs.
The rightmost cluster of bars shows the total number of warnings across all runs.

Overall,

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 25

0

20

40

60

80

100

W
ar

ni
ng

s/P
PF

s (
%

)

227 46 388 133 400 3 118 109 384 32 74 19 293 1345 16 419 872 4878

TO
TA

L

bc
el gj

jav
ac

up
jbi

dw
atc

he
r

jle
x

jpa
t-p l2j luc
en

e

po
rte

cle

rh
ino

-a

sa
ble

cc
-j

sc
hr

oe
de

r-m

so
ot-

c

sp
ec

jvm
98

sy
mjpa

ck
-t

tob
a-s tvl
a

PPFs
FI
LocalFocus
Base
Unique
APMust
APFocus

a)

0

20

40

60

80

100

W
ar

ni
ng

s/P
PF

s (
%

)

363 497 805 2 1928 1127 18 4 83 14 37 4878

TO
TA

L

En
um

era
tio

n

In
pu

tS
tre

am

Ite
rat

or

Key
St

or
e

Pr
int

St
rea

m

Pr
int

W
rit

er

Si
gn

atu
re

So
ck

et

St
ac

k

URL
Co

nn
ec

tio
n

Vec
tor

PPFs
FI
LocalFocus
Base
Unique
APMust
APFocus

b)

Fig. 6. Percentage of warnings out of total number of points of potential failure
(PPFs). Results are grouped by a) application, and b) property. Number of PPFs
is shown above each group.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

26 · Stephen J. Fink et al.

0

200

400

600

800

1000

Ru
n T

im
e (

sec
s)

APMust = 1677
APFocus = 4275

bc
el gj

jav
ac

up

jbi
dw

atc
he

r

jle
x

jpa
t-p l2j luc
en

e

po
rte

cle

rhi
no

-a

sab
lec

c-j
sch

roe
de

r-m

so
ot-

c

sp
ec

jvm
98

sy
mjpa

ck
-t

tob
a-s tvl
a

LocalFocus
Base
Unique
APMust
APFocus
Setup

Fig. 7. Total wallclock time needed to run the analysis. “Setup” indicates the
preliminary activities; primarily the preceding flow-insensitive pointer analysis and
call graph construction. The rightmost stacked bar in each group represents the
running time of the Staged verifier.

The FI verifier verifies correctness for 30% of PPFs.

The LocalFocus verifier verifies correctness for 64% of PPFs.

The Base verifier verifies correctness for 68% of PPFs.

The Unique verifier verifies correctness for 72% of PPFs.

The APMust verifier verifies correctness for 85% of PPFs.

The APFocus verifier verifies correctness for 93% of PPFs.

Table IV shows detailed results for verification warnings produced by the most
precise (APFocus) solver. By construction, the Staged verifier has the same preci-
sion as APFocus. Sec. 6.7 discusses the sources of many false positives.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

E
ff
ectiv

e
T
y
p
esta

te
V
erifi

ca
tio

n
in

th
e
P
resen

ce
o
f
A
lia
sin

g
·

2
7

Enum InptStr Itr KStore PrntStr PrntWr Sig Socket Stack URLConn Vector Total

bcel 0 / 2 0 / 1 0 / 15 0 / 36 0 / 139 8 / 32 0 / 2 8 / 227 3.5%

gj 2 / 6 0 / 40 2 / 46 4.4%

javacup 0 / 82 0 / 6 0 / 111 0 / 166 2 / 23 2 / 388 0.5%

jbidwatcher 1 / 8 0 / 9 0 / 46 0 / 31 0 / 9 0 / 13 9 / 17 10 / 133 7.5%

jlex 0 / 5 0 / 29 0 / 365 1 / 1 1 / 400 0.3%

jpat-p 0 / 3 0 / 3 0.0%

l2j 6 / 36 0 / 17 0 / 48 4 / 4 1 / 3 10 / 10 21 / 118 17.8%

lucene 0 / 29 0 / 6 0 / 11 0 / 60 0 / 1 1 / 2 1 / 109 0.9%

portecle 19 / 72 0 / 266 0 / 1 0 / 2 0 / 25 0 / 18 19 / 384 5.0%

rhino-a 3 / 9 0 / 16 1 / 1 6 / 6 10 / 32 31.3%

sablecc-j 0 / 24 0 / 47 1 / 3 1 / 74 1.4%

schroeder-m 0 / 6 2 / 11 0 / 2 2 / 19 10.5%

soot-c 0 / 14 0 / 2 0 / 213 0 / 58 6 / 6 6 / 293 2.0%

specjvm98 3 / 109 3 / 151 241 / 1075 4 / 9 0 / 1 251 / 1345 18.7%

symjpack-t 0 / 16 0 / 16 0.0%

toba-s 0 / 3 0 / 3 0 / 25 0 / 386 1 / 2 1 / 419 0.2%

tvla 27 / 715 0 / 151 0 / 2 3 / 4 30 / 872 3.4%

Total 26 / 363 13 / 497 27 / 805 0 / 2 241 / 1928 1 / 1127 0 / 18 4 / 4 27 / 83 0 / 14 26 / 37 365 / 4878 7.5%
7.2% 2.6% 3.4% 0.0% 12.5% 0.1% 0.0% 100.0% 32.5% 0.0% 70.3%

Table IV. Findings for the most precise (staged) solver across all benchmarks and typestate properties. Each entry in the table shows the number of
warnings as a fraction of the number of PPFs, for each benchmark/property combination.

A
C
M

J
o
u
rn

a
l
N
a
m
e
,
V
o
l.

1
7
,
N
o
.
2
,
4
2
0
0
7
.

28 · Stephen J. Fink et al.

6.6 Performance

Figure 7 reports the running times of the various verifiers across the benchmarks.
The results show the expected relative costs of the various verifiers.

6.6.1 Impact of Staging. The Staged verifier improves performance compared
to the APFocus verifier on 9 of the 10 codes where typestate checking takes more
than 30 seconds. On these 10 codes, staging improves performance by up to 85%
(tvla), with a median of 34%. Staging hurts performance by 40% on l2j; on this
code, many PPFs survive early verification stages, and the cost/precision tradeoffs
of the various solvers do not pay off.

6.6.2 Impact of Sparsification. We evaluated the sparsification of Sec. 6.2 across
all runs of the staged verifier. With sparsification, 70% of supergraphs have fewer
than 3500 nodes, 95% have fewer than 25,000 nodes, and 100% have fewer than
40,000 nodes. The corresponding numbers without sparsification are drastically
higher: roughly 80% of unpruned supergraphs have more than 125,000 nodes, and
20% have over 290,000 nodes. Overall, sparsification reduces median supergraph
size by roughly a factor of 50. We would expect a corresponding reduction in space
and running time, if we could run the unpruned verifiers without running out of
memory.

6.6.3 Impact of Initial Pointer Analysis. The precision of the preceding flow-
insensitive pointer analysis significantly impacts performance and precision. A more
accurate pointer analysis allows better sparsification, more effective live analysis
and improved disambiguation overall. We ran many of the analyses with a context-
insensitive Andersen-style pointer analysis, without the custom context-sensitivity
policies described earlier. Many benchmarks timed out on several rules; we conclude
that adequate precision in the preceding pointer analysis is vital.
Our context-sensitivity policy employs object-sensitivity for types from the stan-

dard libraries typically relevant to these typestate properties (namely collections
and I/O streams). Some benchmarks defeat this object-sensitivity policy by us-
ing application-level collections or streams. For example, TVLA uses a library of
application-level collections, and specJVM98 uses a reporting library of custom I/O
streams. To handle these cases more effectively, we need to infer a pointer-analysis
context-sensitivity policy for application classes that match typestate properties.
Iterative refinement techniques [Plevyak and Chien 1994; Guyer and Lin 2003] may
apply to this problem.

6.7 Discussion

Overall, the results show that our combination of techniques is relatively success-
ful and efficient at verifying these typestate properties. The various techniques
complement each other, contributing to the effectiveness of the staged verifier.
Since our goal in this paper is the successful verification of typestate properties,

we have deliberately chosen a set of mature benchmarks. For our experiments, we
assume that typestate violations in these benchmarks are all false alarms. We have
examined, by hand, many of the warnings which our most precise verifier does not
eliminate.
The specJVM98 code’s use of PrintStream accounts for 241 of the 365 warnings

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 29

reported. These are all false positives, stemming from a few lines of code in the
specJVM98 harness. This program stores a PrintStream object in a static field
Context.out, and uses the object ubiquitously throughout the various benchmarks.
The particular idiom by which the program caches the PrintStream object in a
static field defeats our focus heuristics, leading to a loss of precision.
Of the remaining 124 warnings, 53 arise from the Vector and Stack properties.

Most of these warnings appear to represent a failure of the typestate property to
capture all legal behavior, as opposed to solver limitations. For example, our type-
state property for Vector does not account for the return value from Vector.size().
Many times, application code accesses a Vector via statements guarded by a test
that size > 0. This pattern accounts for many of the false positives for the Stack
and Vector rules. For proper treatment, these APIs require at least range-check
analysis, as commonly applied to array-bounds checking (e.g. [Gupta 1993]).
The remaining warnings appear to arise from a combination of analysis approxi-

mations and typestate property limitations.
We expect that in the near future we can improve precision by a) access-path

tracking for objects that are not typestate objects, but are likely to point to them,
and b) increasing the scope of focus by exploiting inexpensive local alias reason-
ing. We suspect that substantial improvements in alias precision are within reach,
without undue performance compromise.
In many cases, programmers deduce from application logic that a particular iter-

ator must have a next element, or a particular collection must not be empty. The
typestate property for a single object does not allow for application logic which
ensures, via some back door, that an object occupies a particular typestate. De-
signing efficient, effective analysis for more general specifications remains a difficult
problem.

7. RELATED WORK

Many existing verification frameworks (e.g., [Das et al. 2002; Ball et al. 2001; Cor-
bett et al. 2000]) use a two-phased approach, performing points-to analysis as a
preceding phase, followed by typestate checking. This approach only supports
weak updates as discussed in Sec. 3.3.
The current version of ESP [Dor et al. 2004] uses an integrated approach, record-

ing must and may alias information in a flow-sensitive manner. They observe that
the may set becomes polluted and expensive to maintain, and even hint toward
maintaining a must-not set as a possible future solution. In contrast, our approach
adds must-not and also introduces the notions of uniqueness and focus, and uses
staging to achieve increased scalability and precision.
DeLine and Fähndrich [DeLine and Fähndrich 2004] present a type system for

typestate properties for objects. Their system guarantees that a program that
typechecks has no typestate violations, and provides a modular, sound checker for
object-oriented programs. To handle aliasing, they employ the adoption and focus
operations to a linear type system, as described in [Fahndrich and DeLine 2002].
With these operations, the type checker can assume must-alias properties for a lim-
ited program scope, and thus apply strong updates allowing typestate transitions.
Our approach can prove correctness of a more general class of programs, since a

ACM Journal Name, Vol. 17, No. 2, 4 2007.

30 · Stephen J. Fink et al.

context-sensitive analysis can accept programs for which an expression cannot be
assigned a unique type at a given program point. Furthermore, our focus opera-
tion generates facts that can flow across arbitrary program scopes, in contrast to
the limited program scope handled by [Fahndrich and DeLine 2002]. On the other
hand, our approach is non-modular and thus more expensive.

Degen et al. [Degen et al. 2007] present a type and effect system for a language
called Java(X). Interestingly, this type system combines typestate type annotations
with a notion of droppability, which force the programmer to retain pointers to
objects in particular typestates, which could be used to protect against certain
types of resource leaks.

Aiken et al. [Aiken et al. 2003] point out the importance of strong updates to
avoid imprecision in the context of typestate verification (and other analyses). They
present an inference algorithm for inferring restricted and confined pointers, which
they use to enable strong updates. We believe that the focusing technique we ex-
ploit, inspired by [Sagiv et al. 2002], can sometimes achieve a similar effect without
explicitly inferring restricted and confined pointers, and sometimes enable strong
updates even when the pointers are not restricted/confined. Further, the uniqueness
technique we use provides a somewhat orthogonal, cheap, technique for enabling
strong updates.

Field et al. [Field et al. 2003] present algorithms based on abstractions that
integrate alias and typestate information, but restricted to shallow programs, with
only single-level pointers to typestate objects.

The parametric shape analysis presented in [Sagiv et al. 2002] has served as the
basis for very precise verification algorithms, where the verification is integrated
with heap analysis (e.g., [Yahav and Ramalingam 2004].) These algorithms, how-
ever, do not scale well. We plan to extend our staged verifier by adding such precise
verifiers as a last stage.

Counter-example guided refinement [Ball and Rajamani 2002; Henzinger et al.
2002] based approaches have had impressive results in certain domains. But they
have so far been less successful in dealing with complex heap manipulation, partly
because these approaches attempt to automatically derive appropriate heap analy-
ses. Our staged verifier has a “refinement” flavor, but restricted to a fixed set of
manually crafted verifiers.

Aliasing of our combined domain resembles previous approaches to flow-sensitive,
context-sensitive access-path-based pointer analysis [Landi and Ryder 1992; Choi
et al. 1993]. Emami, Ghiya and Hendren [Emami et al. 1994] presented a do-
main that combined may and must points-to information. Our IFDS-based solvers
memoize function summaries, similar to Wilson and Lam’s partial transfer func-
tions [Wilson and Lam 1995]. Our domain differs from these previous works since
a) it tracks must and must-not paths, but not may, and b) Java’s strong typing
avoids complications arising from pointers to stack locations.

Iterative refinement techniques [Plevyak and Chien 1994; Guyer and Lin 2003]
perform pointer analysis in multiple passes, with a client-independent first pass,
followed by subsequent passes using context-sensitivity policies driven by client
feedback. In future work we plan to integrate these techniques into our framework,
where each typestate solver provides feedback for the next stage’s pointer analysis.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 31

Hackett and Rugina[Hackett and Rugina 2005] exploit a staged analysis to obtain
a relatively scalable interprocedural shape analysis. This approach uses a scalable
imprecise pointer-analysis to decompose the heap into a collection of independent
locations. The abstraction used in [Hackett and Rugina 2005] is similar in spirit
to our APMust abstraction, but the properties they target are more ambitious,
namely proving the absence of memory errors.
Recently, [Shoham et al. 2007] presented a static analysis for client-side mining of

temporal API specifications. Their approach is based on the heap abstractions de-
scribed in this paper, but additionally use quotient-based abstractions for creating
bounded descriptions of (unbounded) sequences of events.
Yorsh et al.[Yorsh et al. 2007] present a modular typestate analysis based on

the abstractions introduced in this paper. Their approach is based on symbolic
summarization and requires a decision procedure. We believe that a combination
of our approaches has to be used in order to achieve a truly scalable typestate
verification in the presence of aliasing.

8. CONCLUSIONS

We have presented a practical approach to typestate checking, exploiting staged
analysis to realize precise alias analysis at reasonable cost. Results show that the
techniques work well across a suite of programs, and indicate that efficient, precise
typestate verification may prove valuable in the software development lifecycle.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for many helpful com-
ments, and Mike Ernst for pointing out a bug in the original conference paper.

REFERENCES

Aiken, A., Foster, J. S., Kodumal, J., and Terauchi, T. 2003. Checking and
inferring local non-aliasing. ACM SIGPLAN Notices 38, 5 (May), 129–140. In Conference on
Programming Language Design and Implementation (PLDI).

Alur, R., Cerny, P., Madhusudan, P., and Nam, W. 2005. Synthesis of interface
specifications for java classes. SIGPLAN Not. 40, 1, 98–109.

Andersen, L. O. 1994. Program analysis and specialization for the C programming language.
Ph.D. thesis, DIKU, Univ. of Copenhagen. (DIKU report 94/19).

Ashcraft, K. and Engler, D. 2002. Using programmer-written compiler extensions to
catch security holes. In Proc. IEEE Symp. on Security and Privacy. Oakland, CA.

Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. 2001. Automatic
predicate abstraction of C programs. In Proc. ACM Conf. on Programming Language Design
and Implementation. 203–213.

Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety properties
of interfaces. In SPIN 2001: SPIN Workshop. LNCS 2057. 103–122.

Ball, T. and Rajamani, S. K. 2002. The Slam project: debugging system software via
static analysis. ACM SIGPLAN Notices 37, 1 (Jan.), 1–3.

Chase, D. R., Wegman, M., and Zadeck, F. K. 1990. Analysis of pointers and
structures. ACM SIGPLAN Notices 25, 6 (June), 296–310. In PLDI.

Choi, J.-D., Burke, M., and Carini, P. 1993. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In POPL 93. 232–245.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

32 · Stephen J. Fink et al.

Corbett, J., Dwyer, M., Hatcliff, J.,Pasareanu, C., Robby, Laubach, S.,
and Zheng, H. 2000. Bandera: Extracting finite-state models from Java source code. In
Proc. Intl. Conf. on Software Eng. 439–448.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks.
In Proc. ACM Symp. on Principles of Programming Languages. ACM Press, New York, NY,
269–282.

Crary, K., Walker, D., and Morrisett, G. 1999. Typed memory management in
a calculus of capabilities. In POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT
on Principles of programming languages, January 20–22, 1999, San Antonio, TX, ACM, Ed.
ACM SIGPLAN Notices. ACM Press, New York, NY, USA, 262–275.

Das, M. 2000. Unification-based pointer analysis with directional assignments. ACM SIG-
PLAN Notices 35, 5 (May), 35–46. In Conference on Programming Language Design and
Implementation (PLDI).

Das, M., Lerner, S., and Seigle, M. 2002. ESP: path-sensitive program verification in
polynomial time. ACM SIGPLAN Notices 37, 5 (May), 57–68. In Conference on Programming
Language Design and Implementation (PLDI).

Degen, M., Thiemann, P., and Wehr, S. 2007. Tracking linear and affine resources
with Java(X). In ECOOP 2007 Object-Oriented Programming, E. Ernst, Ed. LNCS, vol. 4609.
Springer-Verlag, 550–574.

DeLine, R. and Fähndrich, M. 2001. Enforcing high-level protocols in low-level software.
In Proc. ACM Conf. on Programming Language Design and Implementation. 59–69.

DeLine, R. and Fähndrich, M. 2004. Typestates for objects. In 18th European Confer-
ence on Object-Oriented Programming (ECOOP). LNCS, vol. 3086.

Dor, N., Adams, S., Das, M., and Yang, Z. 2004. Software validation via scalable
path-sensitive value flow analysis. In ISSTA. 12–22.

Dwyer, M. B. and Clarke, L. A. 1994. Data flow analysis for verifying properties
of concurrent programs. In Proc. Second ACM SIGSOFT Symp. on Foundations of Software
Engineering. New Orleans, LA, 62–75.

Emami, M., Ghiya, R., and Hendren, L. J. 1994. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. ACM SIGPLAN Notices 29, 6 (June),
242–256. In Conference on Programming Language Design and Implementation (PLDI).

Fahndrich, M. and DeLine, R. 2002. Adoption and focus: practical linear types for
imperative programming. ACM SIGPLAN Notices 37, 5 (May), 13–24. In Conference on
Programming Language Design and Implementation (PLDI).

Field, J., Goyal, D., Ramalingam, G., and Yahav, E. 2003. Typestate verifica-
tion: Abstraction techniques and complexity results. In Proc. of Static Analysis Symposium
(SAS’03). LNCS, vol. 2694. Springer, 439–462.

Fink, S., Dolby, J., and Colby, L. 2004. Semi-automatic J2EE transaction configura-
tion. Tech. Rep. RC23326, IBM.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B.,
and Stata, R. 2002. Extended static checking for java. In Proc. ACM Conf. on Program-
ming Language Design and Implementation. Berlin, 234–245.

Foster, J. S., Terauchi, T., and Aiken, A. 2002. Flow-sensitive type qualifiers. In
Proc. ACM Conf. on Programming Language Design and Implementation. Berlin, 1–12.

Grove, D. and Chambers, C. 2001. A framework for call graph construction algorithms.
Transactions on Programming Languages and Systems (TOPLAS) 23, 6 (Nov.), 685–746.

Gupta, R. 1993. Optimizing array bound checks using flow analysis. ACM Lett. Program.
Lang. Syst. 2, 1-4, 135–150.

Guyer, S. and Lin, C. 2003. Client-driven pointer analysis. In Proc. of SAS’03. LNCS,
vol. 2694. 214–236.

Hackett, B. and Rugina, R. 2005. Region-based shape analysis with tracked locations.
In POPL, J. Palsberg and M. Abadi, Eds. ACM, 310–323.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

Effective Typestate Verification in the Presence of Aliasing · 33

Hasti, R. and Horwitz, S. 1998. Using static single assignment form to improve flow-

insensitive pointer analysis. ACM SIGPLAN Notices 33, 5 (May), 97–105. In Conference on
Programming Language Design and Implementation (PLDI).

Heintze, N. and Tardieu, O. 2001. Ultra-fast aliasing analysis using CLA: A million
lines of C code in a second. ACM SIGPLAN Notices 36, 5 (May), 254–263. In Conference on
Programming Language Design and Implementation (PLDI).

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstrac-
tion. In Symposium on Principles of Programming Languages. 58–70.

Landi, W. and Ryder, B. G. 1992. A safe approximate algorithm for interprocedural
aliasing. ACM SIGPLAN Notices 27, 7 (July), 235–248. In Conference on Programming
Language Design and Implementation (PLDI).

Lhoták, O. and Hendren, L. 2003. Scaling Java points-to analysis using SPARK. In
12th International Conference on Compiler Construction (CC). LNCS, vol. 2622. 153–169.

Livshits, B., Whaley, J., and Lam, M. S. 2005. Reflection analysis for java. In
Proceedings of Programming Languages and Systems: Third Asian Symposium, APLAS 2005.

Milanova, A.,Rountev, A., andRyder, B. G. 2005. Parameterized object sensitivity
for points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1, 1–41.

Naumovich, G., Avrunin, G. S., and Clarke, L. A. 1999. Data flow analysis for
checking properties of concurrent java programs. In Proc. Intl. Conf. on Software Eng. Los
Angeles, 399–410.

Plevyak, J. and Chien, A. A. 1994. Precise concrete type inference for object-oriented
languages. ACM SIGPLAN Notices 29, 10 (Oct.), 324–324. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA).

Ramalingam, G. 2002. On sparse evaluation representations. Theor. Comput. Sci. 277, 1-2,
119–147.

Ramalingam, G.,Warshavsky, A., Field, J.,Goyal, D., and Sagiv, M. 2002.
Deriving specialized program analyses for certifying component-client conformance. In Proc.
ACM Conf. on Programming Language Design and Implementation. ACM SIGPLAN Notices,
vol. 37, 5. ACM Press, New York, 83–94.

Reps, T., Horwitz, S., and Sagiv, M. 1995. Precise interprocedural dataflow analysis
via graph reachability. In Proc. ACM Symp. on Principles of Programming Languages. 49–61.

Sagiv, M., Reps, T., and Wilhelm, R. 2002. Parametric shape analysis via 3-valued
logic. Transactions on Programming Languages and Systems (TOPLAS) 24, 3 (May), 217–298.

Sharir, M. and Pneuli, A. 1981. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications.

Shoham, S., Yahav, E., Fink, S., and Pistoia, M. 2007. Static specification min-
ing using automata-based abstractions. In International Symposium on Software Testing and
Analysis (ISSTA).

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Conference record of
POPL ’96, 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages: papers presented at the Symposium: St. Petersburg Beach, Florida, 21–24 January
1996, ACM, Ed. ACM Press, New York, NY, USA, 32–41. ACM order number: 549960.

Strom, R. E. and Yemini, S. 1986. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng. 12, 1, 157–171.

Whaley, J., Martin, M., and Lam, M. 2002. Automatic extraction of object-oriented
component interfaces. In Proceedings of the International Symposium on Software Testing and
Analysis.

Wilson, R. P. and Lam, M. S. 1995. Efficient context-sensitive pointer analysis for

C programs. ACM SIGPLAN Notices 30, 6 (June), 1–12. In Conference on Programming
Language Design and Implementation (PLDI).

Yahav, E. and Ramalingam, G. 2004. Verifying safety properties using separation and
heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 2004 conference on Pro-
gramming language design and implementation. ACM Press, 25–34.

ACM Journal Name, Vol. 17, No. 2, 4 2007.

34 · Stephen J. Fink et al.

Yorsh, G., Yahav, E., and Chandra, S. 2007. Symbolic summarization with applica-

tions to typestate verification. Tech. rep., Tel Aviv University. www.cs.tau.ac.il/∼gretay.

Received April 2007; no revision; accepted July 2007

ACM Journal Name, Vol. 17, No. 2, 4 2007.

