
Deriving Linearizable Fine-Grained Concurrent Objects

Martin Vechev
IBM Research

Eran Yahav
IBM Research

Abstract
Practical and efficient algorithms for concurrent data structures are
difficult to construct and modify. Algorithms in the literature are
often optimized for a specific setting, making it hard to separate the
algorithmic insights from implementation details. The goal of this
work is to systematically construct algorithms for a concurrent data
structure starting from its sequential implementation. Towards that
goal, we follow a construction process that combines manual steps
corresponding to high-level insights with automatic exploration
of implementation details. To assist us in this process, we built
a new tool called PARAGLIDER. The tool quickly explores large
spaces of algorithms and uses bounded model checking to check
linearizability of algorithms.

Starting from a sequential implementation and assisted by the
tool, we present the steps that we used to derive various highly-
concurrent algorithms. Among these algorithms is a new fine-
grained set data structure that provides a wait-free contains
operation, and uses only the compare-and-swap (CAS) primitive
for synchronization.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords concurrent algorithms, verification, synthesis, model
checking, linearizability

1. Introduction
Concurrent data-structures, also known as concurrent objects [15],
allow the programmer of a concurrent system to work with the illu-
sion of a sequential data-structure, while permitting a high-level of
concurrency. To achieve this objective, concurrent objects are usu-
ally implemented using fine-grained locking, or other fine-grained
synchronization mechanisms such as compare-and-swap (CAS).
Unfortunately, this makes them notoriously hard to design, imple-
ment, and verify. This is especially true when their implementations
employ low level pointer manipulations (see, e.g., [8]).

Universal construction methodologies such as [14], provide a
systematic way to construct concurrent objects, but produce ineffi-
cient results. Other popular concurrency mechanisms such as soft-
ware transactional memory [11], if used naively, can lead to in-
efficiencies due to false sharing: unaware of the underlying data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00.

structure invariants, a transactional operation may restart unneces-
sary even if its effect is benign. To gain efficiency, one can try to
reduce the scope of the transaction, but then we are faced with sim-
ilar challenges as designing fine-grained data structures.

Direct construction of specific algorithms is the realm of ex-
perts, and produces algorithms that are very efficient, but are al-
ready specialized for a particular environment. This process mixes
algorithmic insights with implementation complexity, and makes it
hard to adapt the algorithms to a different setting, modify them, and
verify their correctness.

In this paper, we show how to systematically derive fine-grained
concurrent objects, starting from a sequential implementation. Our
derivation process combines manual steps that correspond to high-
level insights with automatic exploration of implementation de-
tails. The exploration procedure, implemented in a tool called
PARAGLIDER, helps the designer focus attention on specific al-
gorithmic variations by quickly rejecting incorrect ones. We show
how the systematic derivation, assisted by the tool, yields interest-
ing and practical concurrent algorithms.

To guarantee that a concurrent object appears to the programmer
as a sequential data-structure, concurrent objects are often required
to be linearizable [15]. Intuitively, linearizability provides the illu-
sion that any operation performed on a concurrent object takes ef-
fect instantaneously at some point between its invocation and its re-
sponse. Existing approaches for automatic verification and check-
ing of linearizability (e.g., [9, 10, 2, 30]) and of related correctness
conditions (e.g., [6, 5]) are valuable. However, these generally ap-
ply when the concurrent object has already been implemented. In
this paper, we follow a different direction, and provide a tool that
can assist a designer in a systematic derivation process of lineariz-
able fine-grained concurrent objects.

1.1 Motivating Example
Fig. 1 shows a standard sequential implementation of a set data
structure. This implementation uses an underlying singly linked-
list. The list is sorted in ascending key order, and uses two sen-
tinel nodes head (with the smallest possible key) and tail (with
the largest possible key). The set supports three operations: add,
remove, and contains, with their standard meaning. All oper-
ations use a macro LOCATE to traverse the list and locate an item
based on the value of its key.

Fig. 2 shows a concurrent set algorithm derived by a designer
using PARAGLIDER. We explain the exact details of this algorithm
in Sec. 4.3. For now, it suffices to note that this algorithm is
quite distant from the sequential implementation of Fig. 1, and
in particular, uses the lower-level CAS synchronization primitive.
Note that designing practical algorithms that use a double compare
and swap primitive (DCAS) is a challenging task [8]. Algorithms
relying only on CAS are even more complex and involved [21].

The design of a concurrent object requires expertise and de-
signer insights, but also requires dealing with a large number of
implementation details. Particular design decisions are being made

bool add(int key) {
Entry *pred,*curr,*entry;
LOCATE(pred, curr, key)
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
pred−>next = entry
return true

}

bool remove(int key) {
Entry *pred,*curr,*r;
LOCATE(pred, curr, key)
k=(curr−>key 6= key)
if(k) return false
r = curr−>next
pred−>next = r
return true

}

bool contains(int key) {
Entry *pred,*curr;
LOCATE(pred, curr, key)
k=(curr−>key==key)
if(k) return true
if(¬k) return false

}

LOCATE(pred, curr, key) {
pred=head
curr = head−>next
while(curr−>key < key){
pred=curr
curr = curr−>next
}

}

Figure 1. A sequential implementation of a set algorithm based on a sorted singly-linked-list.

boolean add(int key) {
Entry *pred,*curr,*entry;

restart :
LOCATE(pred, curr, key)
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
val=CAS(&pred−>next, 〈curr.ptr, 0〉, 〈entry.ptr, 0〉)
if(¬val) goto restart
return true
}

boolean remove(int key) {
Entry *pred,*curr,*r

restart :
LOCATE(pred, curr, key)
k=(curr−>key 6= key)
if(k) return false
r = curr−>next
lval=CAS(&curr−>next, r, 〈r.ptr, 1〉)
if(¬lval) goto restart
pval=CAS(&pred−>next, 〈curr.ptr, 0〉, 〈r.ptr, 0〉)
if(¬pval) goto restart
return true
}

boolean contains(int key) {
Entry *pred,*curr;
LOCATE(pred, curr, key)
k=(curr−>key==key)
if(¬k) return false
if(k) return true
}

Figure 2. A concurrent set algorithm using a marked bit to mark deleted nodes. The bit is stored with the next pointer in a single word.
Synchronization is implemented using CAS. contains does not use synchronization and does not restart. The LOCATE is the one of Fig. 1.

based on the environment (e.g., available memory model and syn-
chronization primitives) and the requirements from the algorithm
(e.g., required memory overhead and progress guarantees). Each
design decision entails different low level implementation details.
The designer wishing to obtain a working algorithm for her specific
setting is often forced to follow a single path of design choices due
to the cost of exploring alternatives.

When designing such algorithms, the high-level skeletal struc-
ture of the algorithm is often known. The key to an efficient de-
sign process is the ability to quickly check various design choices.
The designer may be facing questions relating to alternative design
choices such as: can synchronization be reduced by adding more
coordination meta-data? can I obtain a correct algorithm with lower
space overhead? can I obtain a similar algorithm for a slightly dif-
ferent environment? (e.g., assuming no garbage collection.)

Our system is geared towards helping such experts in the design
process of concurrent objects. The system allows the domain expert
to specify her insights and assists her by exploring a space of
algorithms based on the provided insights.

For example, the “insight” in the concurrent algorithm of Fig. 2
is that a marked bit has to be used to coordinate between threads.
Introducing a marked bit for a deleted node was first used in the
lock-free FIFO queue algorithm of Prakash et. al. [23] . This in-
sight, later used in [12], can lead to many different implementa-
tions, depending on the environment of the concurrent object, and
requirements imposed on it. For example, Michael [21] used this
insight as a basis for a concurrent set algorithm that operates with
explicit memory management (making the problem significantly
harder). Heller et. al. [13] used this insight as the basis of a lock-
based algorithm. In this paper, we show how PARAGLIDER can as-
sist a designer in the systematic derivation of such algorithms.

1.2 Domain-specific Exploration
The usage scenario of PARAGLIDER is one that combines man-
ual transformations with automatic exploration. The designer pro-
vides the insightful leaps by manual transformations of algorithm
schemas, and the system fills the lower-level details by performing
a combinatorial search around each of the provided schemas. Since
different algorithms produced from the same schema can have dif-

Schema

Algorithm

Automated search

Manual transformation

Sequential (Fig. 1)

Optimistic (Fig. 5)—
Optimistic—

Null-based
Marked-based

… …

(true,true,true)

(p->n==c, p->n==c ,true)

Fig.9 Fig.10

Fig.8

CAS/DCAS CAS/DCAS

Prio-Q

CAS

Fig.2

Stack

CAS/DCAS

CAS

Figure 3. Flow of derivation in this paper.

ferent tradeoffs in terms of space overhead, synchronization and
progress, PARAGLIDER produces a set of results. The designer can
choose the appropriate algorithm from the reported set.

PARAGLIDER allows the designer to provide domain-specific
knowledge about the space of algorithms being explored by:
(i) defining a partial order of correctness-implication between al-
gorithms; (ii) defining an equivalence between algorithms. This
enables the exploration procedure to often infer the correctness (or
incorrectness) of an algorithm by the correctness (or incorrectness)
of another algorithm in the search space. This reduces the number
of algorithms that are checked by the model checker to less than
3% of the total number of algorithms in the space. This reduction
is the key to feasibility of exploration.

1.3 Derivation Flow and Correctness Conditions
Fig. 3 shows an overview of the example derivation process de-
scribed in this paper. The starting point is the sequential algorithm
of Fig. 1. This algorithm, when considered in a concurrent setting,
is not linearizable. A naive solution would be to put each operation

inside a coarse-grained atomic section. In this case, the resulting al-
gorithm would be linearizable, but permit no concurrent operations.
The basic question that we ask is:

How do we derive an algorithm with fine-grained synchro-
nization, while preserving correctness?

We answer this question by following a systematic derivation
process which combines manual transformations (shown as solid
arrows), with automatic exploration (shown as dashed arrows). The
manual transformations capture designer insights and produce al-
gorithm schemas (shown as half-full circles) from which auto-
matic exploration can proceed. Automatic exploration instantiates
a schema into a set of algorithms (each shown as a circle) by fill-
ing the missing lower-level implementation details (such as order
between operations, and partition to atomic sections). We use ∅ to
denote cases when all instances of a schema fail the correctness
check.

Correctness Conditions All automatic exploration is done while
checking for linearizability. More details are provided in Sec. 5.

1.4 Main Results
The main contributions of this paper are:

• PARAGLIDER, a tool that assists algorithm-designers to system-
atically derive concurrent algorithms by exploring an algorithm
space based on the designers insights.

• The tool checks algorithms in the space for linearizability, and
supports checking of linearizability both with fixed lineariza-
tion points and with automatic linearization.

• The tool uses a domain-specific exploration that leverages the
relationship between algorithms in the space to reduce the num-
ber of algorithms that have to be checked by the model checker.

• We show how the tool is used in a systematic derivation process.
We derive a variety of concurrent set algorithms, including
algorithms close to the ones of [12], [13] and [21]. Specifically,
we derive a new concurrent set algorithm that provides a wait-
free contains operation, and uses only the compare-and-
swap (CAS) primitive for synchronization.

1.5 Assumptions
Our current implementation makes the following assumptions:

• we assume an underlying sequentially consistent memory
model. Our tool can operate without this assumption, but the
correctness condition will have to be adapted to that setting
(e.g., sequential consistency, as in [5]), and the state space ex-
plored by the checking procedure will increase significantly.

• we assume that algorithms operate in the presence of a garbage
collector, and that a node removed from a data-structure is never
reused. This is a standard assumption (e.g., [13]) that allows us
to focus on the algorithms and ignore details of explicit memory
management. The addition of explicit memory management is
a separate challenging problem (see, e.g., [21]).

We focus on the exploration of large spaces of algorithms and
use bounded model-checking to check for linearizability and safety
of algorithms. Automatic verification of linearizability for the algo-
rithms we explore remains a problem for future work.

At this point, the system can be viewed as producing a set
of candidate algorithms in a systematic manner. In particular, the
system narrows the space of algorithms that the user has to examine
by ruling out algorithms observed as incorrect.

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/true

inv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/trueinv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

(H1)

(L1)

inv a(4) a(4)/true inv c(4) c(4)/true inv a(7) a(7)/true

inv r(4) r(4)/true c(7) c(7)/false inv c(7) c(7)/true

(H2)

�

�

�

�

�

�

Figure 4. Concurrent histories and possible sequential histories
corresponding to them.

2. Background: Linearizability
Linearizability [15] is a commonly used correctness criterion for
implementations of concurrent objects. Intuitively, linearizability
provides the illusion that any operation performed on a concurrent
object takes effect instantaneously at some point between its invo-
cation and its response.

The linearizability of a concurrent object is verified with respect
to a specification of the desired behavior of the object in a sequen-
tial setting. This sequential specification defines a set of permitted
sequential executions. Informally, a concurrent object is lineariz-
able if each concurrent execution of operations on the object is
equivalent to some permitted sequential execution, in which the
real-time order between non-overlapping operations is preserved.
The equivalence is based on comparing the arguments of operation
invocations, and the results of operations (responses).

Other correctness criteria in the literature, such as sequential
consistency [17], and serializability [22] also require that a concur-
rent history be equivalent to some sequential history in which op-
erations appear to have executed atomically (i.e., without interleav-
ing). However, these criteria differ on the requirements on ordering
of operations. Sequential consistency requires that operations in the
sequential history appear in an order that is consistent with the or-
der seen at individual threads. Serializability is defined in terms of
transactions, and requires that transactions appear sequentially, that
is, without interleavings. Note that a transaction may include sev-
eral operations, and may operate on several objects.

Compared to these correctness criteria, linearizability is more
intuitive, as it preserves the real-time ordering of non-overlapping
operations. In addition, linearizability is compositional, meaning
that a system consisting of linearizable objects is guaranteed to be
linearizable [15].

EXAMPLE 2.1. Fig. 4 shows two concurrent histories H1 and H2,
and a sequential history L1. All histories involve two threads in-
voking operations on a shared concurrent set. In the figure, we
abbreviate names of operations, and use a,r, and c, for add,
remove, and contains, respectively. We use inv op(x) to
denote the invocation of an operation op with an argument value
x, and op/val to denote the response op with return value val.

Consider the history H1. For now, ignore the star symbols.
In this history, add(4) is overlapping with remove(4), and
add(7) overlaps contains(7). The history H1 is linearizable.
We can find an equivalent sequential history that preserves the
global order of non-overlapping operations. The history L1 is a
possible linearization of H1 (in general, a concurrent history may
have multiple linearizations).

In contrast, the history H2 is non-linearizable. This is because
remove(4) returns true (removal succeeded), and contains(4)

that appears after remove(4) in H2 also returns true.However,
the history H2 is sequentially consistent.

Checking linearizability is challenging because it requires cor-
relating any concurrent execution with a corresponding permitted
sequential execution.

In some cases, it is possible to specify for each operation a
point in the code (more generally, a set of alternative points) in
which the operation appears to take place instantaneously. Such
points are commonly referred to as linearization points. When the
linearization points of a concurrent object are known (e.g., by user
specification), they induce an order between overlapping operations
of a concurrent history. This obviates the need to enumerate all
possible permutation for finding a linearization.

EXAMPLE 2.2. Consider the history H1 of Fig. 4, the star symbols
in the figure denote the occurrence of a user-specified linearization
point in each operation. Using the relative ordering between these
points determines the order between overlapping operations, and
therefore determines a unique linearization of H1, shown as L1.

We can check linearizability in two settings: (i) automatic lin-
earization—the system explores all permitted permutations of a
concurrent history to find a valid linearization; (ii) fixed lineariza-
tion points—the linearization point of each operation is defined
in terms of a user-specified statement in the program in which it
appears to take place. The ability to check algorithms using auto-
matic linearization is essential for the exploration process, as the
linearization points of algorithms being explored are unknown. In
this paper, we focus on checking linearizability, as it is the appro-
priate condition for the domain of concurrent objects [15]. Our tool
can also use other conditions (e.g., operation-level serializability).

3. Paraglider
In this section, we show how our domain specific exploration pro-
cedure, implemented in a tool called PARAGLIDER, is able to effi-
ciently explore a vast number of combinations with a small number
of invocations of the checking procedure. For now, we treat the
checking procedure as a black box (see Sec. 5 for details).

3.1 Input / Output
The exploration framework uses the following inputs:
• a program schema with placeholders for missing code-fragments.
• a (correct) sequential implementation of the concurrent object,

used as an executable specification of correct behavior.
• optional: a specification of linearization points.

The output of the exploration procedure is a set of instantiated
schemas (referred to as “algorithms”), that have been checked by
the checking procedure.

Informally, a placeholder defines a set of code fragments that
can be used to fill the missing part in the program schema. A
placeholder is defined over a set of building blocks, and a set of
constraints on how these blocks can be used. The building blocks
can be viewed as the statements of a domain specific language
for constructing concurrent data structures. Generally, any building
block that references a shared location contains one memory access
(although it may operate on any number of local values). For
example, a building block r = curr−>next reads the next pointer
of curr into a local variable r. We present building blocks for the
algorithms explored in this paper in Section 4.

We allow the user to leave the exact details of a building block
undetermined, and let a block be parametric on the expressions
it is using. The set of possible expressions used by a building
block can be defined using a regular expression (we assume a
predetermined bounded length). For example, the parametric block

x = y.[f |g|h] can be instantiated to the three instantiated blocks
x = y.f , x = y.g or x = y.h. The exploration preformed by
PARAGLIDER will try each of these instantiated blocks.

In this paper, a placeholder can be constrained by sequencing
constraints that restrict the permitted sequences of blocks, and
atomicity constraints that specify which blocks have to be executed
atomically.

DEFINITION 3.1. A placeholder ph is a pair 〈B, C〉, where B is
a set of building blocks, and C is a set of atomicity constraints
and sequencing constraints expressed as regular expressions over
B. For atomicity constraints, we write [b1, b2] when a block b1

must appear in the same atomic section with b2 in ph (note that
this does not restrict the order in which they appear within the
atomic section). For sequencing constraints, we use the following
shorthand notations: we write b1 < b2 when b1 must appear before
b2 in ph, and (b1, b2) when b1 must appear adjacent to b2 in ph.

A placeholder instance is a single code fragment (sequence
of instantiated blocks and atomic sections) that satisfies the con-
straints of the placeholder.

DEFINITION 3.2. Given a placeholder ph = 〈B, C〉, a place-
holder instance is a code fragment cf such that all blocks of cf are
instantiated from B, and cf satisfies the constraints specified in C.
In particular, the code fragment cf includes an equivalence rela-
tion atom(cf) ⊆ B × B, that satisfies the atomicity constraints.
We note that atom(cf) partitions cf to atomic sections. Given a
placeholder ph, we use Dph to denote the set of all placeholder
instances for ph, and refer to it as the domain of ph.

A program schema consists of a skeleton and a set of placehold-
ers (including expression placeholders). Given a schema S, we use
PH(S) to denote the set of placeholders in S.

Given a program schema S, a placeholder assignment A is a
(partial) function assigning a placeholder to a specific instance in
its domain. When A assigns an instance for each placeholder of S,
we say that A is a complete assignment.

A schema instance is a pair of a schema S, and a complete as-
signment A, assigning a placeholder instance for each placeholder
of S, i.e., a schema in which all placeholders are instantiated.

3.2 Exploration
Our system exhaustively explores the space of placeholder assign-
ments. For most problems, this space is huge and contains millions
of potential assignments. A key ingredient of PARAGLIDER is the
ability to reduce this space by exploiting domain specific knowl-
edge. PARAGLIDER leverages a partial order of implied correctness
defined between assignments, reducing the number of algorithms
that are checked to less than 3% of the total number of algorithms
in the space. This reduction is the key to feasibility of exploration.

Given a placeholder ph we allow the user to define a partial
order between placeholder instances. This partial order defines im-
plied correctness between assignments, thus allowing the search to
use the correctness (or incorrectness) of an assignment to determine
the correctness (or incorrectness) of other assignments.

The system is pre-equipped with a partial order defined between
instances based on atomic sections. Given a placeholder ph and two
placeholder instances i1, i2 ∈ Dph, we say that i1 ≤ i2 when for
every two (instantiated) blocks b1, b2, they appear in the same order
in i1 and i2, and if (b1, b2) ∈ atom(i1) then (b1, b2) ∈ atom(i2).

This partial order captures the domain-specific knowledge that
if a given code-fragment yields a correct algorithm, then increasing
the scope of atomic sections in this code fragment maintains cor-
rectness. In the search, our system also leverages this constraint in
the opposite direction — when a code fragment yields an incorrect
algorithm, any code fragment that is less atomic will also yield an

incorrect algorithm. We note that one has to be careful when match-
ing the correctness criterion used by the checking procedure with
the notion of implied correctness.

DEFINITION 3.3 (Ordering schema instances). Given a schema S
and two complete assignments A1 and A2, we say that A1 implies
the correctness of A2, and write A1 ≤ A2 when for every ph ∈
PH(S), A1(ph) ≤ A2(ph).

The system also allows a user to define a notion of equivalence
between placeholder instances. The system is pre-equipped with
an equivalence of instances based on atomic sections. Intuitively,
when the operations inside an atomic section are independent of
each other in terms of dataflow, they can be reordered. Two place-
holder assignments that only differ on the ordering of independent
operations inside an atomic section are considered equivalent.

The system uses implied correctness and incorrectness based
on schema instance ordering and equivalence to reduce the number
of algorithms that have to be checked. In Section 4.5, we report
experimental results that show the effectiveness of this reduction.
Correctness In this paper we focus on checking linearizability,
but our tool can use any other checking/verification procedure.

4. Concurrent Set Algorithms
In this section, we demonstrate how a designer uses the sys-
tem to construct several fine-grained data structures starting from
a sequential implementation. The section follows the derivation
roadmap shown in Fig. 3.

We explore algorithms by initially considering the general no-
tion of an atomic section, without specifying how it is implemented.
As a second step, we show how to realize the atomic sections in the
derived algorithms via the CAS and DCAS synchronization primi-
tives. Keeping the first part of the derivation at the level of atomic
sections permits alternative realizations (e.g., via locks).

4.1 From Sequential to Optimistic Concurrency
Our first observation is that the traversal of the list searching for the
appropriate key (in LOCATE) is only reading values from the list,
and not modifying it. In the absence of concurrent modifications,
the search part of an operation could be performed concurrently.
This motivates our first step: using optimistic concurrency.

4.1.1 Optimistic Concurrency
We apply a well-known concurrency transformation due to [16]
and obtain a basic schema using optimistic concurrency. In this
method, the optimistic list traversal no longer uses synchronization.
However, after the traversal, we atomically check a validation con-
dition and perform the operation if the condition holds. The result-
ing schema is shown in Fig. 5, where the validation conditions are
left as unspecified expression placeholders 〈VALADD〉, 〈VALREM〉,
〈VALCT〉. In order to turn the schema of Fig. 5 into a correct (but
still a coarse-grained) algorithm, we need to find a suitable assign-
ment of validation conditions.

While we can also find the conditions via a blind search over
some set of user-provided expressions, it may be valuable for a de-
signer to observe the states that cause failure and consider a number
of alternatives. The designer can try and construct a validation con-
dition by starting with the weakest (true), or by starting with the
strongest (false) condition. Starting with the weakest and strength-
ening it seems more natural, as it may expose violations of a safety
property that would help us identify how to strengthen the condi-
tion. Starting with the strongest condition and weakening it is more
challenging, as the base case is a one of non-termination (the algo-
rithm always restarts).

boolean add(int key) {
Entry *pred,*curr,*entry;

restart :
LOCATE(pred, curr, key)
atomic

if(〈VALADD〉){
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
pred−>next = entry
return true
}

goto restart
}

boolean remove(int key) {
Entry *pred,*curr,*r;

restart :
LOCATE(pred, curr, key)
atomic

if(〈VALREM〉){
k=(curr−>key 6= key)
if(k) return false
r = curr−>next
pred−>next = r
return true
}

goto restart
}

boolean contains(int key) {
Entry *pred,*curr;

restart :
LOCATE(pred, curr, key)
atomic

if(〈VALCT〉){
k=(curr−>key==key)
if(k) return true
if(¬k) return false
}

goto restart
}

Figure 5. An algorithm schema using optimistic concurrency with
〈VALADD〉,〈VALRM〉,〈VALCT〉 as unknown validation conditions.

4

1

head tail

T1:inv add(4)

T1: pred T1: curr

T2:inv add(7)
T2:add(7) / true

1

head tail

T1: pred T1: curr

7

T1:add(4) / true

1

head tail

7

T2:inv add(7)
T2:add(7) / true

7

1

head tail

7

4

Figure 6. Invalid execution with the validation condition true.

4

1

head tail

T1:inv add(4)

T1: pred T1: curr

T2:inv remove(1)
T2:remove(1) / true

1

head tail

T1: pred

T1: curr

T1:add(4) / true

1

head tail

T1: inv add(4)
T1: add(4) / true

41

head tail

4

Figure 7. An invalid execution with the validation condition
pred−>next=curr.

4.1.2 Finding Validation Conditions
We choose to start with the weakest conditions mainly because the
underlying checking procedure provides a counterexample when a
safety property is violated.

We start by setting 〈VALADD〉, 〈VALCT〉 and 〈VALREM〉 assigned
to true. We then run the system with only add operations. Fig. 6
shows an invalid execution under this choice. Thread T1 invokes
add(4), finds the location in the list, and stops. At this state, the
pointer pred of T1 (hereafter T1: pred) points to the node 1, and
T1: curr points to the tail of the list. Before T1 continues, a thread
T2 invokes and completes the operation add(7). This results
in the node 7 inserted between T1: pred and T1: curr. Next, T1

continues execution of add(4), resulting in the loss of the node 7.
Finally, another invocation of add(7) by T2 adds 7 to the list, and
returns true where all corresponding sequential executions return
false. At this point, the system reports a linearizability violation.

boolean add(int key) {
Entry *pred,*curr,*entry

restart :
LOCATE(pred, curr, key)
〈ADD〉
return true
}

〈ADD〉 = {
A1 : val=(pred−>next==curr)
A2 : k=(curr−>key == key)
A3 : if(k) return false
A4 : pred−>next = entry
A5 : entry = new Entry(key)
A6 : entry−>next = curr
A7 : if(¬val) goto restart
} with {
(A1, A7), (A2, A3),
A3<A4, A7<A4
}

boolean remove(int key) {
Entry *pred,*curr,*r

restart :
LOCATE(pred, curr, key)
〈REMOVE〉
return true
}

〈REMOVE〉 = {
R1 : val=(pred−>next==curr)
R2 : k=(curr−>key 6= key)
R3 : if(k) return false
R4 : r = curr−>next
R5 : curr−>next = null
R6 : pred−>next = r
R7 : if(¬val) goto restart
} with {
(R1, R7), (R2, R3)
R3<R6, R7<R6, R7<R5
}

boolean contains(int key) {
Entry *pred, *curr

restart :
LOCATE(pred, curr, key)
k=(curr−>key==key)
if(k) return true
if(¬k) return false
}

LOCATE(pred, curr, key) {
pred=head
curr = head−>next
while(curr−>key < key){
pred=curr
curr = curr−>next
if(curr==null) goto restart
}

}

Figure 8. Paraglider specification for a concurrent set algorithm using curr−>next = null for deleted nodes.

The cause of the problem is that an update done by add assumes
pred−>next == curr, a property that can be violated by another
thread between the search and the update. To prevent this scenario,
we manually strengthen 〈VALADD〉 to check whether pred−>next
still points to curr. When that is the case, add can proceed,
otherwise the operation is restarted. We again check the algorithm
running the system only with add operations, and no error is
reported. We therefore move on to derive a validation condition
in the presence of remove operations. A similar counter-example
between remove operations leads to strengthening 〈VALREM〉 to
pred−>next == curr. Unfortunately, the resulting algorithm is
still incorrect. The problem is due to interference between add and
remove. Fig. 7 shows an example of an invalid execution. First,
thread T1 invokes add(4), finds the location in the list, and stops.
Thread T2 then executes a full remove(1) operation and removes
the node pointed to by T1: pred from the list. Next, T1 resumes and
inserts key 4 between pred and curr. Because the node pointed to
by pred was already removed from the list, the update will cause
node 4, inserted by T1, to be lost. Finally, another invocation of
add(4) by T1 adds 4 to the list and returns true, thus observing a
violation of linearizability (as all sequential executions would have
returned false).

This sample execution suggests the need for a mechanism to
prevent removed nodes from being used in other operations. At this
point, it is useful to stop and ask the question:

How can we systematically strengthen the validation condi-
tion based on this information?

In principle, we follow two general guidelines: (i) perform more
work without adding space for coordination metadata, (ii) add
space for coordination metadata and more work based on that
metadata.

4.2 Performing Additional Work
The high-level idea is to make the fact that a node has been re-
moved observable to threads that may be trying to use it. Our in-
sight is that removal of a node can be made observable to other
threads by setting the next field of the node to null when it is be-
ing removed. Since this might break the traversal performed by the
optimistic search, we have to adjust LOCATE, in addition to the op-
erations’ building blocks to correctly act upon a pointer that was set
to null. Fig. 8 shows the schema for algorithms using the above in-
sight. It consists of an implementation of LOCATE and contains,
and skeletal implementations for add and remove. The LOCATE
macro is manually adapted from the sequential implementation,
adding a restart when curr == null.

ADD = {
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
atomic

val=(pred−>next==curr)
if(¬val) goto restart
pred−>next = entry

}

REMOVE = {
k=(curr−>key 6= key)
if(k) return false
atomic

val=(pred−>next==curr)
if(¬val) goto restart
r = curr−>next
curr−>next = null
pred−>next = r

}

Figure 9. A placeholder assignment for the schema of Fig. 8 re-
sulting in a new concurrent set algorithm.

The skeletal implementation for add uses the placeholder
〈ADD〉, and that of remove uses 〈REMOVE〉. Building blocks are
shown as labeled statements inside the placeholder definitions.
Note that most blocks correspond to the same core actions per-
formed by the original sequential implementation. The block R5
reflects the designer insight that the next pointer of a removed node
should be set to null. Blocks A1 and R1 correspond to the valida-
tion expressions we obtained in the previous section.

The placeholder 〈ADD〉 uses two constraints clumping together
certain building blocks, and two constraints that force an order be-
tween blocks. The constraint (A1, A7) forces the conditional restart
to be placed adjacent to the computation of the validation con-
dition (the order between the blocks is forced by dataflow con-
straint that is automatically determined by the system). The con-
straint (A2, A3) forces the conditional return of false to be adja-
cent to the computation of its condition (computation of k). The
constraints A3 < A4 and A7 < A4 force an order in which the op-
eration checks the conditions on key equality and the validation
condition before applying the update. These constraints are added
in order to reduce the size of the search space, and are based on de-
signer knowledge. In addition to user-specified constraints, the sys-
tem automatically generates dataflow constraints, and adds these as
ordering constraints between building blocks.

While the insight of using null is known to the designer, the
exact way in which this should be implemented is unclear. In par-
ticular, the designer would like to obtain the least atomic algorithm
that can be constructed using this insight. This is where the sys-
tem assists the process, by systematically exploring the space of
algorithms that can be constructed from the specified schema. For
this schema, PARAGLIDER found 16 instances. Fig. 9 shows one
of the algorithms produced by the system, other algorithms found
are variations of this algorithm. Note that there are still many pos-
sible combinations that may yield different algorithmic variations.

In particular, there are algorithms where the validation check and
restart take place before the check of key. In addition, note that
finding a single correct instance for a schema is not enough. We are
interested in investigating the tradeoffs between multiple correct
instances of a schema.

Next, we show how the atomic sections in this algorithm can be
directly expressed using low-level synchronization primitives.

4.2.1 Using Low-level Synchronization Primitives
The atomic section in the add operation contains a single read,
write and comparison operations. This atomic section can be di-
rectly implemented as a CAS. The CAS operation compares the
content of a given address to an expected value, and if the value
matches, atomically writes a new value to the given location. The
precise meaning is:

CAS(addr, old, new) {
atomic[

if((∗addr==old) {∗addr = new; return true}
else return false

}
The atomic section in the add is:

atomic

val=(pred−>next==curr)
if(¬val) goto restart
pred−>next = entry

Since the update of pred−>next is only performed conditionally,
and val is a local value computed only once, the goto restart block
can be taken outside the atomic.

val=CAS(&pred−>next, curr, entry)

The atomic section in the remove operation contains two reads,
one comparison, and two writes. We would like to implement this
atomic section using a DCAS. Similarly to the add, we note that
we can move the local operation that is the restarting block after
the atomic section. The DCAS operation compares and swaps two
locations atomically:

DCAS(addr1, addr2, old1, old2, new1, new2) {
atomic

if((∗addr1 == old1)&&(∗addr2 == old2)){
∗ addr1 = new1; ∗ addr2 = new2; return true
} else return false

}
However, in order to use a DCAS, we first need to transform

it to perform r = curr−>next outside of the atomic section, so
it matches the meaning of a DCAS. We use a standard optimistic
concurrency transformation in which an atomic read of a value is
replaced by a non-atomic read followed by a validating compari-
son. Using this transformation, we rewrite the atomic block as:

r = curr−>next
atomic

val=(pred−>next==curr) ∧ (curr−>next == r)
curr−>next = null
pred−>next = r

The atomic section can now be transformed to:

val=DCAS(&pred−>next, &curr−>next, curr, r, r, null)

4.3 Adding Coordination Metadata
The Null-based algorithms obtained in Section 4.2 were designed
under the assumption that no additional space should be used for
coordination metadate. The best algorithm we obtained had two
main disadvantages. First, the optimistic search in an operation
might be disrupted and forced to restart when the next pointer
of a node has been set to null. Secondly, our goal is to reach

boolean remove(int key) {
Entry *pred,*curr,*r

restart :
LOCATE(pred, curr, key)
〈REMOVE〉
return true
}

〈REMOVE〉 = {
R1 : val=(pred−>next==curr) (∧mp)? (∧mc)?
R2 : k=(curr−>key 6= key)
R3 : if(k) return false
R4 : r = curr−>next
R5 : curr−>marked = true
R6 : pred−>next = r
R7 : if(¬val) goto restart
R8 : mp = ¬pred−>marked
R9 : mc = ¬curr−>marked
} with {
(R2, R3), (R1, R7)
R3<R6, R7<R6
}

Figure 10. Paraglider specification for a remove operation using
a marked bit for deleted nodes.The block R1 is a parametric block.

algorithms that only use CAS, rather than DCAS as the best null-
based algorithm does.

From our previous study on another class of concurrent algo-
rithms [29], we know that it is possible to trade-off space for syn-
chronization. That is, introducing more space may allows us to re-
duce the required synchronization. To that end, we introduce a sep-
arate marked field in each node denoting that the node is being
removed. This is inline with modern algorithms who interpret the
setting of that bit as logical removal of the node.

Adding a Marked Bit We modify the schema to include a sepa-
rate marked bit to denote deleted nodes. Fig. 10 shows the schema
for the remove operation using a marked bit. We omit the rest of
the schema since it is similar to the schema of Fig. 8.

In the new schema, we modify the LOCATE code to remove the
(redundant) restart on the case that curr==null. We modify the
building blocks of Fig. 8 by: (i) replacing the block R5 with a new
block setting a marked bit; (ii) adding new blocks for reading the
marked bit of pred and curr (blocks R8 and R9 for remove, and
similar blocks for add); (iii) replacing the blocks computing the
validate condition A1,R1 by new validate conditions as described
below.

After the addition of the marked bit, it is no longer clear what
the validation conditions should be. We know from our experience
with the previous algorithm that it must contain the check for
pred−>next == curr. However, we do not know the marked
bits of which nodes should be checked in each condition. We
therefore define the building blocks computing the conditions as
parametric blocks. A parametric block can draw its value from a
set of values, specified as a regular expression. PARAGLIDER then
searches through these value assignments exhaustively as part of
the exploration. In the case of the validate condition, we define
three parametric blocks, one for each operation. The parametric
blocks for all three operations are of the form:

val = (pred−>next == curr) (∧mp)? (∧mc)?

It is important to note that knowing the meaning of the expression,
the fact that it is a validate expression, allows us to impose an
order on the search. For a given ordering of the blocks, and a given
assignment of atomic sections, if an expression e yields an incorrect
algorithm, then any weaker expression also yields an incorrect
algorithm (as it permits a superset of values permitted by e).

Running the system with the new set of blocks produces 6
algorithms. Note that these algorithms only check the marked
bit of the pred node (and not the curr node). In particular, the
algorithm of Fig. 11 is one of the results with the smallest atomic

boolean add(int key) {
Entry *pred,*curr,*entry;

restart :
LOCATE(pred, curr, key)
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
atomic

mp = ¬pred−>marked
val=(pred−>next==curr) ∧mp
if(¬val) goto restart
pred−>next = entry

return true
}

LOCATE(pred, curr, key) {
pred=head
curr = head−>next
while(curr−>key < key){
pred=curr
curr = curr−>next
}

}

boolean remove(int key) {
Entry *pred,*curr,*r

restart :
LOCATE(pred, curr, key)
k=(curr−>key 6= key)
if(k) return false
curr−>marked = true
r = curr−>next
atomic

mp = ¬pred−>marked
val=(pred−>next==curr) ∧mp
if(¬val) goto restart
pred−>next = r

return true
}

boolean contains(int key) {
Entry *pred,*curr;
LOCATE(pred, curr, key)
k=(curr−>key==key)
if(¬k) return false
if(k) return true
}

Figure 11. A set algorithm using a marked bit to mark deleted
nodes. A variation of [13] that uses a weaker validation condition.

sections. As we will see in the next section, this can be leveraged
towards an efficient implementation of the algorithm. One of the
differences between the algorithm in Fig. 11 and the one presented
by Heller et. al. [13] is that it uses weaker validation conditions. The
algorithm of [13] also checks the marked bit of the node curr.

At this point in the derivation, we have obtained all algorithms
that can be produced from the schema using a marked bit.

4.3.1 Using Low-level Synchronization Primitives
After obtaining several fine-grained algorithms using generic
atomic sections, our goal was to bring them closer to practical im-
plementations. The algorithm of Fig. 11 uses atomic sections that
are similar to the ones we saw in the algorithm of Fig. 9. However,
the algorithm reads the content of an additional memory location
(the marked bit) inside the atomic sections of add and remove.
To implement this algorithm using CAS/DCAS we follow [12, 21]
in which the marked bit is stored together with the pointer in the
same atomic storage unit (ASU). Using a single ASU (usually a
machine word) to record both the next pointer and the marked bit
of a node makes it possible to read both, atomically, with a single
read operation.1 We demonstrate the use of a single ASU on the
atomic section of the add operation. We use 〈ptr, bit〉 to denote
a pair of a reference and a bit value stored in the same ASU. The
atomic section of the add operation can be rewritten as:

atomic

〈pnext, pmrk〉 = pred−>next
val = (pnext == curr) ∧ ¬pmrk
if (val) pred−>next = entry

This, in turn, can be now expressed as a CAS, similar to the
CAS in Section 4.2.1:

val = CAS(&pred−>next, 〈curr.ptr, 0〉, 〈entry.ptr, 0〉)

where curr.ptr refers to the pointer component of the pointer
curr, and 〈curr.ptr, 0〉 is the composite pointer with 0 as the value
of the marked bit. Similarly for entry.

The atomic section of the remove operation can be rewritten
to use only CAS operations. To do that, we follow the same basic
idea as outlined in Section 4.2.1: a standard optimistic concurrency

1 as suggested by [21], the marked bit can be stored in a low order bit of the
next pointer as pointers are at least word aligned on most systems.

transformation in which an atomic read of a value is replaced by a
non-atomic read followed by a validating comparison. We first read
curr−>next into a temporary and use it in a CAS in order to set
the marked bit of curr. If the CAS fails, we restart the operation.

Since the marked bit is stored together with the next pointer,
writing the marked bit requires an atomic manipulation of the entire
next field. As a result, the marking operation itself, although
non-conditional, now requires a CAS. This is purely due to the
implementation choice (space reduction) of storing the marked bit
together with the pointer. The marking is therefore performed by:

r = curr−>next
lval=CAS(&curr−>next, r, 〈r.ptr, 1〉)

where the value read into r is also used later for the removal
from the list. Similarly, we use another CAS to check the validate
of the actual removal, and to perform it atomically. The process
results in the least atomic algorithm we managed to derive and was
already shown in Fig. 2.

4.4 Adapting Set Algorithms
A practical problem is that often an existing algorithm needs to
be adapted to a slightly different setting. The advantage of our
approach is that the designer can (sometimes) adapt the building
blocks of the algorithm, and not the algorithm itself, letting the tool
find algorithms with the adapted building blocks. We consider two
adaptations of set algorithms: (i) priority queue, and (ii) a stack. In
our variation of a priority queue, add corresponds to an insert in
a priority queue, and adds elements with a unique priority key. The
remove corresponds to a deleteMin operation, and removes the
element with the lowest key (highest priority). This corresponds to
changing the blocks of remove to only allow access to the first item
in the list. After adapting the blocks and adjusting the sequential
specification, we run the system and obtain 4 variations of a priority
queue. Similarly, we repeat the process for stacks and obtain 8
variations, including the well-known Treiber algorithm [27]. For
space reasons, we do not show the results in the paper.

4.5 Experimental Results
Table 1 is a summary of the major exploration experiments per-
formed in the derivation process. Every row in the table corre-
sponds to an exploration starting from a single schema. We report
how many algorithms passed the correctness checks (Accepted In-
stances), the total time of exploration in minutes, the total number
of instances that could have been checked under a naive exploration
procedure (Total Instances), and what percentage of the space was
actually checked by the the system (number of algorithms is shown
in parentheses). Note that in each exploration experiment, we are
using the method for automatically checking linearizability (see
Section 5.1). This is because the tool explores many instances for
each schema and the linearization points for each instance can be
different. In cases where we found an instance (algorithm) that we
thought was interesting (such as the one in Fig. 11), we checked that
instance by specifying its linearization points (see Section 5.2).
The effectiveness of the domain specific exploration procedure is
apparent from the percentage of algorithms being checked. In all
cases, it is less than 3% of the total number of algorithms. Our ex-
ploration procedure can be parallelized by exploring different as-
signments separately. This might reduce the opportunities for re-
duction of the space explored, but is expected to yield an overall
improvement in the running times.

4.6 Summary
In this section we started with a sequential algorithm. Using an
optimistic concurrency transformation we arrived at an intermedi-
ate schema. The challenge there was to find correct restarting val-
idation conditions with respect to linearizability. Starting with the

Schema Accepted Time Total Checked
Instances (Min.) Instances Instances %

Null-based 16 26 64,512 0.088 (57)
Marked-based 6 15 138,240 0.048 (66))
Prio-Q 4 2 4,608 0.67 (31)
Stack 8 2 2,560 2.27 (58)

Table 1. Exploration Results.

weakest possible validation conditions (e.g. all set to true), we used
the tool to produce a counter-example. By manually observing the
counter-examples we found some of the simpler conditions. Unfor-
tunately, these conditions were not enough to guarantee correctness
and we had to strengthen them further. Towards that end, we pro-
posed two insights (using null or marked for removal) and speci-
fied the building blocks corresponding to each. We than ran our tool
which found a number of linearizable algorithms with various de-
grees of atomicity for each insight. We then took the best results of
each exploration and manually applied transformations in order to
obtain CAS and DCAS versions. It seemed that this step can be au-
tomated. Finally, we adapted some of the set algorithms to simpler
data structures such as priority queues and stacks. To what extent
these steps can be automated remains a fascinating item of future
work.

5. Checking Linearizability
As mentioned in Section 2, linearizability is verified with respect to
a sequential specification (pre/post conditions). A concurrent object
is linearizable if each execution of its operations is equivalent to
a permitted sequential execution in which the order between non-
overlapping operations is preserved.

Formally, an operation op is a pair of invocation and a response
events. An invocation event is a triple (tid, op, args) where tid
is the thread identifier, op is the operation identifier, and args are
the arguments. Similarly, a response event is triple (tid, op, val)
where tid and op are as defined earlier, and val is the value returned
from the operation. For an operation op, we denote its invocation
by inv(op) and its response by res(op). A history is a sequence
of invoke and response events. A sequential history is one in which
each invocation is immediately followed by a matching response.
A thread subhistory, h|tid is the subsequence of all events in h that
have thread id tid. Two histories h1, h2 are equivalent when for
every tid, h1|tid = h2|tid. An operation op1 precedes op2 in h,
and write op1 <h op2, if res(op1) appears before inv(op2) in h. A
history h is linearizable, when there exists an equivalent sequential
history s, called a linearization, such that for every two operations
op1, op2, if op1 <h op2 then op1 <s op2. That is, s is equivalent to
h, and respects the global ordering of non-overlapping operations
in h.

Checking linearizability boils down to finding a linearization for
every concurrent execution. Towards this end, we employ a model
checker as follows. The model consists of three parts: the concur-
rent object (e.g. a set algorithm), the executable sequential specifi-
cation of the concurrent object and the most general client of that
concurrent object [2]. The client operates by non-deterministically
selecting the operations and the key values, thus exploring all possi-
ble sequences of operations. This client is executed by each thread.
We check that every concurrent execution explored by the model
checker is linearizable.

The checking is supported via two complementary approaches.
The first method is an entirely automated one, requires no user
annotations and is discussed in Section 5.1. This method is the key
for the success of the systematic derivation process, as it requires no
algorithm-specific user annotations. The second method discussed
in Section 5.2 requires algorithm-specific user annotations, but

inv a(5) a(5)/true inv a(5)

inv r(5) r(5)/true

a(5)/true

inv a(5) a(5)/true inv a(5)inv r(5) r(5)/true a(5)/true

inv a(5) a(5)/true inv a(5)inv r(5) r(5)/false a(5)/false

inv a(5) a(5)/true inv a(5) inv r(5) r(5)/truea(5)/false

(H1)

(L1)

(L2)

(L3)

Figure 12. Enumeration of linearizations. (H1) is a concurrent his-
tory, and (L1),(L2), and (L3) are its three potential linearizations.

allows the model checker to explore a larger state space of the
algorithm than the first.

5.1 Checking Linearizability by Recording Histories
In this approach, for every history h, the system explores all pos-
sible linearizations, trying to find one that satisfies the sequential
specification. The worst case time of this approach is exponential
in the length of the history, as it may have to try all possible permu-
tations of h.

Technically, the concurrent history h is obtained by instrument-
ing the schema to record h as part of the state. Upon invocation
of an operation, we record the invocation event together with its
arguments. Upon operation completion, we record the response
event together with the result. Note that this is done only once per
schema and is shared between all instances of that schema. How-
ever, recording the concurrent history as part of the state leads to an
unbounded number of states that results in non-termination of the
model checker. In order to bound the state space and guarantee ter-
mination, the most general client is parameterized by the maximum
number of operations each thread can invoke. In our experiments
this bound is typically set to two or three.
Enumerating Linearizations When the model checker finishes
the exploration of a concurrent execution, the recorded history h
is part of the final state. At that point, a procedure external to the
model checker, is invoked to check linearizability of h. The proce-
dure takes as input the history h and a sequential specification of the
concurrent object. The procedure then attempts to find a lineariza-
tion of h. Note that there could be many possible linearizations of
h, but it is enough to find a single witness. If a witness is found, the
model checker continues checking the algorithm. Otherwise, the al-
gorithm is rejected. The procedure also supports checking of other
correctness criteria (e.g., operation-level serializability).

EXAMPLE 5.1. Fig. 12 demonstrates how the checking procedure
works for a simple history (H1). This history is an example for the
kind of histories recorded inside a single state that is explored by
the model checker. There are two threads in the history: one thread
executes two add(5) operations, both of which return true while
the second thread executes a remove(5) operation that also re-
turns true. To check linearizability of H1, our procedure enumer-
ates all possible linearizations of H1. In this case, these are (L1),
(L2) and (L3). These histories are obtained by re-ordering only
overlapping operations of H1. For each of these three potential lin-
earizations, we execute the operations over the (executable) speci-
fication, and compare the return value of each operation to its cor-
responding return value in the concurrent history. In this example,

(L1) is not a valid linearization of (H1) as its remove(5) returns
false. Similarly, (L3) is not a valid linearization of (H1) as its sec-
ond add(5) returns false. The sequential history (L2) is a valid
linearization of (H1) as its invocation and response values match
the ones in the concurrent history.

5.2 Checking via Linearization Points
Recall that even though there could be many possible linearizations
of a concurrent history h, finding a single linearization is enough
to declare the history correct. While requiring no user annotations,
the main shortcoming of the previous approach is that it records
the entire history as part of the state. We know from the definition
of linearizability that for every operation op, there exists a point
between its invocation inv(op) and response res(op) in the history
h where op appears to take effect. This point is typically referred
to as the linearization point lp(op) of the operation op. Given
a concurrent history h, the (total) ordering between these points
induces a linearization. To perform checking, every time lp(op)
is reached in h, the operation op in the sequential specification is
executed and the results are compared. If the results are the same,
the exploration process continues, otherwise an error is raised.

EXAMPLE 5.2. Consider the algorithm of Fig. 9, and an add op-
eration. When the add succeeds (and returns true), the lineariza-
tion point is at the statement pred−>next = entry. This is the
point at which the update of shared information takes place. When
add returns false, the linearization point is at the last execution of
the statement curr = curr−>next in LOCATE. This is the point
where the negative outcome of the operation is already determined.

This approach typically requires an insight on how the algo-
rithm operates. Its advantage however is that because the lineariza-
tion is built and checked on-the-fly, we no longer need to record
h as part of the state. In turn, this allows to check algorithms with
each thread executing the most general client, without a bound on
the number of operations. The most general client is a program that
non-deterministically selects the operations and key values that are
used with the concurrent object.
Multiple Points Note that there could be more than one lineariza-
tion of a concurrent history h. Therefore, there could be more than
one linearization point lp(op) for each operation op. For simpler al-
gorithms, lp(op) is usually a point in the code of op. But for more
complex fine-grained algorithms, there may be several linearization
points for lp(op) which may reside in method(s) other than op. The
choice of which point is selected is conditional on the history h.

EXAMPLE 5.3. Consider the algorithm in Fig. 11. The lp(remove)
when remove returns true resides in the code of remove and
is the physical removal of the node, that is, building block R6.
Now consider the case where remove returns false for key k.
The lp(remove) in this case is conditional on the order and types
of operations executed by other threads during the execution of
remove. It is the earliest of the two points: (i) right before a
successful addition of k by another thread and (ii) execution of
building block R2 (comparing the key).

Typically, in order to check algorithms where the linearization
points occur in another thread, additional instrumentation of the
model is required. We have performed this instrumentation for the
algorithm in Fig. 11.

6. Related Work
There is a significant body of work describing concurrent objects
as well as various formal methods for checking their correctness.
Due to space reasons, we only survey some of this work.

Concurrent Set Algorithms The algorithm of [12] was the first
lock-free set algorithm using only CAS instructions. This algorithm
relies on a garbage collector (GC). Later, [21] introduced another
lock-free set algorithm using explicit memory management. The in-
troduction of manual memory management introduces many com-
plexities that are beyond the scope of this paper. In [13], the au-
thors present a concurrent algorithm with a wait-free contains
also assuming a GC. The add and remove operations are block-
ing, due to the use of locks. The best algorithm derived in this
paper uses only CAS operations, assumes GC, and also supports
a wait-free contains. Similarly to [13], it is blocking in both
add and remove. The reason is because once a node is marked,
the thread who marked the node could crash before it physically
removes the node. The marked node could then stay in the list per-
manently which may cause other operations to restart indefinitely.
This scenario technically precludes the algorithm from being re-
ferred to as lock-free. This case can be avoided by requiring each
operation to physically remove a marked node once it encounters
it during locate. This will result in a different linearization point
for a successful remove [18].

Exploration and Derivation In previous work [29], we also used
a semi-automated approach for exploring a space of concurrent GC
algorithms. That work used a limited search procedure and an ab-
straction specifically geared towards the safety property required
for that specific domain. In this work, we concentrate on exploring
and checking a broader class of concurrent algorithms. To that end,
we define a more general exploration mechanism and provide an
automatic procedure for checking linearizability, a property rele-
vant to a wide class of concurrent objects.

There has been a considerable amount of work on using brute-
force search to find a correct completion of a partial program (e.g.,
Sketching [25, 26, 24]), a “superoptimized” code sequence [3, 19],
or an algorithm within a limited family (e.g., mutual exclusion
algorithms [4]). Our approach differs in several ways, notably:
• Systematic Derivation We follow a systematic derivation that

combines manual steps with automated exploration steps per-
formed by PARAGLIDER. This clarifies which decisions are fun-
damental to the algorithm and which are a result of a specific
implementation (e.g. merging the pointer with a marked bit).

• Checking Linearizability Automatic checking of properties rel-
evant to concurrent algorithms such as linearizability.

• Domain-specific Exploration The ability to explore and check
a large space of algorithms is due to the domain-specific explo-
ration that leverages relationships between algorithms.
[1] introduces a formal derivation of concurrent queue algo-

rithms close to the ones of [20]. Their derivation is an attempt to
reconstruct known algorithms. In contrast, we explore a wide range
of algorithms, and use an automated tool for exploring alternatives.

Checking Linearizability and Related Conditions CheckFence
[6] checks the correctness of algorithms using symbolic bounded
test-cases. It first constructs all sequential executions for operations
invoked in the test program and creates a set of correct observable
behaviors (sequences of invokes and returns). It then checks that
every concurrent executions is observationally equivalent to some
correct (sequential) behavior. In [6], algorithms were tested using
symbolic test-cases. Previous work by the same authors [5] checked
for operation-level sequential consistency using bounded test-cases
and user provided specification of “commit points”. In contrast,
we assume a sequentially consistent memory model, and check for
linearizability. Moreover, when the user specifies fixed lineariza-
tion points, our approach uses test-case invoking an unbounded
sequences of operations (over an underlying data-structure of a
bounded size).

Verification Of Linearizability There have been several works on
formally verifying linearizability. The algorithm of [13] has been
verified by [7] using an automata based approach and by [28] us-
ing the rely-guarantee proof method. In the work of [2], the authors
assumed a fixed number of threads and using abstract interpretation
verified some small concurrent algorithms. These proof methods
typically require manual intervention, such as specifying lineariza-
tion points and/or constructing the actual proof. As noted by [7],
this is especially difficult when the linearization point for a method
does not reside in its code and is dependent on the program trace.
This is the case for several of the algorithms derived in this paper
as well as the contains of [13]. We see our approach as com-
plementary to a formal verification of a final algorithm. The system
produces fine-grained candidates which could then be further ver-
ified formally if necessary. The work of [10] provides bounded
model checking of commit-atomicity for small algorithms, assum-
ing user-provided fixed commit points, which reside in the code of
the method. Our method for checking fixed points does not require
the point to reside in the method and hence we can check more
complex algorithms. Wing and Gong [30] provide a simulation pro-
cedure for testing linearizability with user provided or randomly
generated test-cases. A concrete test case is executed in a simula-
tor and the system attempts to find a linearization of one particular
execution. The key advantage of our system is that up to a bound,
all possible test cases are automatically generated, and for each test
case, exhaustively, all possible executions are checked.

7. Conclusion and Future Work
We presented a systematic construction of several linearizable con-
current algorithms. Assisted by a new tool, we were able to arrive at
practical concurrent algorithms while clearly distilling the algorith-
mic insights from implementation details. In particular we derived
a practical set algorithm that only uses CAS, and provides a wait-
free contains operation.

While modest, this step is encouraging in further exploring
algorithmic construction mechanisms. In the future, we plan to
formalize the informal derivation steps presented in this paper and
extend the construction mechanism to arrive at verified rather than
checked algorithms.

Acknowledgements
We thank Maged Michael, Dragan Bosnacki, Gerard Holzmann,
Mooly Sagiv, Greta Yorsh, David Bacon and Noam Rinetzky.

References
[1] ABRIAL, J.-R., AND CANSELL, D. Formal construction of a non-

blocking concurrent queue algorithm (a case study in atomicity). J.
UCS 11, 5 (2005), 744–770.

[2] AMIT, D., RINETZKY, N., REPS, T. W., SAGIV, M., AND YAHAV,
E. Comparison under abstraction for verifying linearizability. In CAV
(2007), vol. 4590 of LNCS, Springer, pp. 477–490.

[3] BANSAL, S., AND AIKEN, A. Automatic generation of peephole
superoptimizers. SIGOPS Oper. Syst. Rev. 40, 5 (2006), 394–403.

[4] BAR-DAVID, Y., AND TAUBENFELD, G. Automatic discovery of
mutual exclusion algorithms. In Proc. of the symp. on Principles of
Distributed Computing (2003), pp. 305–305.

[5] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Bounded
model checking of concurrent data types on relaxed memory models:
A case study. In CAV (2006).

[6] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Check-
fence: checking consistency of concurrent data types on relaxed
memory models. SIGPLAN Not. 42, 6 (2007), 12–21.

[7] COLVIN, R., GROVES, L., LUCHANGCO, V., AND MOIR, M.
Formal verification of a lazy concurrent list-based set algorithm.
In CAV (2006).

[8] DOHERTY, S., DETLEFS, D. L., GROVES, L., FLOOD, C. H.,
LUCHANGCO, V., MARTIN, P. A., MOIR, M., SHAVIT, N., AND
GUY L. STEELE, J. Dcas is not a silver bullet for nonblocking
algorithm design. In SPAA (2004), pp. 216–224.

[9] ELMAS, T., TASIRAN, S., AND QADEER, S. Vyrd: verifying
concurrent programs by runtime refinement-violation detection. In
PLDI (2005), pp. 27–37.

[10] FLANAGAN, C. Verifying commit-atomicity using model-checking.
In SPIN (2004).

[11] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. SIGPLAN Not. 38, 11 (2003), 388–402.

[12] HARRIS, T. L. A pragmatic implementation of non-blocking linked-
lists. In DISC ’01: Proc. of conf. on Distributed Computing (London,
UK, 2001), Springer, pp. 300–314.

[13] HELLER, S., HERLIHY, M., LUCHANGCO, V., MOIR, M.,
SCHERER, W., AND SHAVIT, N. A lazy concurrent list-based
set algorithm. In Proc. of conf. On Principles Of Distributed Systems
(OPODIS 2005) (2005), pp. 3–16.

[14] HERLIHY, M. A methodology for implementing highly concurrent
data objects. ACM Trans. Program. Lang. Syst. 15, 5 (1993), 745–
770.

[15] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness
condition for concurrent objects. Trans. on Prog. Lang. and Syst. 12,
3 (1990).

[16] KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for
concurrency control. ACM Trans. Database Syst. 6, 2 (1981), 213–
226.

[17] LAMPORT, L. How to make a multiprocessor computer that correctly
executes multiprocess progranm. IEEE Trans. Comput. 28, 9 (1979),
690–691.

[18] MICHAEL, M. Personal communication.
[19] MASSALIN, H. Superoptimizer: a look at the smallest program. In

ASPLOS-II: Proc. of conf. on Architectual support for programming
languages and operating systems (1987), IEEE, pp. 122–126.

[20] MICHAEL, M., AND SCOTT, M. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC
(1996).

[21] MICHAEL, M. M. High performance dynamic lock-free hash tables
and list-based sets. In SPAA (2002), pp. 73–82.

[22] PAPADIMITRIOU, C. H. The serializability of concurrent database
updates. J. ACM 26, 4 (1979), 631–653.

[23] PRAKASH, S., LEE, Y. H., AND JOHNSON, T. A nonblocking
algorithm for shared queues using compare-and-swap. IEEE Trans.
Comput. 43, 5 (1994), 548–559.

[24] SOLAR-LEZAMA, A., ARNOLD, G., TANCAU, L., BODÍK, R.,
SARASWAT, V. A., AND SESHIA, S. A. Sketching stencils. In PLDI
(2007), pp. 167–178.

[25] SOLAR-LEZAMA, A., RABBAH, R. M., BODÍK, R., AND
EBCIOGLU, K. Programming by sketching for bit-streaming pro-
grams. In PLDI (2005), ACM, pp. 281–294.

[26] SOLAR-LEZAMA, A., TANCAU, L., BODÍK, R., SESHIA, S. A.,
AND SARASWAT, V. A. Combinatorial sketching for finite programs.
In ASPLOS (2006), pp. 404–415.

[27] TREIBER, R. K. Systems programming: Coping with parallelism.
Tech. Rep. RJ 5118, IBM Almaden Research Center, APR 1986.

[28] VAFEIADIS, V., HERLIHY, M., HOARE, T., AND SHAPIRO, M.
Proving correctness of highly-concurrent linearisable objects. In
PPoPP (2006).

[29] VECHEV, M. T., YAHAV, E., BACON, D. F., AND RINETZKY,
N. CGCExplorer: a semi-automated search procedure for provably
correct concurrent collectors. In PLDI (2007), pp. 456–467.

[30] WING, J. M., AND GONG, C. Testing and verifying concurrent
objects. J. Parallel Distrib. Comput. 17, 1-2 (1993), 164–182.

