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Abstract

Constructing correct concurrent garbage collection dlgms is
notoriously hard. Numerous such algorithms have been gezho
implemented, and deployed — and yet the relationship antwrg t

in terms of speed and precision is poorly understood, and the
validation of one algorithm does not carry over to others.

As programs with low latency requirements written in gadsag
collected languages become part of society’s missiorcatitn-
frastructure, it is imperative that we raise the level offatence in
the correctness of the underlying system, and that we utaahets
the trade-offs inherent in our algorithmic choice.

In this paper we present correctness-preserving transfoyns
that can be applied to an initial abstract concurrent garlcaec-
tion algorithm which is simpler, more precise, and easigirtve
correct than algorithms used in practice — but also moreresipe
and with less concurrency. We then show how both pre-exgistirdl
new algorithms can be synthesized from the abstract atgority
a series of our transformations. We relate the algorithmsddly
using a new definition of precision, and informally with respto
overhead and concurrency.

This provides many insights about the nature of concurrent
collection, allows the direct synthesis of new and usefgbathms,
reduces the burden of proof to a single simple algorithm,lapsl
the groundwork for the automated synthesis of correct coant
collectors.

1. Introduction

As garbage-collected languages like Java and C# becomeandre
more widely used, the long pauses introduced by traditispat
chronous (“stop the world”) collection are unacceptableniany
domains. This is true both at the high end, where the colleaif
multi-gigabyte heaps causes very long pauses, and at therdw
where systems are used for real-time, embedded, and sgm@br a
cations requiring very low latency. As a result, concurremitec-
tors are now available in most major production virtual niaeb.

However, concurrent collectors are extremely complex and
error-prone. Since such collectors now form part of thetédis
computing base of a large portion of the world’s missionica
software infrastructure, such unreliability is unaccejga

The study of concurrent collectors began with Steele [40k-D
stra [21], and Lamport [31].

Concurrent collectors were quickly recognized as paradtgm
examples of the difficulty of constructing correct concuatral-
gorithms: Steele’s algorithm contained an error which higseu
quently corrected [41], and Dijkstra’s algorithm contalran error
discovered and corrected by Stenning and Woodger [21] gPpli
and Leroy developed a multiprocessor collector for ML [23{ieh
was subsequently found to contain an error [22]. Furtheemor
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some correct algorithms [9] had informal proofs that wenenfi
to contain errors [36].

Much later, Yuasa [45] introduced the shapshot-based algo-
rithm, which is conceptually simpler and trades earliemieation
and increased concurrency for reduced precision.

Many additional incremental and concurrent algorithmsehav
been introduced over the last 30 years [30, 1, 2, 3, 4,5, 63,116,
17, 24, 26, 27, 29, 32, 34, 35, 39, 44], but there has been itey |
experimental comparison of the algorithms and no formalystf
their relative merits. While there is now a well-establigtieag
of tricks” for concurrent collectors, each algorithm corsps them
differently based on the intuition and experience of thegies.
However, because of the complex interactions of the inugsia
required by the different “tricks,” many potential combiioas of
techniques are not used, leading to an underexplored degaye.
Furthermore, since each algorithm is different, a coressrproof
for one algorithm cannot be re-used for others.

All concurrent collectors must decide how to answer thefell
ing basic questions:

e Where is the collector in its progress through the heap?

e Which objects must be traced to guarantee that all live ¢bjec
will be found?

e How does the collector terminate in spite of allocation?

e Which interleavings are allowed between the mutator and the
collector?

Our long-term research agenda is to generate a provablgatorr
concurrent garbage collector from a simple, declarativexiica-
tion of the techniques that should be applied to meet thécpéat
needs of the target system with respect to latency, thraughpd
space consumption.

In previous work [43] we hypothesized that the way in which
the above questions are answered could be expressed dsrtrans
mations of a single base algorithm, informally describedesuch
transformations, and evaluated their relative perforraagxperi-
mentally.

In this work we substantiate that hypothesis: we presemtgesi
algorithm (which we call thé\pexalgorithm) and a set of compos-
able transformations corresponding to each of the abovgtiqus.
Each transformation can be applied to arbitrary subsetseobb-
jects, or to restricted subsets for which we present préorseula-
tions.

Transformations can be applied at the granularity of a singl
object in the heap. This simplifies the proof methodologgsiwe
can reason inductively about the transformation, but alkmwa
enormous flexibility since different transformations cehably be
applied to different objects depending on their charasties.

Furthermore, we formalize for the first time the notion of the
relative precisiorof concurrent collectors, and express the transfor-
mations as correctness-preserving and precision-regliudia also



discuss informally how the reduction in precision providisgful
tradeoffs in terms of implementation cost, speed of coremrg,
and level of concurrency.

Our transformational approach yields a wide range of algo-
rithms. We show derivations for some well-known existingaal
rithms, and also derive some new algorithms which we expéct w
have desirable properties in practice. In particular, @magyaliza-
tion and formalization of the tradeoff between incremeniadate
and snapshot-at-the-beginning approaches allows a nppebach
to newly allocated objects which yields high precision camed
with rapid termination.

The contributions of this paper are:

o A formal framework for describing concurrent garbage aolle
tion algorithms;

e The simple “Apex” algorithm from which all others are dexdye

¢ a set of transformations that can be applied to it to yieldrem-e
mous number of potential algorithms with different premisi
concurrency, and efficiency properties;

o A formal definition of what constitutes relative precisioh o
concurrent collectors;

¢ a proof of correctness for the transformations, which aosvsh
to be precision-reducing (while improving other aspectthef
algorithm);

e The application of the methodology to yield incremental up-
date collectors in the styles of Dijkstra and Steele, snagpsh
collectors like that of Yuasa, as well as previously unkn@in
gorithms with high precision, rapid termination, and higime
currency.

This work is presented in the context of a mark-and-swedp sty
of collector. While we show the synchronization with the swe
phase, we do not consider the details of its implementatitich
contains a number of its own complexities. We have also siiagl
the design space by using a write barrier which is always @&tom
This corresponds to some but not all implementations uspthicr
tice (for instance on a uni-processor safe point basedalima-
chine, or for write barriers whose synchronization can bplém
mented with a single compare-and-swap). So in general s@ne m
ual transformation may still be required to achieve despredor-
mance in the resulting algorithms.

A key aspect of this work is thenodularizationof the proof
obligations. Although we have not proved the correctnesthef
Apex collector, we have proved the correctness of a broaeétyar
of transformations needed for the creation of an efficigg@thm.
This breaks the requirements for the creation of a corrgctrdhm
and implementation into small modular proof componentsctvhi
can be re-used across an enormous range of algorithms; tiadine
requiring a monolithic proof of each new algorithm.

2. A Parametric Concurrent Collector

In this section we present a simple formulation of concurer-
lectors using a common algorithm, in which the differences b
tween algorithms are encapsulated in a function (cadbeposg
which chooses objects to use as the starting points foriaddit
transitive closure operations which find and mark live déat t
would otherwise have been hidden by concurrent mutation.

Theexposdunction makes these choices based on a log of mu-
tator and collector operations, which is the formal anatotjuthe
information captured by the write barrier in real-world ilymen-
tations.

2.1 A Trace Mode for Concurrent Collectors

We model the heap as an infinite $£0f objects. Each objeaibj
contains a sefields = {fi,..., fr} of fields. A field f; is a

function f; : Y — U U{null} mapping an object to another object,
or to a designated valuwill. Without loss of generality we assume
that all objects have the same set of fieldsFor convenience, we
useobj.f; to denote the valug; (obj).

All reachable objects are reachable from a finite seRabot
objects, denotedoot, ..., rootg.

For the time being we assume that stack frames are heap-
allocated — some systems, especially for functional laggsiare
in fact implemented in this way.

A global state of the program consists of: (i) the heap; (i@ t
state of the mutator; (iii) the state of the collector. We widthe
mutator as a sequence of allocations and mutations of peiater
a given heap. The state of the mutator is its position in thesece
of allocations and mutations. The state of the collectosisis of
an assignment of values to all its variables.

A program trace is a potentially infinite sequence of program
global states, where sequencds defined in a standard way as
a map from natural numbers to an alphabetGiven a sequence
S = So, 51, . . ., we define its finite prefi’ of length|P| = k, to
be the firstk letters in the sequenc®, S1, ..., Sk—1, and denote
it by pre(S, k).

Given a finite sequence prefiR and a sequencg, we denote
the concatenation aP and S by P e S. Similarly, given a finite
sequence prefif and a letterr € X, we denote byP e 7 the
concatenation oP andr.

Our algorithm uses ainteraction logto record information
about the combined behavior of the collector and the mutatos
log is used by the collection algorithm to select the obj¢ctbe
marked. A log of the interleaving of mutator/collector cgtéons
is natural for a concurrent collector because it closelycimed the
use of write barriers in practical implementations: thection of
the write barrier is to synchronize with the collector, whia some
collectors is in fact done with a log of heap writes.

The interaction log is a sequence of log entries of the falgw
kinds: (i) atracing entry recording a tracing action of the collector
as it traverses the heap during the marking phase; filugation
entry recording a pointer redirection action by the mutafi@y an
allocation entry recording an allocation of a new object by the
mutator. This is formally defined as follows:

DEFINITION 2.1. Alog entryis a tuple(k, source, fid, old, new) €
{T,M, A} xU x Fields x (UU{null}) x ( U{null}) where:
¢ [ identifies the kind of action as one of tracing, mutation, or
allocation, denoted by, M, andA, respectively.
® source is the object affected by the action.
e fld is the field ofsource affected by the action.
e old is the value of the fieldource. fid prior to the action.
® new is the value okource. fld subsequent to the action.
Tracing actions do not change the structure of the heapefitrer
old = new for all tracing entries. Allocation actions allocate the
objectnew, which must not appear previously in the trace.
For convenience, we define selectors for log entry tuplegeiti
atupler = (K, s, f, 0, n), we definer.kind = K, T.source = s,
T.field = f, T.0ld = o, andr.new = n.

2.2 TheParametric Algorithm

Fig. 1 presents the pseudo-code for a parametric concunark-
and-sweep collector. The operation of this collector israfiover
a prefix of the interaction log, recording the collector anatator
interaction. Recording mutator actions in the log is perfed by
the mutator’s write and allocation barriers, as shown in Eig

Before describing the algorithm in more detail, we first disc
the assumptions we have made for clarity of presentationtfzend
assumptions under which the algorithm operates:



collect() {
atomic
marked «— {root1,...,rootr}

pending «— pending U (Uy e maried Sields(z))

do {

mar k()
addOri gi ns()
} while (?)

atomic
addOri gi ns()
mar k()

sweep()

mar k()
while (pending # 0) {
(obj, fld) « removeElement( pending)
atomic
dst <« obj. fld
log < log e (T, obj, fld, dst, dst)
if (dst#null A dst € marked){
marked «— marked U {dst}
pending «— pending U fields(dst)

}
}

addOrigins() {
atomic
origins <« expose(log) \ marked

marked — marked U origins
pending «— pending U (Uwel)ﬁgmﬁ fields(m))

}

Figurel. Parametric Mark-and-Sweep Collector.

nut at e( source, fld, new) {
atomic
log < log e (M, source, fld, source. fld, new)
source. fld «— new

nut at eAl | oc( source, fld) {
atomic
new < al | ocat e new obj ect
log < log @ (A, source, fld, source. fld,new)
source. fld — new

}

Figure2. Mutator write-barrier and allocation-barrier.

¢ we do not specify how theweep() operation proceeds, ex-
cept to ensure that there is the proper synchronizationdsatw
the mark and sweep phases. We also do not consider com-
paction, which requires the dynamic relocation of objects.
While these are both important issues, they are beyond the
scope of this work.

e we assume that there is only a single execution of a collectio
cycle at any given point in time. That is, tfileoperations in
the log all belong to a single collection cycle. Multiple éev

overlapped) collections can be performed by differem@fl’

entries accordingly.

The parametric collection algorithm does not explicitlyide how
objects are selected to be marked as live. This is defined # be
parameter of the collector. The algorithm, however, dostrict
concurrency by making two decisions:

e assuming that write barriers are atomic with respect teectdr
operations. This assumption is inline with practical systeas
mutators and the collector are only allowed to interlea\eaée
points which do not include the write-barriers. Effectively,ghi
means that a collector cannot preempt a mutator during & writ
barrier. Under this assumption, we can restrict attentmma t
system with a single mutator thread without loss of genigrali

o the collector is able to trace object fields in an arbitraryeor
that is, rather than scanning fields of each object in order.

The collection cycle of the algorithm is described intiwd | ect ()
procedure. The collection cycle consists of two phasesth@)
marking phasgin which the collector marks potentially live ob-
jects; (ii) thesweeping phasén which unmarked objects are re-
claimed.

The collection cycle starts by atomically selecting theoebot
objects as origins. This operation is executed atomicatlg, thus
no concurrent mutations could be performed by the mutator.

After selecting the root objects as origins, the collectocpeds
by repeatedly tracing heap objects and marking themar k()
procedure), and adding origins to be considered by theatolidue
to concurrent mutations performed by the mutaaatdCr i gi ns()
procedure). These two steps are repeated until a non-datstim
choice (denoted by ‘?’ in the figure) triggers a move to an &om
phase in which the remaining origins and objects to be maaked
processed atomically. This atomic phase guarantees timnger
tion of the algorithm, and is in line with some practical eatior
implementations (e.g., [7]). Nevertheless, in Section W& show
how to derive algorithms in which this atomic marking phaaa c
be eliminated.

At the end of the marking phase, thearked set contains the
objects that are marked as live, and the collection cyclegeds to
the sweep phase, reclaiming unmarked objects and congpkbin
collection cycle.

2.3 Marking Traversal

The mar k() procedure implements a collector traversal of the
heap. In the algorithm, we use a pdisbj, fid) to denote the
field fid of an objectobj. We useobj.fld to denote the object
pointed to by the fieldfld of the objectobj, and fields(obj) =
{(obj, f1),- .., (obj, fr)} to denote the set of all object fields for
a given objecbbj.

The procedure uses a getnding of pending fields to be tra-
versed, and performs a transitive traversal of the heagebstively
removing an object field from the sgending and tracing from
it. Whenever an object field is traced-from, the proceduseiits a
tracing entry into the log. When the traced object field mtotan
unmarked object, the object is marked, and its fields arechtinle
the pending set.

During this traversal, the mutator might concurrently nipthe
heap. These concurrent mutations might cause reachatdetsbj
to behiddenfrom the traversal, and thus remain unmarked by the
traversal.

2.3.1 TheCollector Wavefront

All collectors discussed in this paper rely on cooperatietwieen
the collector and the mutator to guarantee correctnesipris-
ence of concurrency. A key part of the cooperation is tragkime
progress of the collector through the heap, since mutatanshe
treated differently depending on whether they happeneleipor-



tion of the heap already scanned by the collector (behinavte-

front) or not yet scanned (ahead of the wavefront). The wanef
consists of the set of object fields (that it the values of the
pointers in those fields) that have been traced by the coli¢lotis

far.

DEFINITION 2.2. Given a log prefixP, the collector wavefronis
the set of object-fields that have been traced by collecteraipns
in P, that is:

W(P) = {(P;.source, P;.field) | P;.kind = TA0Q <13 < |P|}

Given a log prefixP, we say that an object fiel@, f) is behind the
wavefrontwhen(o, f) € W(P), andahead of the wavefronthen

(0, f) € W(P).

Most practical collectors use conservative abstractidnthe
wavefront rather than the precise definition provided h@&ieat
is, the wavefront is tracked at an object granularity. Hoevethe
precise wavefront is not merely theoretical and has regédmgén
used in the hardware-assisted collector for the Azul Janeese
which has a “not marked-through” bit in every pointer [18].

ExXAMPLE 2.3. Fig. 3 shows an example of a possible mutator

and collector interleaving. In this figure, the progress afector
tracing through the heap is shown by the tracing actins. . , Ts,

When the mutator performs an assignmentrce. fld < new
with new # null, we say that a pointer isnstalled from
(source, fld) to new. When the object fieldsource, fld) is be-
hind the wavefront, we say that the pointeiristalled behind the
wavefront Similarly, we may say that the pointer is installed ahead
of the wavefront.

Similarly, whenever we assign a value to a fiéldurce, fld)
containing an existing pointer, we say that the existinghfauiis
deleted If the field (source, fld) is ahead (behind) of the wave-
front, we say that the pointer deleted ahead (behind) of the wave-
front.

ExAMPLE 2.4. In Fig. 3 the mutatior{}/2) results in a pointer
from (A, f1) to B installed behind the wavefrarand the mutation
(Ms) results in the pointer froriA, £3) to D beingdeleted ahead
of the wavefront

3. TheApex Algorithm

This section introduces thApex algorithm, an instance of the
parametric collector presented in Fig. 1. The Apex algarith the
starting point for the derivation steps which follow in ttest of the
paper.

The Apex algorithm makes use of a technique callestan-

and by using a darker color for traced fields. The sequence of ning. Rescanning is a technique which given a set of objectstiiden

mutations is shown a8/, ..., M. For brevity, we only present
part of the states and show the effect of multiple operatiors
single step.
The interaction log prefi¥’* for this example is:
(T,rl, f2,A, A), (T, A, f1, null, null), (T, rl, f3, null, null),
(M, 71, f1,null, B), (M, A, f1,null, B), (M, r1, 3, null, E),
(M, A, f2,C,null), (M, r1, f1, B,null), (T, A, f2, null, null),
(T,rl, f1, null, null), (M, A, 3, D, null), (M, A, f1, B, null),
(T, A, 3, null, null)

The wavefront at the end of the shown prefiX is: W(P°¢) =
{(r1,£2), (r1, £3), (A, f1), (A, f2), (r1, f1), (A, f3)}
2.4 Adding Origins

TheaddOri gi ns() procedure uses the log of mutator and col-
lector interaction to select a set of additional objectsaabnsid-

ered as origins, marked as live and traced from. When this pro

cedure is invoked by the collector, it is possible that a nemdf
reachable pointers were hidden by the mutator behind/theur-
ing thermar k() procedure.

The addOri gi ns() procedure finds those hidden pointers
and produces a set of objects to be used as additional arigiis
set is a safe over-approximation of the reachable objedtgchw
were hidden during thear k() . The core ofaddOr i gi ns() is
the functionezpose which takes a log prefix and returns a set of
objects that should be considered as additional originsh Bhject

returned byexpose is then marked, and its fields are inserted into

thepending set.

All algorithms effectively differ in theirexpose function. In the
next sections, we will present different choiceseafrose which
correspond to various garbage-collection algorithms.

24.1 Mutator Barriers

Fig. 2 shows the write-barrier and allocation-barrier ubgche
mutator. The proceduneut at e( sour ce, f1d, new) is called

fies the object fields that were modified behind the collectavex
front. It then returns the pointers to the objects residimghiose
modified fields. This approach is necessaryeigpose reachable
objects that are hidden by a sequence in which: (i) a pointant
object is stored in a field behind the wavefront; (ii) all atpaths to
the object ahead of the wavefront are removed before theatol
reaches them.
Rescanning provides a high degree of accuracy, since aléhid

pointers are identified precisely.

expose®™*(P) = {o.f | P;.source = o A P;.field = f A0 < i < |P|

A Pikind € {M, A} A (o, f) € W(pre(P,i))}

Given a log prefixP, expose®?®(P) returns the current con-
tents of all of the mutated fields behind wavefront.

Note that because the executionexposeis performed inside
of anatomic block in the algorithm in Figure 2, the rescanning of
all of the fields of all of the objecthat were modified are scanned
atomically. This means that a pure rescanning algorithmveag
low concurrency.

ExXAMPLE 3.1. Consider the example interleaving of Fig. 3. The
function expose®?*(P¢) atomically performs rescanning of the
fields (A, f1) and(r1, £3). This results withexpose®**(P°¢) =
{E}. Unless returned byzpose®?“, object E would have been
lost. Assuming there are no further mutations, the objectsked

by the Apex algorithm in this collection cycle will b¢r1, A, E'}.

In future sections, we see that other (less precise) colieatill
consider additional objects as live.

Conceptually, Apex is very similar to the Steele algoritht][
algorithm, but with an accurate’ definition.

The Apex algorithm is used as the base algorithm in our frame-
work from which all other algorithms are derived using cotness-
preserving transformations. Fig. 4 shows part of the ddralgo-

by the mutator to mutate a pointer in the heap. The procedure rithms, ordered by relative precision.

mut at eAl | oc(sour ce, f1d) is called by the mutator to al-
locate a new object and store it in the given object field. Tabe
orate with the collector, the mutator barriers record thetions in
the interaction log.

In this paper, our focus is on unifying the various colleatio
algorithms, and relating them in terms of precision. We skiust
our transformations are correctness-preserving, buhassat the

Apex algorithm is a correct starting point.
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Figure3. Example interleaving of mutations and tracing operations.
[APEX] In this paper we focus on the relative precision of algorghm
U, U, U, U, 0) under a given predetermined kind of atomicity. That is, ttwera
| icity constraints of the generic algorithm are fixed and aditan-
[Steele] tiated algorithms in our parametric framework follow themsa
o, u, 0,u, 0) atomicity restrictions, namely tregomic blocks used in Figures 1
_— | T~ and 2. The precision-reducing transformations presentdtinext
[Dijkstra] [Steele-D] [Stedle-YC] section create opportunities for concurrency-increasimgsforma-
(stacks, U, 0,U, 0) U, A, 0,u,0) . u,0,0,0) tions. Although we do not deal with concurrency transfoiioret

-

[Stedle-D-YC]
u, A, 0,0,0)

[Dijkstra/old] [Dijkstra-YC] [Stedle-BC]
(stacks, A, 0,U, 0) (stacks, U, 0,0,0) u,u,0,0,u)

[Hybrid-YC] [StedleD-BC] [Dijkstra-BC]
(stacks, A, 0,0,0) U, A,0,0,uU) (stacks, U, 0,0,U)

~ |
[Yuasa]

(stacks, A, 0,0,U)

Figure 4. Relative precision of part of the existing and newly
derived algorithms. New algorithms are shown in boldfacee T
most precise algorithm is shown at the top. For readabiityy
derived algorithms with abstracted wavefront are showpl&aiare
of the form(SR, IS, FL,WC, BC).

4. Precision of Collection Algorithms

In this section, we introduce the notion of relative premisif
concurrent collection algorithms. This allows us to foripaélate
the various algorithms which are instantiated in our patame
framework.

A correct marking algorithm must satisfy bottsafetyproperty
that it mark at least all live objects, andligenessproperty that
it terminates. These requirements can be satisfied by atyafe
correct collectors with varying degrees of precision, @fficy, and
atomicity.

The algorithmic differences between the various collectoe
manifested in the additional unreachable objects that thayk
(and thus retain). It is therefore natural to define relapixecision
between two collectors by comparing theirked sets at the end
of the marking phase.

There is a trade-off between the precision of a collectorthad
degree of concurrency it provides. For example, a stopatbitd
collector trades all concurrency for obtaining maximalgs®n
(all unreachable objects are collected). Other algoritipnoside
a higher degree of concurrency (finer grained atomicity)that
expense of retaining more unreachable objects at the enlgeof t
marking phase.

which alter atomic sections, the instantiated algorithmdave a
shorter duration of these atomic sections. As future workplae
on extending the parametric framework in this paper to itelu
atomicity transformations.

An algorithm in our framework consists of the skeletons of
Figures 1 and 2, instantiated with an arbitraypose function.
Note that this may or may not be a correct algorithm.

We now consider the question of the relative precision ofalvo
gorithms. Intuitively, a more precise algorithm should ayw mark
fewer objects. However, this i®t the case because the actual set
of objects marked depends on the specific interleaving oftout
and collector. In fact, there exist algorithms and interlegs such
that an algorithm thatlwaysselects more objects from the muta-
tion log as origins for transitive marking will in fact markver
objects during the collection as a whole.

This is because what such a notion of precision compares is
not necessarily the effect of the algorithm but may be theceibf
arbitrary interleavings. Thus, a meaningful comparisostifactor
out the non-deterministic effects of particular execwioaused by
such random variations as temperature-induced change®lh C
speed, rather than the action of the collector itself.

We therefore consider algorith@, to be less precise when for
any given global stat@ exposes more objects for marking than
algorithm C. We therefore consider the effect efposec, on
any interaction log obtained by, and show that when transitive
marking is complete (whepending = 0), exposec, returns a
subset of the objects returned ayposec, .

DEFINITION 4.1. Given two collection algorithmé’; and C2, we
say thatC is more precis¢hanC-, denoted”; C Cs, when given
any global state of’> with an interaction log and where the set
pendingis emptyexzposec, (1) C exposec, (1).

In the following section we present precision-reducing and
correctness-preserving transformations of algorithmaiinframe-
work, and show that if the initial algorithr®; is correct, then the
resulting algorithmC; is also correct.

5. Correctness-preserving Transformations

In this section, we present various transformations thabescom-
bined to systematically derive safe collection algorithinesn the



Apex collector. For each transformation, we show that ifgiap-
tion is correctness-preservingndprecision-reducing

Each transformation is applied acrosdimension Dimensions
are the formal analogue of the basic variables in the dedign o
collector as presented informally in the introduction. Sfeally,
we parameterize the collector with the following dimension

e Wavefront: how far has the collector progressed?
¢ Policy: how are modified objects behind the wavefront treated?

e Threshold: how large are cross-wavefront counts allowed to
grow before they are “stuck”?

e Protection: which objects are traced to guarantee that all live
objects are found?

¢ Allocation: how does the collector handle newly allocated ob-
jects to ensure timely termination?

A dimension is described by an ordered partiti@h, . . ., P,)
of the objects iri{/, where each subset of the partition corresponds
to a different manner of handling objects in the dimension.

The subsets of a partition have the property that moving an ob
jectto a subset “to the right” yields an algorithm of loweegision.
Formally, the relation between subsets is such thatifj, = € P;,
algorithmC uses partition(.. ., P;, ..., P;,...) and algorithm’’
uses partition. .., P, \ {z},..., P; U{z},...), thenC C C".

For each dimension, we have generalized the algorithm s$o tha

as follows:

W7(P) = {(o,f)|(o,f) eW(P)Aoe FL}U
{(0, f) | 3prericras: (o, f') € W(P) A
f € Fields Ao € OL}

WS(P) = {(o,f)|(o,f) eW(P)Ao€ FL}U

{(07 f) | vf/EFields: (07 f/) S W(P) A
f € Fields Ao € OL}

The abstracted wavefront consists of two functions,; (P)
andWs, (P). The functionWz  (P) over-approximates the set of
object fields behind the wavefront. The functig¥s, (P) under-
approximates the set of objects fields behind the waveframd (
thus over-approximates the set of object fields ahead of thew
front). Both functions are needed becaegposdunctions that de-
pend on an object’s field being behind or ahead of the wavefron
must each use a conservative approximation.

EXAMPLE 5.1. Consider a prefix of the example interleaving of
Fig. 3 just before tracing actio('6) is performed and the field
(A4, £3) is traced. For this prefi¥> assumingF'L = () we get the
following:

W(P) ={(r1, f2), (r1, f3), (A, f1), (4, f2), (r1, f1)}
W= (P) = {(rL, f2), (r1, £3), (A, f1), (A, f2), (r1, f1), (4, £3)}
W=(P) = {(rL, f2), (r1, f3), (r1, f1)}

all of the mechanisms represented by the subsets can be used

simultaneously within a collector. In some dimensions réhis
no restriction on the partitioning aff; for others, we specify a
restriction formally.

All theorems stated in the paper are proved, but due to space

restrictions are provided in an online supplement [42].

5.1 TheWavefront Dimension

The wavefront denotes the progress of the collector thrabgh
heap. We defined the precise wavefront in Section 2.3.1ngists

The wavefront abstraction transformation moves an object
from FLto OL.

THEOREMb5.2. The wavefront abstraction transformation is a
correctness-preserving and precision-reducing transtation.

5.2 ThePolicy Dimension

Traditionally, when deciding how to protect against losjects,
implementers have thought in terms of the three classipastyf
write barriers: those of Dijkstra [21], which records thewinter
stored into an object; of Steele [40], which records the teoito

of the set of object fields that have thus far been traced by the the object being modified; and of Yuasa [45], which recoresatil

collector. Theexposdunctions determine how to handle mutations
to the heap depending on whether they occur behind or in &bnt
the wavefront.

The wavefront dimension represents different choices Her t
granularity at which the collector progress is tracked cKiieg the
wavefront precisely may be inefficient because it requiersfield
information, so it is sometimes desirable to sacrifice soraeigion
in exchange for a more efficient implementation.

The wavefront dimension is an ordered partition of the alsjec
in U into: Dw = (FL,OL), where objects in the"L subset
have their wavefront tracked precisely (at “Field Level§ &
Definition 2.2, while objects in th& L subset do not distinguish
between fields within an object (and are tracked at “Objewel’{

One could further generalize this dimension to include afi-p
sible subsets of fields for all objects, but we do not consitisr
here for simplicity of presentation.

There are no restrictions on how the objects may be partition
in the wavefront dimension.

5.1.1 Wavefront Abstraction

The wavefront abstraction transformation abstracts ttaetesol-
lector wavefront, and tracks the collector’s progress atgranu-
larity of an object rather than at the granularity of indivéd fields
of objects. Given the sét L of objects for which the wavefrontis to
be maintained at the field level, we define the abstracted fnate

pointer that was overwritten.

However, while this decomposition may seem intuitive it sloe
not in fact capture the essential properties of the desigeesin
an orthogonal manner. Therefore, we introduce two separade
orthogonal dimensions which determine how objects arespteti
and do so in a manner that allows the different mechanisme to b
composed.

In the Apex collector of Section 3, we usegscanningas a
uniform policy for protecting all objects. The key to the giigity
of rescanning is that it finds all pointers to traverse in amat
step of theezpose operator.

However, this atomicity is costly and therefore rescanrigg
generally applied to some minimal portions of the memorghsas
the stacks, for which it is practical to do so. The rest of thpcts
are processed incrementally from the log.

The policy dimension determines whether the modifications t
a field are found by atomically scanning the heap (called fiSca
based Reachability”) or by examining the log (called “Loased
Reachability”).

This dimension is an ordered partition of objectgfinto

Dp = (SR, LR)

The objects inSR are rescanned as described previously; the ob-
jects in theL R are discovered solely by processing the log, without
accessing the contents of the heap.

There are no restrictions on how the objects may be partition
in the policy dimension.



5.2.1 Rescanning

In order to define anxpose function that works along this dimen-
sion, we first have to refine the simplified definition of a restiag
collector we presented in Section 3 and parameterize itreitap
to the potentially imprecise wavefront and the partitiopadicy
dimension:

expose” (P) = {o.f | Pi.kind € {M, A}
A P;.source = o N\ P;.field = f
A (0, f) € W” (pre(P,i)) Ao € SR A Pinew € IS
AO<i<|P|}

For the time being the sétS = U; non-trivial use will be made of
the setl S below for the protection dimension.

5.2.2 Maintaining Cross-Wavefront Counts

With rescanning, if a field of an object is modified repeatertg-
canning will only see the final value when it processes theTogt
is, there may have been intermediate values stored by tha-mut
tor and subsequently overwritten. We now describe a diftareay
of discovering the resulting pointers, which is based oerefce
counting of pointers from behind the wavefront.

In particular, we observe that if a field initially containp@inter
po and then has a sequence of pointgrs. .., p, written to it,
then rescanning will find only.,. If we were to apply a specialized
form of reference counting, then the reference counts aftpos
p1,--.,Pn—1 Would remain unchanged: they would be first incre-
mented and then decremented. In the end, only the referenoésc

M~ (0, P) = |{P; | P.kind € {M, A} A Pr.old = o
A (P;.source, P;.field) € W< (pre(P, 1))
A Pi.source € LRA0 <1 < |P|}|

The valueM ™ (o, P) is the number of new references intro-
duced by the mutator from object fields that are behind theewav
front. Similarly, the valueM ~ (o, P) is the number of references
removed by the mutator from object fields behind of the waretfr
The mutator count is computed by combining the mutator-toun
increments and decrements as follows:

M(o,P) = M*(0,P)— M (o, P)

ExampPLE 5.3. Consider the example of Fig. 3 and its correspond-
ing interaction logP* as shown in Example 2.3. Assuming that
LR = {A} and FL = U, the mutator count foB increases td
when the pointer fronfA, f1) is installed, and is decreased back
to 0 as the pointer is deleted. Therefore, at the end of the prefix
P¢, M(B, P°) = 0. Note that the installation fror(r1, f1) does

not increment the count, as the installation takes placadbéthe
wavefront.

Collection by CountingUsing the formulation of Section 2.2,
a counting-based collector can be instantiated using theniog
expose function. We use the superscripto denote the fact that
this function is based on counting, and name the funetigimse®.

expose(P) ={n|n= P.new A M(n,P) >0
An€eISAN0<i<|P|}

ExamMPLE 5.4. Consider the example of Fig. 3. Assumih§ =

of po andp,, would change, being decremented and incremented, U, F'L = U, the functionezpose®(P°) = { E'}.

respectively. This means that the intermediate referenceating
operations can be ignored.

This observation is originally due to Barth [8], and is cahto
the multiprocessor reference counting algorithm of Levarand
Petrank [33]. In our formulation, we use this approach taxsshow
rescanning can be replaced by log-based reachability vkaeps
a count of references from behind the wavefront in ordereatidly
exactly the same objects as are found by rescanning.

Note that this isnot a general form of reference counting
Our framework only covers tracing algorithms. In particunce
counts are only maintained from behind to in front of the viewet,
there can be no cycles of objects with non-zero counts.

Existing approaches will subsequently be shown to be degene
ate cases of reference counting in which the cross-wavefmmt
is a single sticky bit (expressed by the threshold dimension

The counting-based approach has the enormous advantage of

not requiring the synchronization of thepose function; on the
other hand it will performn steps for the mutated field described
above, whereas rescanning would perform exactly one. Qsee ar
in which this tradeoff manifests itself is in the treatmehstacks,
whose high mutation rate makes them unsuitable for writedrar
—instead, they are rescanned atomically.

Mutator Count The mutator count is the number of pointers to
an object from object fields behind the wavefront. This qgityant

However, since counting depends on the wavefront, takiegsa |
precise wavefront can result with more objects being exghdSer
example, takingE’'L = U \ {rl} results withezpose®(P°¢) =
{E, B} as the count foB is incremented on the installation from
(r1, f1) that is behind the (overapproximated) wavefront, but can-
not be decremented when the mutatidnf1 = null takes place,
as(r1, f1) is not behind the (underapproximated) wavefront.

Note that using a less precise wavefront resulted with addi-
tional objects exposed by the algorithm. In particular hiis tase
expose®(P°¢) = {E, B} is a superset of the origins exposed by
Apex algorithm on the same prefix as (see in Example 3.1).

We now formally define arzpose function that works along
the Dp dimension:
expose’ “(P) = expose” (P) U expose®(P)

The following theorem shows that moving along fhe dimen-
sion is a precision reducing transformation.

THEOREMA.5. The rescanning to counting transformation, mov-
ing an object fromSR to LR, is a correctness-preserving and
precision-reducing transformation.

Itis interesting to note that in the special case in whichezise
wavefront is maintained for all objects, and under an irdiniuta-

is computed with respect to a given wavefront. We assume that tor count, the precision of any partition along the dimension is

some objects in the heap akescanned objectthat do not affect
the mutator count. The mutator count computation is theeefo
parameterized by a set of objedi& from which the count should

identical.

5.3 TheThreshold Dimension

be computed. To compute the mutator count from a given log The threshold dimension represents different choicesherpre-
prefix P, we define the mutator-count increment and decrement as cision of maintaining the mutator count introduced in thevjmus

follows:
M7 (0, P) = |{P; | Pi.kind € {M, A} A Pi.new = o
A (P;.source, P;.field) € W~ (pre(P, 1))
A Pi.source € LRAO <1 < |P|}|

section. In real systems, reference counts are usuallyleerand
the mutator count, which only counts references instaliechfbe-
hind the wavefront, will be even lower. Therefore, it woukel\ery
wasteful to have a reference count per object each capabie of
dexing the number of live objects in the heap.



The threshold limits the mutator count to a maximum value, at
which it “sticks” and is not subsequently decremented. BHmwvs
the count to be represented with a fixed (small) number of bits
while maintaining the correctness properties provideddfgrence
counting.

The threshold dimension is an ordered partition of the dbjec
in U into:

D1 = (Cos,...,Ch,...,C1)

where the subsets represent the count with successivelyates
less precision, which leads to collectors which are sudgalgdess
precise, as we will show below. There are no restrictionsaamthe
objects may be partitioned in the threshold dimension.

5.3.1 Abstracting Mutator Count

In practice, it is not possible to maintain an infinite mutatount.
That s, it is beneficial to limit the mutator coulf (o, ') to a small
bounded range.
Generally, the mutator count incremehf(o,T") can be ab-
stracted to range over an inter{@J k) andoo, defined as follows:
007

otherwise.

To the best of our knowledge, all existing algorithms use the
degenerate case wheke= 1 and the mutator count is eithéror
oo, in which case the count is simply a flag that indicates whethe
pointer to the object has been stored behind the wavefrdait iF,
immediately after a pointer to an object is stored behindithee-
front, the mutator count is set to a value that cannot be dezméeed.

Thus we will use this special case when presenting transfor-
mations to pre-existing algorithms such as those of Digkdiut it
should be noted that 2- or 3-bit counts &€ 3 or k = 7) could
be implemented efficiently and would likely provide most bét
potential increase in precision available in practice.

ExamMPLE 5.6. Consider the example of Fig. 3 and its correspond-
ing interaction logP°¢. Assuming thaLR = U \ {r1}, IS = U,
andFL = U, the functionexzpose®(P°) using M (o, P) exposes

B asM (B, pre(P¢,3)) = 1.

We now show that the mutator count abstraction transfoonati
preserves correctness and reduces precision.

THEOREMA.7. The mutator count abstraction, moving an object
fromCy, toCj,_ is a correctness-preserving and precision-reducing
transformation.

5.4 TheProtection Dimension

Fundamentally, the synchronization problem of a conctrceh
lector is to prevent the mutator from “hiding” objects by nmay
pointers that are ahead of the wavefront to locations bettied
wavefront, and then deleting the original pointer. Therefsafety
can fundamentally be guaranteed either by consideringtgrsin
installed behind the wavefront (installation-based mmtda), or
by considering pointers deleted ahead of the wavefronefidel-
based protection).

Previously known collectors treat all pointers uniformbo-
called incremental update collectors (such as that of Baksuse
installation-based protection; snapshot collectorshi{sg that of
Yuasa) use deletion-based protection. However, our frarieal-
lows the two approaches to be mixed, subject to some réstrict
necessary for correctness.

The protection dimension is an ordered partitioriofnto an
Installation Set’ S and a Deletion Seb S:

D, = (IS, DS)

The objects i S are said to bé-protected while the objects in
DS are said to b®-protected

The partition is restricted such that every live D-protdoté-
ject is reachable from a sequence of D-protected objecis igh
formalized below).

5.4.1 Snapshot-Based Collector

A snapshot-based collector marks as live all objects thaewe
reachable at the start of the collection cycle; objects liegbme
unreachable during the collection cycle are still treatetive [45].

Using the formulation of Section 2.2, a snapshot-baseéciult
can be defined using the followingepose function. We use the
superscriptd to denote the fact that this function is based on
deletion, and name the functieapose®.

expose’(P) = {o | P,.kind = M A P;.old = o
(P;.source, P;. field) € W< (pre(P,i)) Ao € DS A0 < i < |P|}

Given alog prefixP, expose® (P) returns all objects iD.S that
were pointed-to by a field that was assigned a new value (@gssi
null) before its was scanned by the collector.

ExamMPLE 5.8. Consider the example of Fig. 3. Assuming that
DS = U, andFL = U, expose’(P®) = {B,C, D}. Note that
this exposes a superset of the origins exposed by the awmilect
Example 5.4 and by the Apex collector in Example 3.1.

5.4.2 Combinationsof I-protected and D-protected Objects

Using the formulation of Section 2.2, a collector combingngtec-
tion policies at the granularity of objects can be definedgishe
following expose:

expose”“(P) = expose”*(P) U expose® (P)

More importantly, we introduce a transformation which ajes
an object from I-protected to D-protected.

However, we must place an additional constraint on which ob-
jects in a given graph can be transformed from I-protecteD-to
protected. To guarantee that an object can be safely transtb
from I-protected to D-protected, the object has to be ttaedy
protected by a path of D-protected objects.

DEeFINITION 5.9 (Valid Protection Sequencé). valid protection
sequence to an objeatis a sequence of objects,...,or = =
such thato, is a root object, and for every < i < k, there is a
field f of o; such thao;.f = 0,41 ando; € DS.

DEFINITION 5.10 (Eligibility). Given an objectt € IS, we say
that z is eligible for membership inDS if there exists a valid
protection sequence to.

Transformation along the protection dimension is signifia
more complex than previous transformations because tims-tra
formed algorithm makes decisions in itgpose function which
may be locally more precise and yet are globally less precise
In particular, if a pointer to objeck is stored behind the wave-
front, and X is I-protected, thenX will be exposed. But ifX
is D-protected, it will not be exposed. But since the objecbi
protected, it will either be discovered through tracingeitdirectly
or through an overwritten pointer in its protection sequenc

In order to consider relative precision of algorithms wittina
local effects, we need to refine Definition 4.1:

DEFINITION 5.11 (Weak Precision)Given two collection algo-
rithmsC, andCs, we say that”; is weakly more precisthanCs,
denoted”; < Cs, when given any global state 6% with an inter-
action logl and where the segiendingis empty.exposec, (1)* C
exposec, (1)*.



That is, if the transitive closure of the objects exposed’bys
a subset of the transitive closure of the objects exposet:by
Weak precision is implied by the strong precision of Defini-
tion 4.1, which only consider the exposed objects and nat titze-
sitive closure. Since the previous transformations haea lseown
to be strongly precision reducing, they are also weakly ipi@t
reducing.

Note that there is a direct analogue between strong and weak

precision, and the strong and weak white-black invariahisave-
mental update and snapshot collectors. In incrementalteutd:
lectors all objects are I-protected; in snapshot collecatirobjects
are D-protected.

Under this refined definition, we show that the protectiongra
formation is weakly precision reducing.

THEOREMb.12. Given an eligible object € IS, changingD~
from (1S,DS) to (IS \ {z}, DS U {z}) is a weakly precision-
reducing and correctness-preserving transformation.

5.5 TheAllocation Dimension

To guarantee termination, an algorithm must provide a ierta
level of progress on each collector marking step. In therpatdc
algorithm of Fig. 1, themar k() procedure marks at least one
object each time it is called. Therefore, if no new objects ar
allocated, the termination of the algorithm is guaranteed.

In the presence of allocation, however, additional medmasi
are required to guarantee termination. The impact of diiocan
termination is that if the mutator allocation rate is fadtean the
collector tracing rate, the collector might need to trageulgh the
newly allocated objects and thus does not terminate in dqiedde
manner.

The parametric collector presented in figure Fig. 1 solves th
problem by introducing a synchronous termination phasar #fie
mainwhile loop in collect Such approach is also used in [11, 7].
As noted in [11] the worst case of this approach can degen&rat
an atomic processing of the whole heap in the case of Stiéele-I
barriers.

However, although in practice this rarely happens it is ingoat
to explore options which guarantee timely termination fiarworst
case as well. This is particular important for real-timelectors
were it is vital to guarantee a worst-case pause time.

Objects have typically been allocated white or black; we-con
sider an additional kind of allocation (denoted by the ceglgliow)
that provides an intermediate point in the trade-off spasteveen
precision and termination.

The dimension is an ordered partition of object#fimto:

D4 = (WC,YC, BC)

In our framework, all newly allocated objects are considere
be members of S, that is |-protected objects.

5.5.1 Allocating Unmarked Ahead of the Wavefront (White)

The first approach is the least conservative towards towasatk-
ing allocated objects. Effectively, they are allocated arked, that
is, white In this case, thenutateAllocneed not make any special
provisions for the object, that isnutateAllocsimply invokes the
mutateprocedure.

The Apex algorithm presented earlier allocaté objects
white. However, the negative impact on termination whew-all
cating white is that the collector may need to trace through t
objects. Allocating white is the primary reason for allogithe
collector to non-deterministically enter the synchrontersnina-
tion phase at the end of thehile loop in Fig. 1. It could enter
that phase after a fixed number of iterations of the while ldop
the Apex algorithm, as mentioned already, allocating wigtilts

in the worst-case pause time being proportional to the sizbeo
heap.

5.5.2 Allocating Unmarked Behind of the Wavefront (Yellow)

The termination problem introduced by objects which arecalted
white is that the collector needs to trace through thesectbje
find other objects which are allocated white.

In order to avoid tracing through these white allocated ob-
jects, we introducgellowobjects. Yellow objects are allocated un-
marked, but any references to objectsli# stored into a yellow
object will be treated as if the yellow object is behind thevewa
front. That means that pointers can not escape into a yeliject
In particular, it means that it is not possible for the mutédccreate
chains of unmarked objects that the collector must “chasever-
theless, in contrast to grey objects, yellow objects canirdithe
collection cycle in which they were allocared.

The WC to YC transformation can significantly reduce the
termination problems associated with allocating whiteliminates
the requirement on thmark to trace through a yellow object. To
that end, when the collector encounters a yellow objectéscot
place its fields irpending.

In the case where all objects are allocated yellow, the sgnach
nous termination phase will not need to perform any traresiti
marking, since all objects reachable from live yellow okgewill
have already been marked. It need only consider the direszigh-
able yellow objects, greatly reducing the cost of the teatiom
phase.

To understand why th&/C to YC' transformation leads to
a less precise algorithm, consider the following simplengpia
(object A is the object onto which tH& C to Y C transformations
is applied): (i) allocate object A; (ii) store a pointer to@mmarked
object B € IS into object A; (iii) delete all other pointers to
B except the pointer fromA. (iv) delete all pointers to object A;
making A unreachable.

After object A becomes unreachable in the last step, if A was
treated as a yellow object, object B will be retained. Howgve
object B will not be retained if A is allocated white.

THEOREMS5.13. The W to Y C transformation is a precision-
reducing and correctness-preserving transformation.

5.5.3 Allocating Marked (Black)

Termination can be further improved by taking allocatedeoty
completely out of consideration. This approach is to aleaz-
jectsblack Black objects can be informally thought of as yellow
objects which are allocated marked. That is,thetate Alloc pro-
cedure is the same as the procedure for a yellow object, Wwéh t
addition that the black object is marked upon allocation.

Unlike yellow objects, black allocated objects are alwags-c
sidered live for this collection cycle.

The main insight for the introduction of yellow and black ob-
jects is that they are not traced through. We therefore densiese
objects outsid&S R.

TheY C to BC will lead to even less work for the collector as
it does not need to do additional work for these objects. Rewd
collectors such as Metronome choose to allocate all obgatk.

THEOREMS5.14. The Y C to BC transformation is a precision-
reducing and correctness-preserving transformation.

6. Collector Derivations

In this section, we explore a small subset of the space ofurenc
rent collection algorithms along the dimensions of SecEoiihe
space we consider is depicted in Fig. 4. We will typically lexe
algorithms at the end points of a dimension. That is, we clamsi



the sets to be eithér or (). For presentational simplicity, we also
assume that all derived algorithms use an abstracted vestéfree
Section 5.1.1) and mutator count abstracted te 1.

We first describe several well-known collector algorithmsl a
where they fit into the lattice. We then discuss a few of the new
practical collectors. The names of the new algorithms apéctid
in boldface in Fig. 4.

In our parametric framework constructing new algorithma is
matter of choosing values over the various dimensions. kame
ple, only recently a collector which uses a precise wavéfdei-
nition has been introduced in [18]. We can instantiate singbl-
lectors which use a precise wavefront definition by setlitigo
U.

Inthe figure, we use a tuple of the fol(§ R, I.S, F L, WC, BC)
to define the point of the algorithm along the dimensions af-Se
tion 5. The values for other sets along each dimension areedkfi
as complements using the values in the tuple, e.g., if WG&nd
BC=0, then YC=U{. In the tuple, we use the setacks to denote
the set of stack objects, and to denote the set of newly allo-
cated objects. Additionally, every edge represents a gimtorder
relation.

6.1 Existing Algorithms

A Steele-style algorithm can be derived from the Apex catleby
applying thewavefront abstractiotransformation to all objects.

A Dijkstra-style algorithm is derived from the Steele-stgbol-
lector by moving all objects except stacks alongfhe dimension,
that is, fromSR to LR. It is less precise than the Steele-style col-
lector.

The Yuasa algorithm is the least precise of the three egistin
gorithms, it allocates all objects black (i.e. B&& and in addition
all existing objects ar@®-protected.

6.2 New Algorithms

Fig. 4 contains several new algorithms of practical impuréa In
this section we informally describe some of those new ctilsc

The Steele-YC collector is derived from the Steele-likeoalg
rithm by applying theWC to YCtransformation to all allocated
objects. This algorithm bounds the duration of the syncbusrter-
mination phase, thus addressing the main issue of algaithat
use a Steele-like write barrier (regardless of the graitylaf res-
canning) such as [11, 7]. The disadvantage of this collésttrat
it might retain more unreachable objects than Steele.

The Steele-BC algorithm makes an even more conservative as-
sumption in regards to allocated objects. This leads to qomp
tunity to reduce the work for termination even further wtskdl
retaining relatively high precision for existing heap dage This
algorithm could be beneficial for applications where moghefal-
located objects are long lived (i.e. do not die during théextion
cycle), such as the mature space of generation collectors.

The precision of the Steele-BC algorithm can be reducetéurt
(and hence the potential for concurrency is increased) byingo
along theD » dimension, moving all objects but stacks fréihi to
LR resulting with the Dijkstra-BC algorithm.

The Steele-D algorithm, derived from Steele by moving “t® th
right” on the D, dimension, uses synchronous termination and at
the same time considers all existing objects as live. Howekhe
algorithm Steele-D-YC which is derived from Steele-D bositttat
synchronous phase.

7. Related Work

In previous work [43] we observed a common structure between
concurrent collectors and suggested that they can posbibly
viewed as instances of a more abstract collector. Howeber, t

paper effectively contained two very complex abstract rilgms,
and a few discontinuous “transformations” where their eyapion
was only described informally. Moreover, the resultinglectiors
could not be related.

In [10], separation logic is used to prove the correctnesa of
stop-the-world copying garbage collector. However, wtib £x-
tension of separation logic to concurrency [14], it may besgilnle
to formally prove the Apex algorithm presented in this work.

Another work modelling collectors is [12]. In this papergth
authors use CCS to specify a stop-the-world collector, antpb-
ral logic to specify its liveness and safety properties. Eosv, the
presented algorithm is not concurrent and although thecilf is
specified in CCS, there is no attempt at verifying the preskat-
gorithm. The authors do note however that proving the ctmess
of a concurrent collector would be even more challenging.

Several works formally verify the correctness of Ben-Asitsd
Dijkstra’s algorithms [9, 21]. The focus of Ben-Ari's aldthm
is correctness rather than efficiency. However, both ofetago-
rithms are not practical because their worst-case time txitpis
quadratic in the size of the heap.

In [37], Ben-Ari’s algorithm is verified for both single and
multi-mutator systems using Owicki-Gries’s logic in the Hehe-
orem proving system. In the work of [25], again Ben-Ari's @lg
rithm is verified using the PVS theorem proving system. Simil
work has been done by [38], where he proves Ben-Ari's algorit
but this time in Boyer-Moore’s theorem prover. In [28], Bifka’s
algorithm has been verified again in the PVS theorem proves. T
paper of [15], proves Ben-Ari’s algorithm using the B and Ggg-
tems. These works are complementary to ours in the sensthéyat
concentrate on formally proving a particular collectoraaithm.
The formal systems used for that purpose may be utilizedam-pr
ing Apex correct. The works of [19, 20] define a framework to
describe generational and conservative collectors. Heréwnly
deals with stop-the-world algorithms. Another transfotiorzal ap-
proach to collectors can be found in [20]. The authors use the
SETL wide spectrum language to specify an initially corractl
inefficient implementation of a stop-the-world collectdhrough
loop fusion and formal differentiation transformatiortsey obtain
a more precise implementation of a well-known stop-theldval-
gorithm. The transformations in our work are specific to ttueld/
of concurrent marking collectors.

8. Conclusionsand Future Work

In this paper we presented a mechanism to automaticallyrgene
various correct concurrent garbage collector algorithms.

The mechanism consists of starting with a correct initigbal
rithm and applying a set of correct object-level transfdiores,
with each application yielding a new concurrent algorithm.

We also introduced a definition of precision which allowsas t
formaly relate the various algorithms. For understandimgppses,
it is important to follow a structured approach in designswgh
complex algorithms.

In the future, we plan on working on how to automatically
arrive at practical synchronization skeletons from oucdrbased
collectors, as well as relax the atomicity constraints i ¢hrrent
skeleton algorithm.

A. Proofs

In the following, we abuse notation and use the Kleene star to
denote the transitive closure of objects reachable fronvengset

of objects. For example, we writ&" to denote all objects that are
transitively reachable from the set of objeéts



A.1 Collector Invariantsand Proof M ethodology

The correctness of algorithms in our framework hingesapse(1)
exposing all hidden origins. An algorithm in our framewoskcir-
rect if and only if the following invariants hold immediayeafter
computing the set of origins by performirgpose(l):

I-Invariant expose(l) contains all unmarked objectsi$ pointed-
to by a marked object.

D-Invariant any unmarked object iDS is either returned by
expose(l) or is reachable from &S object inexpose(l) by
a path of objects iDS.

These invariants imply the intuitive notion of the algonith
marking a superset of all objects which are required to dater
correct transitive reachability.

Our proofs work by showing that the transformations preserv
the above invariants. We will denote @s the algorithm before the
transformation is applied to a single objecandC, the algorithm
after the transformation is applied. The proofs use theectmess
of C; to show the correctness @f.. Moreover, the correctness
proofs also show that'; is more precise tha€s.

We compare the executions@f andC- starting from the same
initial heap H, sequence of mutation®/, and set of rootsz.

In our framework, algorithms only differ in theiexzpose(l)
function and therefore we compare their executions by compa
ing the correspondingzpose(l) at the point of divergence of the
two traces (that is, whepending is empty). For all transforma-
tions except white-to-yellow, the divergence point ocaurgen the

mar k() procedure has finished and the algorithms proceed into

theaddOr i gi ns() procedure and computepose(l).

Letexposec: denote the origins computed B} andexposeca
the origins computed bg'’,> with the same log.

Certainly, if exposec exposece, then the algorithms do
not diverge and they can continue to execute in a lock-step. |
throughout the entire execution, the algorithms do notrdegthen
the execution of’; is identical to the execution @; and hence is
shown to be correct. Intuitively, in this case, the alganighare of
the same precision.

However, ifexposec1 # exposecs, the following invariants
hold (we use the subscrips andC- to denote the various sets in
C1 andC- respectively):

e markedc, = markedc,
¢ the I-invariant and the D-invariant hold far;

The first step to showing thaf is correct is proving that
I- and D- invariants hold foiC> at the point ofexpose. For all
transformations but the protection-transformation, weverthis
by showing thatexposeci C exposece. This also shows that
C1 C Cs.

The second step of the proof involves reasoning about the con
tinuation of C». That is, we need to find a corresponding witness
trace which is also correct so that at the next pointopose,
we can repeat this process. In all proofs except the proteetnd
white-to-yellow transformations, the correct withessérés basi-
cally the restart of;, with theorigins resulting fromexposec of

The application of this transformation on objecpotentially
affects the marking decision for heap objects other thdut does
not affect the marking decision far itself. This is because the
transformation takes effect once objece marked and at least
one(o, field) € W”.

For this transformation, the divergence point always csatter
a call toexpose in addOr i gi ns() .

Let P be the common prefix af'; andCx just beforeexpose is
called with an interaction log At the point after the call texpose
where ezposece # exposec:, the computationV! ~ (z, P) for
any objectr € IS indicates that any pointer installation:ianto o
will be returned byezpose, provided that at least or{e, field) €
W and not all fields ob € W at the time of the mutator operation.
When object is in that state, no destruction of a pointeratan
o can affectM ~ (z, P). This is indicated by the requirement for
(P;.0, P;.field) € W< (pre(P,4)) in M~ (x, P).

In addition, operations on objects .S also affect the return
of expose. If a mutator stores a pointer to an objette DS
into (o, field) € W, and the mutator subsequently destroys that
pointer tod, then this pointer would not be returned &yposec.
However, such a mutation sequence would cause the abjedie
returned byexposeca.

The above discussion applies where LR. In the case where
o € SR, and we are manipulating a pointer to an objectl
exposec1 = exposecz. It is only possible that more rescanning
work will be done inexposeca for o, but this will not affect the
result of exposecs. However, this is not the case when target
objects inDS are manipulated. Even 5 € SR, alld € DS
removed fromo will be returned byexposecs2 as indicated by
expose?(P).

Either way, at the poing of divergence (whereding(C2) is
empty),exposec1 C exposece. This is also the necessary condi-
tion to establish tha€; T C». However, the converse statement
clearly does not hold, that i§j> IZ C.

It is worth noting that althouglexposeci C exposecs, we
cannot detect whether the objectsdnposecs - exposect are
unreachable. We have constructed examples which showttisat i
possible for all such objects to be unreachable or for akatisjto
be reachable or for the mix of the two to occur. However, bseau
exposec1 C exposeca, We can deduce that at the point in the
trace right after the call texpose in Ca, the |- and D- invariants
are satisfied. This is clear because the invariants ardiedtét the
same point irexpose of C1 and by the subset relation we can now
trivially conclude that they also hold at the correspondmoint in
C-> since adding pointers cannot cause an invariant violation.

Because the invariants are satisfied at this point, we caartes
the execution ofC; with the origins as returned byzposecs.
Additional origins cannot violate the invariants and weréfere
consider this to be a safe witness trace. We compare thebpmssi
continuations ofC; to the restarted trace af; with additional
origins. However, from this point on, all fields of € W< and
o € marked. That is,o will behave identically in both, the set
of restartedC; traces versus the set of traces representing the
continuations ofC>. Subsequently, the traces of the safe restarted
algorithm ofC are exactly the same as the continuation§'paind
hence we can deduce that is correct. Additionally, because the

C,. TheC algorithm can be restarted with the new state, because continued traces are the sameposec: on any subsequent state

the |- and D- invariants are preserved by the transformation

A.2 Wavefront Abstraction

The following proof shows the correctness of the wavefrdnt a
straction transformation which takes a single objeet F'L in C1
and moves that object so thate OL in Cs. It also shows thaf’s

is less precise thaft; according to 4.1.

Proof:(Theorem 5.2) (sketch)

of C will be the same aszposec2 whenpending(C-) is empty
and thus satisfgy C Cs.

A.3 Collection by Counting

The following proof shows the correctness of the rescantong
infinite counting transformation which takes a single objec=
SR in C; and moves that object so thate LR in C> assuming



IS = Cw. It also shows thaf’; is less precise tha@, according
to4.1.
Proof:(Theorem 5.5) (sketch)

Similarly to the wavefront abstraction, this transforroatiaf-
fects the marking decision for heap objects other thaput does
not affect the marking decision far The transformation takes ef-
fect when pointers tdS objects are stored in

Let P be the common prefix betwe€h andC’, right before the
point of divergence (right beforerpose) with an interaction lod.

If o € SR, the M™ and M~ computations are not activated. That
is, the propositiorP;.o € LR will be evaluated to false. Therefore,
the intermediate installations to objeats .S into a rescanned
objecto or intermediate deletions from of objectse .S do not
affect the mutator countM/) computation for these objects. That
is, expose” (1) returns only the objects I.S pointed to fromo at
the time of the call.

In the case wher@ € LR ando € FL, exposeci
exposece. This the case where maintains a precise wave-
front. Although, M~ and M computations are activated because
o € LR, the intermediate installations cannot affect the result
of exposecs. That is,exposece Will always return precisely the
pointers tal S objects residing im at the time of the call texpose.

In the case where € OL, that is, when the wavefront far
is imprecise, a superset of the pointers/t® objects stored i
will be returned byexposecs. That is because, even if inifinite
count is available for ad.S object stored irv, we can no longer
decrement its count if the removal occurs when objeis being
processed (i.e. in a state where some of its fields are prextdss
not all fields ofo are processed yet). With,, whereo € OL and
o € SR, an imprecise wavefront can only cause additional work,
but cannot affect the result efcposec: .

Therefore, we obtaiazposec1 C exposec2 at the divergence
point and I- and D- invariants are satisfied. We have now shben
required condition for precision and therefore we can distathat
C1 C Cs. The converse statement does not and thereforg C.

Similarly to the wavefront abstration, we cannot detecttivee
the objects irxposecs - exposeci are reachable or not. However,
one difference is that in this transformation, object¥if are not
affected. That isexposec1 A DS = exposeca A DS. Effectively,
exposecs — exposect € IS. This is because botfh; andC, are
working with the same wavefront and henegose?(1) in C; and
C- are identical.

After the first divergence point where the invariants stdld)
the reasoning is the same as in the wavefront abstractia® sin
objecto € marked ando € W< and hence even i6 ¢ OL,

o cannot create further differentiation in the continuasiaf C>
versus the restarted traces @f (recall that the 'difference’ for
this transformation occurs only because of an imprecisefrant

for objecto). Similarly, because the continued traces are the same,

C, C C> cannot be violated.

A.4 Abstraction of Mutator Count

The following proof shows the correctness of the mutatomeou
abstraction on a single objeate I.S. The transformation takes a
single object € C, and moves that object to the &t 1 in Cs.

It also shows thaf’; is less precise thafi; according to 4.1.
Proof:(Theorem 5.7) (sketch)

The proof follows the same lines as the proofs for the presviou
two transformations. The difference however is that at hiatpf
divergencegxposecs — exposeci = o. That is, the difference is a
single object rather than a set of objects.

The traces which cause a divergence point betweeandC>
are due to installations of a pointer tointo (field, source) €
W>. At the point before callingexzpose, there exists a com-
mon prefix P with a log I, which results i/ (o,!) = 0 and

My—1(0,1) = oo in which case € exposec2 ando ¢ exposeci
and henceexzposec1 C exposece. Hence, at the point where
pending is empty,exposec1 C exposecs and therefore we can
establish thatC; T C2. The converse statement does not and
thereforeCs £ C.

The restarting portion is similar to the wavefront in the sen
that because objeetis returned byexposec2, it will be marked
in C3 and hence it will have no further effect when comparing
continuations ofC; versus safe restarted traces@f. Similarly,
because the continued traces are the sathe” C> cannot be
violated.

A.5 Countingto Snapshot

The following proof shows the correctness of the protectrans-
formation on a single objecb. In C1, 0o € IS, while in Cs,

o € DS. This transformation is the only one which changes the
invariant mapping between objects. That is(ifp, objecto satis-
fies the |- invariant while irCs, o satisfies the D- invariant. It also
shows thatCs is weakly less precise thath accordingto 5.11.
Proof:(Theorem 5.12) (sketch)

Let P denote the common prefix trace with Ibdefore the
divergence point. With this transformation, it is possitdeobtain
two cases: one whererposec1 C exposecs and another where
exposecas C exposeci.

Case | - exposec1 C exposece:. This case occurs when a
pointer to the transformed objeet € DS has been removed
from a (source, field) ¢ W<. Thereforep € exposeco. How-
ever, inC1, o € IS ando will be returned byexposeci only if
My (o, P) > 0. That is, inCs, o is returned byexpose uncondi-
tionally, while in Cs, there is a condition thats count is positive.

Therefore, in this scheme, éfcposec1 C exposecs, theno =
exposecs \ exposect and since the invariants are satisfied’inat
this point, it is clear that they are satisfied(i as well. In addition,

o satisfies the D-invariant i'z. Sinceexposec1 C exposecs
whenpending is empty, in this case, we can say thatC C» and
Cy IZ Ch.

Similarly to the previous transformations we cannot adjdd-
tect whethew is actually reachable. We have constructed complex
examples showing that can be both floating garbage as well as
live at the divergence point.

The restarting argument is the same as the previous tramafor
tions : objecb will be marked byC'; and therefore cannot affect the
invariants and restarting; with the roots returned byxposec2
is safe. In effect, the original algorith@; continues with the ad-
ditional roots returned byxzposecs. Sinceo is marked in both
the continuations of’> and the restarted traces 6f, there can
be no further divergence points and theref6teis safe. Similarly,
because the continued traces are the sathe= C> cannot be
violated.

Case Il - exposeca C exposeci: This case occurs whem =
exposec1 — erposece. This situation can arise when the mutators
havenot removed a pointer to the transformed objeahead of
the wavefront, that is, fronisource, field) € W<. However, the
mutators have installed pointers to the transformed objbetind
the wavefront, that is, ifisource, field) € W=, which results in
My, (O7 P) > 0.

Because of the D* invariant i@z, we know that there must
exist at least one objegt € exposecs such thatp € DS ando
is reachable fronp via a sequence of objects DS. Therefore,
becausexposecs = exposec: \ o and the D- invariant holds for
o, itis clear thatC;, satisfies both invariants at this point. However,
we cannot say that at this poi6t, = C5 and therefore we cannot
apply the precision definition 4.1 to this case. Insteadabse of



the D* invariant, we know thatzposec, (1)* = exposec, (1)* and
thereforeC; < Cs.

However, unlike case |, it is not possible to rest@itwith the
origins as returned byzposec2. RestartingC; requires placing
back intolS and this would be incorrect since it would lead to a
violation of the I- invariant irC1. This is becaus@/; (o, P) may be
> 0 at this point, i.eo could be reachable froifsource, field) €
WS yeto ¢ exposecs. Therefore, moving from DS into IS in
order to restar€; is unsafe.

Instead of restarting at the point of divergen€eg,can continue
its operation in a lock step witly'; despite the fact that’; will
mark the transformed objeet right after the call toexposecs,
while C2 will not mark that object iraddOr i gi ns() . However,
besides the marking af, the traces have no other difference. At
some point in the exection d@f'; before the nextxpose point is
reached, eithe€’; will encountero and mark it, or a path from an
object in DS will be destroyed and’> will not encountero. In
the case wher€'s markso, the traces of”; andCs> will become
identical after this point. In the case whef& reachesczpose
before markingo, Ci would not have yet reacheerpose as it
has to process before doing so. In this execution however, we
know that the invariants hold just before the caltitposecs. This
is because”; and C> have been running nearly identical traces
except with the marking af in C:. However,C has not yet started
processing the object, i.gields(o) ¢ W~ and therefore it could
not have had transitive affect on other objects storegddndeleted
from o. Also, even if objecto became unreachable, it is already
marked and will be processed ;. At any rate, the result of
exposecs at the point whergending is empty will be a superset
to the result ofexposec: if we had executed it on the trace 6%
up to that point. That is, the invariants after the calkigosec2
are satisfied.

Clearly, because the invariants are satisfied’inas well, we
can continue th€'; execution with the additional roots returned by
exposecs as additional pointers cannot violate the invariants. This
process continues until eithelis reached in the tracing phase and
marked byC:> or o is returned byezposecs in which case it will
be marked. Once is marked, the nex¢zpose of C1 andCy will
return identical results the algorithms will behave ideaity.

A.6 Whiteto Yellow

The following proof shows the correctness of the white tdoyel
transformation which takes a single objectce W' in C; and
moves that object so that e Y C in Cs. Also, o € IS for both
algorithms and € F'L. It also shows tha€’; is less precise than
C1 according to 4.1.

Proof:(Theorem 5.13) (sketch) Similarly to the wavefront abstrac
tion, the application of this transformation on objeatan poten-
tially affect other heap objects. However, unlike wavefrahis
transformation is activated befovec marked. That is, the effect
of the transformation can take place immediately after thieai
is allocated. This implies that unlike wavefront, objeatan be af-
fected as well (i.e. a cyclic pointer can be installe@)n

For this transformation, the divergence points can occtawn
places: (i) after the call texpose in addOri gi ns(), and (ii)
when the collector marksin its tracing phase.

In the first case, because¢ marked, no (o, field) € W~ .
However, it is possible to obtain a divergence poinCaif 3 an
objectq such thatg € IS andgq € Ci. It is then possible to
find a common prefix P such thdt/x (¢, P) = oo in Cy while
My (g, P) = 0in C1. Such traces lead t@posec1 C exposeca
because iy no fields ofo have been processed yet and therefore
o cannot affectVy(q, P).

In the second case,is encountered and marked in the tracing
phase or is returned yrpose inaddCOr i gi ns() . In either case,

both, C; and C> will mark o, but C> will not place o’s field in
pending as yellow allocated objects are not traced through in order
to guarantee termination without requiring a stop-thelsvphase

to retrace the whole heap.

At this stage, similarly to case (ii) of the protection triomma-
tion, although a divergence point has occured, the algostban
keep running in a lock-step. In effect, for every tracedfe C-,
beforeexposecs, there exists a tracel € Cy such thatt2 is a
subtrace of1, where the only difference betweéhandt2 is the
value of thepending set, that ipending(C1) = pending(C2) U
fields(o). WhenC; reaches:xpose, the invaraints certainly hold
for both Cy and C; at their corresponding points in the trace. For
C1, that point will be just before fetching the next field @from
pending. The reason is thatarked(C1) = marked(C2) and
exposece contains all objectg 1S pointed to fromo. An impor-
tant observation here is that we are not interested in abjeddS
pointed to fromo. Those objects are installeddrduring this cycle
and hence not rescanningin order to return them irxposecs
cannot violate the D- invariant. That is, their destructimannot
cause the violation of the D* invariant for objectsD.S.

Because the invariants are satisfied €&, we can restarC,
with the new state as returned byposeco. After the restart, the
algorithms behave identically because marked and processed.

The precision reasoning here is very similar to other tramsf
mation which affect only objects iiS such as wavefront. When
we reachpending being empty inCs, exposeci C exposecs
and hence&’; C Cs.

A.7 Yelow to Black

The following proof shows the correctness of the yellow tachl
transformation which takes a single objecte Y C in C; and
moves that objeci to BC'in Cs. Also, 0 € IS for both algorithms
aso is a newly allocated object for this collector cycle. It adémws
thatCs is less precise thafi;, according to 4.1.

Proof:(Theorem 5.14) (sketch) The proof for this transformatin i
simpler than the previous transformations. It shows howemigny
tracet, € C2, we can find a corresponding tragein C; such that
marked(t1) C marked(tz).

After o is allocated, the effect af on other objects in the heap
is identical for bothC; andC>. However, the traces fars andCy
diverge sincenarked(t1) = marked(t2) \ o at that point. From
this point on however, we can match every step,db a step in; .

If Cy1 encounterso and marks it, then, from that point, the
suffixes oft; andt; are identical aneharked(t1) = marked(t2).

However, after allocating, it is possible that the object is
made unreachable and will not be encountered furtheiChy
For example,o can be stored ir(source, field) ¢ W~ and
subsequently removed from that same fiéldurce, field) ¢
W= In that casexposec1 = exposecs for all subsequent calls
to expose andmarked(tz) = marked(t1) \ o after the algorithm
terminates.

However, it is possible to obtain a case where exposec
and exposeci exposece, but o has not yet been marked in
C1. In that case, o will be marked subsequently after the call
to expose in addOri gi ns() in Cy and right after marking it
marked(t1) = marked(t2). The suffixes oft; andt, after this
point will be identical.

Therefore, for any trac& € C> we can find the corresponding
tracetl € C; which marks less objects. More preciselytif
markes less objects thad, thanmarked(t2) = marked(t1) Uo.

Because objech is marked as soon as it is allocateddh,
exposece can return that object at any point (it will be elim-
inated immediately from consideration whenigins are com-
puted. Alternativelyexpose can be extended to return a marked
as part of its result. Either way, wherposec1 C exposecs, then



Figure5. CASE |

exposec1 = exposec2Uo and otherwisexposec1 = exposeca.
Therefore, whemending(C2) is empty,exposeci C exposeca
and hence, C Cs.

B. Examples: Counting to Snapshot

The following two examples illustrate the two cases in thentim-
to-snapshot transformation. The first example shows howcane
obtainexposec1 C exposecs (case ), and the second example
shows how we can arrive atposecs C exposeci (case Il).

B.1 CASEI

Consider the top sequence depicted in Fig.5 whéres DS,
B € DS, C € IS andD is the transformed objects, that is,
D € ISin CiyandD € DS in C,. Object A has been marked
and scanned.

In the first interleaving (top sequence), at the divergeraiatp
(after the fourth step), we getrposec1 = {C} andexposecs =
{C, D}. Note thatexzposecs \ exposec1 = {D}. In this example,
objectD is live.

In the second interleaving (bottom sequence), at the diver-

gence point (after the second step), we geposec: = @ and
exposecs = {D}. Note again thatzposecs \ exposec1 = {E}.
However, in this case objeé? is dead.

These two examples demonstrate how we can arriee@tsec1 C

exposece and moreover that we cannot deduce whether the con-

verted object is live or not at the point wherepose is performed.

B.2 CASEII

Consider the sequence depicted in Fig.6 where DS, B € DS,
C € DS andD is the transformed object, that iB, € 1.5 in Cy
andD € DS in C2. ObjectA has been marked and scanned.

At the divergence point (the pointer after the 3rd step in the
figure), we getexposeci = {C, D} because a pointer t6' is
removed ahead of the wavefront and a pointerlloe 1S is
installed behind the wavefront. We also geposece = {C}. We
do not getD becauseD in Cs is € DS and no pointer to it has
been destroyed. Note thatposec: \ exposecs = {D}.

In this example, objecD is live because it is pointed to from
object A. However, if the pointer from A to D was destroyed,
exposece would not have returned since that pointer is behind
the wavefront and it is possible thBthas become dead.

This example shows how we can arrive atposece C

Figure6. CASE Il

the converted object is live or not at the point whengose is
performed.
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