Lecture 11 – Partial Programs, Program Repair, and Sketching

PROGRAM ANALYSIS & SYNTHESIS

Eran Yahav
Previously

- Synthesis from examples
- SMARTEdit
- String processing in spreadsheet from examples (a little bit)
Today

- Program Repair as a Game
 - angelic non-determinism in the program
- Sketching
 - completion of partial programs using a backing SAT solver

- Acks
 - Program Repair slides from Barbara Jobstmann
 - Sketching slides cannibalized from Armando Solar-Lezama
Reactive Systems

Systems (e.g., servers)
• Interact with environment
• Infinite duration (non-terminating)
• Finite data (or data abstractions)
• Control-oriented

Specifications
• Set of good behaviors (a language)
• Temporal logic (including safety and liveness)

Analysis

Synthesis

Verification

How to verify a Reactive System?

Core algorithm for linear-time temporal logic:

1. Source code $\rightarrow_{\text{auto/manual}}$ transition system (FSM)
2. Specification $\rightarrow_{\text{auto/manual}}$ monitor violations
3. Check if model has a violating trace
 - product of trans. system and monitor
 - check for exists of a trace in product (emptiness)

$$L(\text{Program}) \subseteq L(\text{Specification})$$

$$L(\text{Program}) \cap L(\neg \text{Specification}) = \emptyset$$

$$L(\text{Program} \times \neg \text{Specification}) = \emptyset$$
Source Code

unsigned int got_lock = 0;

...
1: while(*) {
 ...
2: if (*) {
3: lock();
4: got_lock++;
 }
 ...
5: if (got_lock != 0) {
6: unlock();
 }
7: got_lock--;
 ...
}
Step 1: Transition System

```c
int[0,1,2] got_lock = 0;
...
1: while(*) {
   ...
2:   if (*) {
3:      lock();
   lock:  {LOCK:=1;}
4:      got_lock++;
   }
   ...
5:   if (got_lock != 0) {
6:      unlock();
   unlock: {LOCK:=0;}
   }
7:   got_lock--; 
   ...
}
8: 
```

Trans. system variables: line (l), got_lock (gl)
Specification

P1: do not acquire a lock twice
P2: do not call unlock without holding the lock

P1: always(line=lock implies next(line!=lock w-Until line=unlock))

P2: (line!=unlock w-until line=lock) and
 always(line=unlock implies
 next(line!=unlock w-until line=lock))
Linear-Time Temporal Logic \[\text{[Pnueli77]}\]

- **Syntax:**
 - Atomic propositions, e.g., line=1, line!=1, got_lock=0
 - Boolean operators: **not, and, or, implies,** ...
 - Temporal operators:
 - **next (ϕ)** \(\ldots ϕ \) holds in the next step
 - **ϕ₁ until ϕ₂** \(\ldots ϕ₁ \) holds until at some point \(ϕ₂ \) holds

- Used in industrial spec languages PSL/SVA
- Can express many interesting properties, e.g., mutual exclusion, deadlock freedom, termination
Linear-Time Temporal Logic

- **Semantics**
 - defined with respect to infinite traces
 - in each step atomic propositions holds or not
 - E.g., line=1, got_lock≤1

Given a finite set of atomic proposition AP, a trace (or word) w over AP is an infinite sequence of truth assignments to AP, i.e., $w \in (2^AP)^\omega$.
Linear-Time Temporal Logic

- Semantics
 - \textbf{next} (ϕ)... ϕ holds in the next step
 \[\phi \xrightarrow{} \quad \xrightarrow{} \quad \xrightarrow{} \quad \xrightarrow{} \quad \xrightarrow{} \quad \text{.....} \]
 - $\phi_1 \textbf{ until } \phi_2$... ϕ_1 holds until at some point ϕ_2 holds
 \[\phi_1 \xrightarrow{} \phi_1 \xrightarrow{} \phi_1 \xrightarrow{} \text{.....} \quad \phi_1 \xrightarrow{} \phi_2 \xrightarrow{} \text{.....} \]
- System S satisfies/models ϕ, if all its behaviors satisfy ϕ
How to verify a Reactive System?

Core algorithm for linear-time temporal logic:

1. Source code $\rightarrow_{\text{auto/manual}}$ transition system (FSM)
2. Specification $\rightarrow_{\text{auto/manual}}$ monitor violations
3. Check if model has a violating trace
 - product of trans. system and monitor
 - check for exists of a trace in product (emptiness)
Step 2: Monitor for Violations

P₁: always(line=lock implies
 next(line!=lock w-until line=unlock))
= not eventually(line=lock and
 next(line!=unlock until line=lock))

Why do we track bad and not good behaviors?

Automaton accepts trace/behavior if a green state is visited infinitely often (Büchi)

Why do we track bad and not good behaviors?

L(S) ⊆ L(φ): forall w: w ∈ L(S) → w ∈ L(φ)
 ¬ exists w: w ∈ L(S) ∧ w ∈ L(¬φ)
Step 3: Product

\[
\begin{align*}
&l=1, gl=0 \\
&l=2, gl=0 \\
&l=3, gl=0 \\
&l=lock, gl=0 \\
&l=4, gl=0 \\
&l=5, gl=0 \\
&l=unlock, gl=0 \\
&l=7, gl=0 \\
&l=8, gl=0 \\
&l=1, gl=1 \\
&l=2, gl=1 \\
&l=3, gl=1 \\
&l=lock, gl=1 \\
&l=4, gl=1 \\
&l=5, gl=1 \\
&l=unlock, gl=1 \\
&l=7, gl=1 \\
&l=8, gl=1 \\
&l=1, gl=2 \\
&l=2, gl=2 \\
&l=3, gl=2 \\
&l=lock, gl=2 \\
&l=4, gl=2 \\
&l=5, gl=2 \\
&l=unlock, gl=2 \\
&l=7, gl=2 \\
&l=8, gl=2 \\
\end{align*}
\]
Step 3: Product

\[
\begin{align*}
\text{l} &= 1, \quad \text{gl} = 0 \\
\text{l} &= 2, \quad \text{gl} = 0 \\
\text{l} &= 3, \quad \text{gl} = 0 \\
\text{l} &= \text{lock}, \quad \text{gl} = 0 \\
\text{l} &= 4, \quad \text{gl} = 0, \quad \text{gl} = 2 \\
\text{l} &= 5, \quad \text{gl} = 0 \\
\text{l} &= 6, \quad \text{gl} = 1 \\
\text{l} &= \text{unlock}, \quad \text{gl} = 2 \\
\text{l} &= 7, \quad \text{gl} = 0 \\
\text{l} &= 8, \quad \text{gl} = 0 \\
\end{align*}
\]
Step 3: Product

Recall, we want to show a violation:
Step 3: Product

Recall, we want to show a violation:
non-determinism in transition system and in monitor pull in the same direction
(both can be used to violate property)
Source Code

```c
int[0,1,2] got_lock = 0;
...
1: while(*) {
   ...
2:  if (*) {
3:    lock();
   lock:   {LOCK:=1;}
4:    got_lock++;
   }
   ...
5:  if (got_lock != 0) {
6:    unlock();
   unlock: {LOCK:=0;}
   }
7:  got_lock--;
   ...
}
8: 
```
How to verify a Reactive System?

Core algorithm for linear-time temporal logic:
1. Source code $\rightarrow_{\text{auto/manual}}$ transition system (FSM)
2. Specification $\rightarrow_{\text{auto/manual}}$ monitor violations
3. Check if model has a violating trace
 - product of trans. system and monitor
 - check for exists of a trace in product (emptiness)

But how to repair it?
How to repair a Reactive System?

1. Add freedom (choice for the system, allowed ways to modify system)
2. Source code $\rightarrow_{a/m}$ transition system (game)
3. Specification $\rightarrow_{a/m}$ monitor acceptance
4. Check if we can find system choices s.t. model is accepted by monitor
 - product of trans. system and monitor
 - search for winning strategy in game
Step 1: Freedom

```c
int[0,1,2] got_lock = 0;
int[0,1,2] freedom;
...
1: while(*) {
   ...
2:   if (*) {
3:      lock();
lock:   {LOCK:=1;}
4:      got_lock:=freedom;
   }
   ...
5:   if (got_lock != 0) {
6:      unlock();
unlock: {LOCK:=0;}
   }
7:   got_lock:=freedom;
   ...
}
(We can also extend to fault localization)
```
Step 2: Game

\[
\begin{align*}
\text{int}[0,1,2] \ got_lock &= 0; \\
\text{int}[0,1,2] \ freedom;
\end{align*}
\]

\[
\begin{align*}
1: & \quad \text{while}(*) \{ \\
& \quad \quad \ldots \\
2: & \quad \text{if} (*) \{ \\
3: & \quad \quad \text{lock}(); \\
& \quad \quad \text{lock:} \quad \{\text{LOCK:=1;}\} \\
4: & \quad \quad \text{got_lock:=freedom}; \\
& \quad \} \\
& \quad \ldots \\
5: & \quad \text{if} (\text{got_lock} \neq 0) \{ \\
6: & \quad \quad \text{unlock}(); \\
& \quad \quad \text{unlock:} \quad \{\text{LOCK:=0;}\} \\
7: & \quad \quad \text{got_lock:=freedom}; \\
& \quad \} \\
8: & \\
\end{align*}
\]
Step 2: Game

```
int[0,1,2] got_lock = 0;
int[0,1,2] freedom;
...
1: while(*) {
...
2:   if (*) {
3:     lock();
lock:  {LOCK:=1;}
4:     got_lock:=freedom;
}
...
5:   if (got_lock != 0) {
6:     unlock();
unlock: {LOCK:=0;}
}
7:   got_lock:=freedom;
...
}
8: 
```

Two types of non-determinism!
Step 2: Game

\[
\begin{align*}
\text{int}[0,1,2] & \text{ got_lock} = 0; \\
\text{int}[0,1,2] & \text{ freedom}; \\
\ldots
\end{align*}
\]

1: while(*) {
 \ldots
2: if (*) {
3: lock();
lock: {LOCK:=1;}
4: got_lock:=freedom;
 }
 \ldots
5: if (got_lock != 0) {
6: unlock();
unlock: {LOCK:=0;}
7: got_lock:=freedom;
 \ldots
}
Step 3: Monitor for Acceptance

\[P_1: \text{always}(\text{line}=\text{lock} \implies \text{next}(\text{line}! = \text{lock} \text{ w-until line}=\text{unlock})) \]

Since game has two types of non-determinism, we need to be careful with non-determinism in monitor.
Problem with Nondeterminism

- Coffee machine is correct if there is no water or if button is pressed machine serves coffee:

 eventually always(not water) or
 always(pressed implies eventually coffee)
 and
 always(not water implies not coffee)

(Coffee machine wins if it visits a green state infinitely often)
Step 3: Det. Monitor for Acceptance

P1: always(line=lock implies next(line!=lock w-until line=unlock))

Classical approach: make it deterministic (more powerful acceptance required)
Step 3: Product

TS for got_lock in \{0, 1\}

Deterministic automaton
Step 3: Produce
Step 4: Winning States

\[l = \text{lock}, \quad gl = 0 \]
\[l = \text{unlock}, \quad gl = 1 \]
Step 4: Winning States

The diagram illustrates the possible states and transitions for a system with conditions involving lock, unlock, and a variable g. Each state is represented by a node, and the transitions are indicated by arrows. The conditions at each state are specified, such as $l=lock$, $l=unlock$, and combinations of these with $gl=0$ or $gl=1$. Arrows between states indicate possible transitions based on these conditions.
Step 4: Winning States

![Diagram of winning states]
Step 4: Winning States

l = 1, gl = 0
l = 2, gl = 0
l = 3, gl = 0
l = lock, gl = 0
l = 4, gl = 0
l = unlock, gl = 0
l = 5, gl = 1
l = 6, gl = 1
l = 7, gl = 1
l = 8, gl = 0
l = 8, gl = 1

l = 4, gl = 0
l = 4, gl = 1
l = 4, gl = 2
l = 5, gl = 1
l = 5, gl = 2
l = unlock, gl = 1

l = 3, gl = 0
l = lock, gl = 0
Step 4: Winning Strategy

In general: strategy is function of program and monitor state

Strategy to Repair:
if (l=4 & gl=0 & s=1) freedom:=0
if (l=4 & gl=1 & s=1) freedom:=1
if (l=4 & gl=0 & s=0) freedom:=1
if (l=7 & gl=0 & s=1) freedom:=0
if (l=7 & gl=1 & s=1) freedom:=0
.
freedom := f(l,gl,s)
if (line=4) freedom := (gl=1) | (s=2)
if (line=7) freedom := 0

What we actually do: merge states before picking the strategy
Step 4: Winning Strategy
Step 4: Winning Strategy

(line=4): freedom = 1

(line=7): freedom = 0
unsigned int got_lock = 0;
...
1: while(*) {
 ...
2: if (*) {
3: lock();
4: got_lock = 1;
}
 ...
5: if (got_lock != 0){
6: unlock();
}
7: got_lock = 0;
}

lock() {
lock: LOCK:=1;}
unlock(){
unlock: LOCK:=0;}

Specification
P1: do not acquire a lock twice
P2: do not call unlock without holding the lock

P1: always(line=lock implies next(line!=lock w-until line=unlock))
P2: (line!=unlock w-until line=lock) and always(line=unlock implies
 next(line!=unlock w-until line=lock))

(slide adapted with permission from Barbara Jobstmann)
Recap: How to Repair a Reactive System?

1. Add freedom
 - choice for the system, space of permitted modifications to the system

2. Source code \rightarrow transition system (game)
 - non-determinism in the program (demonic)
 - non-determinism in permitted modification (angelic)

3. Specification \rightarrow monitor acceptance

4. Check if we can find system choices s.t. model is accepted by monitor
 - product of trans. system and monitor
 - search for winning strategy in game
Program Repair

- Program
- Finite-state program
- Monitor
- Specification

Game
- Game TS: program with freedom

Monitor TS: Winning condition

Solve game
- (Simple) Strategy
- Correct Program

with Bloem, Griesmayer, Staber in CAV 2005, CHARME 2005 (+ext to fault localization)
Classical Controller Synthesis

FSM + freedom + monitor

Initially defined for invariants

Game

Game TS + winning cond.

Solve game

(Simple) Strategy

Correct Program

Ramadge, Wonham 87, Book by Cassandras, Lafortune 99/07
Synthesis from Temporal Logics

Monitor + interface definition → Monitor TS: Winning condition → Solve game

Specification → Game

(Simple) Strategy → Correct Program

Church (1962), Büchi/Landweber (1969, games), Rabin (1972, trees), Pnueli/Rosner (1989, LTL)
Program Synthesis

Modern Controller Synthesis, see overview papers by Walukiewicz et al., Rutten & Girault, ...
Issues?

How to abstract?

Program

FSM + freedom

How to construct efficiently?

Monitor

Winning condition

How expressive?

Monitor TS

Size?

Game

Game TS

Solve game

How to pick a strategy?

Strategy

(Simple)

Correct

Program

How to map back?

Related research areas:
PL, AV, Control Theory,
Game and Automata Theory

How to specify?

Specification

How to abstract?
Issues with Monitor for LTL

- Determinization construction (Safra’s)
- 2EXP worst case complexity
 - LTL is very succinct

Monitoring TS:
- Winning condition
- How expressive?
- Size?
Some Solutions

- Concentrate on subsets (different types of games)
 - Ramadge, Wonham (Proc IEEE'89)
 - Asarin, Maler, Pnueli, Sifakis (SSC'98)
 - Alur, La Torre (LICS'01)
 - Alur, Madhusudan, Nam (BMC'03, STTT'05)
 - Wallmeier, Hütter, Thomas (CIAA'03)
 - Harding, Ryan, Schobbens (TACAS'05)
 - Jobstmann, Bloem (CAV’05)
 - Piterman, Pnueli, Sa'ar (VMCAI'06)
 (base of our work on synthesizing AMBA)

- Optimize or avoid determinization construction
 - Althoff, Thomas, Wallmeier (CIAA'05, TCS'06)
 - Piterman, Henzinger (CSL'06)
 - Kupferman, Vardi (FOCS'05)
 - Kupferman, Piterman, Vardi (CAV'06)
 - Schewe, Finkbeiner (ATVA'07), Filiot, Jin, Raskin (CAV'09)
 - Safety, Reachability Büchi, co-Büchi
 - Det. generators for several subsets
 - Safety+ using SAT, QBF, and BDDs
 - Request-Response
 - Work with nondet. automaton
 - Identified syntactic subset
 - Generalized Reactivity-1 (GR-1)
 - Implemented Safra
 - Improved Safra, Good-for-game
 - Bounded Synthesis (using co-Büchi)

- Symbolic representation (e.g., using BDDs)
Next

- More partial programs...
 - this time with Sketching
What is sketching?

- A program synthesis system
 - generates small fragments of code
 - checks their validity against a specification

- A programming aid
 - help you write tricky programs
 - cleverness and insight come from you
 - sorry, no programming robots
 - computer helps with low-level reasoning
The sketching experience

sketch

implementation (completed sketch)
Sketch language basics

- Sketches are programs with holes
 - write what you know
 - use holes for the rest

- 2 semantic issues
 - specifications
 - How does SKETCH know what program you actually want?
 - holes
 - Constrain the set of solutions the synthesizer may consider
Specifications

- Specifications constrain program behavior
 - assertions

    ```
    assert x > y;
    ```
 - function equivalence

    ```
    blockedMatMul(Mat a, Mat b) implements matMul
    ```

Is this enough?
Holes

- Holes are placeholders for the synthesizer
 - synthesizer replaces hole with concrete code fragment
 - fragment must come from a set defined by the user
Define sets of integer constants

Example: Hello World of Sketching

spec:
```java
int foo (int x)
{
    return x + x;
}
```

sketch:
```java
int bar (int x) implements foo
{
    return x * ??;
}
```

Integer Hole
Integer Holes → Sets of Expressions

- Example: Find least significant zero bit
 - 0010 0101 → 0000 0010

 \[
 \text{int } W = 32; \\
 \text{bit}[W] \text{ isolate}(\text{bit}[W] \times) \{ \quad // \text{W: word size} \\
 \text{bit}[W] \text{ ret} = 0; \\
 \text{for (int i = 0; i < W; i++)} \\
 \quad \text{if (!x[i])} \{ \text{ret}[i] = 1; \text{return ret; } \}
 \}

- Trick:
 - Adding 1 to a string of ones turns the next zero to a 1
 - i.e. 000111 + 1 = 001000

\[(x + ??) \& (x + ??) \]

→

\[\!(x + 1) \& (x + o)\]

\[\!(x + 0) \& (x + 1)\]

\[\!(x + 1) \& (x + oxFFFF)\]

\[\!(x + oxFFFF) \& (x + 1)\]
Example: Least Significant Zero Bit

0010 0101 → 0000 0010

```c
int W = 32;

bit[W] isolate0 (bit[W] x) { // W: word size
    bit[W] ret = 0;
    for (int i = 0; i < W; i++)
        if (!x[i]) { ret[i] = 1; return ret; }
}
```

```c
bit[W] isolateSk (bit[W] x) implements isolate0 {
    return !(x + ??) & (x + ??);
}
```
Integer Holes → Sets of Expressions

- Least Significant One Bit
 - 0010 0100 → 0000 0100

```c
int W = 32;

bit[W] isolateo (bit[W] x) {
  // W: word size
  bit[W] ret = 0;
  for (int i = 0; i < W; i++)
    if (x[i]) { ret[i] = 1; return ret; }
}
```

- Will the same trick work?
 - try it out
- Integer Holes → Sets of Expressions

- Expressions with `??` == sets of expressions
 - linear expressions \[x^{??} + y^{??} \]
 - polynomials \[x^{x^{??}} + x^{??} + ?? \]
 - sets of variables \[?? ? x : y \]

- Semantically powerful but syntactically clunky
 - Regular Expressions are a more convenient way of defining sets
Regular Expression Generators

- `{ | RegExp | }`

- RegExp supports choice `'|' and optional `?'`
 - can be used arbitrarily within an expression
 - to select operands `{ | (x | y | z) + 1 | }`
 - to select operators `{ | x (+ | -) y | }`
 - to select fields `{ | n(.prev | .next)? | }`
 - to select arguments `{ | foo(x | y, z) | }`

- Set must respect the type system
 - all expressions in the set must type-check
 - all must be of the same type
Least Significant One revisited

- How did I know the solution would take the form
 \(!(x + ???) \& (x + ???) \).

- What if all you know is that the solution involves \(x, +, \& \) and \(!\).

```c
bit[W] tmp=0;
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
{| x | tmp |} = {| (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
return tmp;
```

This is now a set of statements
(and a really big one too)
Sets of statements

- Statements with holes = sets of statements

- Higher level constructs for Statements too
 - repeat

```plaintext
bit[W] tmp=0;
repeat(3){
  \{| x | tmp |\} = \{| (!)?((x | tmp) (& | +) (x | tmp | ??)) |\};
}
return tmp;
```
repeat

- Avoid copying and pasting
 - repeat(n){ s} \(\Rightarrow\) \(s; s; \ldots s;\)
 - each of the n copies may resolve to a distinct stmt
 - n can be a hole too.

```plaintext
bit[W] tmp=0;
repeat(??){
  { | x | tmp | } = { | (!)?((x | tmp) (& | +) (x | tmp | ??)) |};
}
return tmp;
```

- Keep in mind:
 - the synthesizer won’t try to minimize n
 - use --unrollamnt to set the maximum value of n
Example: logcount

```c
int pop (bit[W] x)
{
    int count = 0;
    for (int i = 0; i < W; i++) {
        if (x[i]) count++;
    }
    return count;
}
```
Procedures and Sets of Procedures

- 2 types of procedures
 - standard procedures
 - represents a single procedure
 - all call sites resolve to the same procedure
 - identified by the keyword `static`
 - generators
 - represents a set of procedures
 - each call site resolves to a different procedure in the set
 - default in the current implementation
Example

```c
int rec(int x, int y, int z){
    int t = ??;
    if(t == 0){return x;}
    if(t == 1){return y;}
    if(t == 2){return z;}
    if(t == 3){return rec(x,y,z) * rec(x,y,z);}
    if(t == 4){return rec(x,y,z) + rec(x,y,z);}
    if(t == 5){return rec(x,y,z) - rec(x,y,z);}
}

int sketch( int x, int y, int z ) implements spec{
    return rec(x,y, z);
}

int spec( int x, int y, int z ){
    return (x + x) * (y - z);
}
```
Step 1: Turn holes into special inputs

- The ?? Operator is modeled as a special input
 - we call them control inputs

```plaintext
bit[W] isolSk(bit[W] x)
{
    return ~(x + ??) & (x + ??);
}
```

- Bounded candidate spaces are important
 - bounded unrolling of `repeat` is important
 - bounded inlining of generators is important

```plaintext
{
    return ~(x + c1) & (x + c2);
}
```
Step 2: Constraining the set of controls

- Correct control
 - causes the spec & sketch to match for all inputs
 - causes all assertions to be satisfied for all inputs

- Constraints are collected into a predicate

 \[Q(\text{in}, \text{c}) \]
int popSketched (bit[W] x)
 implements pop {
 loop (??) {
 x = (x & ??)
 + ((x >> ??) & ??);
 }
 return x;
 }
Ex : Population count.

```c
int pop (bit[W] x)
{
    int count = 0;
    for (int i = 0; i < W; i++) {
        if (x[i]) count++;
    }
    return count;
}
```

\[Q(\text{in}, c) \triangleq S(x, c) = \neg F(x) \]

\[F(x) = \]
A Sketch as a constraint system

Synthesis reduces to constraint satisfaction

$$\exists c \forall x. Q(x, c)$$

Constraints are too hard for standard techniques

- Universal quantification over inputs
- Too many inputs
- Too many constraints
- Too many holes
Insight

Sketches are not arbitrary constraint systems
 - They express the high level structure of a program

A small set of inputs can fully constrain the soln
 - focus on corner cases

\[\exists c \forall x \in E. Q(x, c) \] where \(E = \{x_1, x_2, ..., x_k\} \)

This is an inductive synthesis problem!
 - but how do we find the set \(E \)?
 - and how do we solve the inductive synthesis problem?
Step 3: Counterexample Guided Inductive Synthesis

Idea: Couple inductive synthesizer with a verifier

- Verifier is charged with detecting convergence

![Diagram]

- Inductive Synthesizer: Derive candidate implementation from concrete inputs
 \[\exists c \forall x \text{ in } E.Q(x,c) \]

- Observation set E

- Standard implementation uses SAT based bounded checker
Inductive Synthesis

Deriving a candidate from a set of observations

\[\exists c \forall x \text{ in } E \cdot Q(x, c) \text{ where } E = \{x_1, x_2, \ldots, x_k\} \]

Encode C as a bit-vector

- natural encoding given the integer holes

Encode Q(x_i, c) as boolean constraints on the bit-vector

Solve constraints using SAT solver

- with lots of preprocessing in between
Summary