Previously

- Typestate Verification
Today

- Predicate Abstraction (via SLAM)

- Acks
 - Slides cannibalized from Ball&Rajamani’s PLDI’03 Tutorial
Predicate Abstraction

- Use formulas to observe properties in a state
 - e.g., \((x==y), \forall i.a[i]=\emptyset\)

- Boolean abstraction
 - over a finite vocabulary \(F\) of predicates
 - abstract state is an assignment of truth values to predicates in \(F\)
Example

\[
x = \text{abs}(?)
\]
\[
y = x;
\]
\[
\text{while}(x \neq 0) \{
\]
\[
\text{x}--; \\
\text{y}--; \\
\}
\]
\[
\text{assert } x = y;
\]

\[
F = \{ (x = y), (x = y - 1) \}
\]
Example

```c
x=abs(?);
y=x;
while(x!=0) {
    x--;
    y--;
}
assert(x==y);
```
Abstraction Refinement

Change the abstraction to match the program
Predicate Abstraction and Boolean Programs

- Given a program P and a finite vocabulary F, we can take two similar (but different!) approaches:
 - compute $\llbracket P \rrbracket_\#$ abstract interpretation over F
 - construct a Boolean program $BP = B(P,F)$ and compute $\llbracket BP \rrbracket$ concrete interpretation
 - BP guaranteed to be finite-state
Boolean Program: Example

```
x=abs(?);
y=x;
while(x!=0) {
    x--;
    y--;
}
assert x==y;
```

```
x=abs(?);
(x==y) = T
while(?) {
    (x==y-1) =T; (x==y) = F
    (x==y-1) =F; (x==y) = T
}
assert ( (x==y) == T );
```

Use the predicates to construct a Boolean program
(how? coming up soon)
The SLAM Process

prog. P'

SLIC rule

prog. P

c2bp

boolean program

bebop

predicates

newton

path
State Machine for Locking

```
state {
    enum {Locked, Unlocked}
    s = Unlocked;
}

KeAcquireSpinLock.entry {
    if (s==Locked) abort;
    else s = Locked;
}

KeReleaseSpinLock.entry {
    if (s==Unlocked) abort;
    else s = Unlocked;
}
```
do {
 KeAcquireSpinLock();

 nPacketsOld = nPackets;

 if(request){
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();
do {
 KeAcquireSpinLock();
 if(*){
 KeReleaseSpinLock();
 }
} while (*);
KeReleaseSpinLock();
do {
 KeAcquireSpinLock();

 nPacketsOld = nPackets;

 if (request) {
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Is error path feasible in C program? (newton)
Example (SLAM)

\begin{align*}
\text{do } & \{ \\
& \quad \text{KeAcquireSpinLock}(); \\
& \quad \text{nPacketsOld} = \text{nPackets}; \ b = \text{true}; \\
& \quad \text{if(request)} \{ \\
& \quad \quad \text{request} = \text{request}->\text{Next}; \\
& \quad \quad \text{KeReleaseSpinLock}(); \\
& \quad \quad \text{nPackets}++; \ b = (b \ ? \ false \ : \ *); \\
& \quad \} \\
& \} \text{ while (nPackets != nPacketsOld)}; \ !b \\
& \quad \text{KeReleaseSpinLock}();
\end{align*}
do {
 KeAcquireSpinLock();

 b = true;

 if(*){
 KeReleaseSpinLock();
 b = b ? false : *;
 }
} while (!b);

KeReleaseSpinLock();
Example (SLAM)

```c
b: (nPacketsOld == nPackets)
do {
    KeAcquireSpinLock();
    b = true;
    if(*){
        KeReleaseSpinLock();
        b = b ? false : *;
    }
} while ( !b );
KeReleaseSpinLock();
```

Model checking refined boolean program (bebop)
c2bp: Predicate Abstraction for C Programs

Given

- P : a C program
- \(F = \{e_1, \ldots, e_n\} \)
 - each \(e_i \) a pure boolean expression
 - each \(e_i \) represents set of states for which \(e_i \) is true

Produce a boolean program \(B(P,F) \)

- same control-flow structure as P
- boolean vars \(\{b_1, \ldots, b_n\} \) to match \(\{e_1, \ldots, e_n\} \)
- soundness: properties true of \(B(P,F) \) are true of P
Assumptions

Given

- P : a C program
- $F = \{e_1, \ldots, e_n\}$
 - each e_i a pure boolean expression
 - each e_i represents set of states for which e_i is true

Assume: each e_i uses either:

- only globals (global predicate)
- local variables from some procedure (local predicate for that procedure)

Mixed predicates:

- predicates using both local variables and global variables
- complicate “return” processing
- advanced... we won’t cover it
C2bp Algorithm

- Performs modular abstraction
 - abstracts each procedure in isolation

- Within each procedure, abstracts each statement in isolation
 - no control-flow analysis
 - no need for loop invariants
```c
int g;

main(int x, int y){
    cmp(x, y);
    assume(!g);
    assume(x != y)
    assert(0);
}

void cmp (int a , int b) {
    goto L1, L2
    L1: assume(a==b);
        g = 0;
        return;
    L2: assume(a!=b);
        g = 1;
        return;
}

Preds: {x==y}
       {g==0}
       {a==b}
```
int g;

main(int x, int y) {
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

decl {g==0} ;

main({x==y}) {

 Preds: {x==y}

 {g==0}

 {a==b}

}

void cmp (int a , int b) {
 goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}

void cmp ({a==b}) {
int g;

main(int x, int y) {
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

dcl {g==0} ;

main({x==y}) {
 cmp({x==y});
 assume({g==0});
 assume(!{x==y});
 assert(o);
}

void cmp (int a , int b) {
 goto L1, L2

 L1: assume(a==b);
 g = 0;
 return;

 L2: assume(a!=b);
 g = 1;
 return;
}

dcl {g==0} ;

main({x==y}) {
 cmp({x==y});
 assume({g==0});
 assume(!{x==y});
 assert(0);
}

void cmp ({a==b}) {
 goto L1, L2;

 L1: assume({a==b});
 {g==0} = T;
 return;

 L2: assume(!{a==b});
 {g==0} = F;
 return;
}
Abstract Transformers?

abstract state $S^\#$

which predicates should hold in the resulting abstract state?
Abstract Transformers?

abstract state $S^#$

$P_1 \xrightarrow{[y = y + 1]^#} ?$

$vocabulary = \{ \\
 p_1 = (y < 4), \\
 p_2 = (y < 5) \\
\} $
Abstract Transformers?

\[p_1 = (y < 4), \; p_2 = (y < 5) \]
Can also phrase it with WP

- To check if a predicate should hold in the next abstract state
- check the weakest precondition of the predicate’s defining formula wrt statement

abstract state $S^\#$ \[\xrightarrow{\text{stmt}}\] abstract state $S'^\#$

which predicates should hold in $S^\#$ so P_1, P_2 hold in $S'^\#$?
Abstracting Assigns via WP

- $\text{WP}(x=e, Q) = Q[x \leftarrow e]$

- Effect of statement $y = y + 1$

- Vocabulary = \{ y < 4, y < 5 \}

- $\text{WP}(y=y+1, y<5) = \ (y<5) [y \leftarrow y+1] = (y+1<5) = (y<4)$
WP Problem

- WP(s, e_i) not always expressible via \{ e_1, ..., e_n \}
- (Vocabulary not closed under WP)

Example

- F = \{ x==0, x==1, x<5 \}
- WP(x=x+1, x<5) = x<4
- Best possible: x==0 || x==1
Transformers via WP

\(p_1 = (x=0), \ p_2 = (x=1), \ p_3 = (x < 5) \)
Transformers via WP

wp(x=x+1,x<5)

(x < 4) -> (x < 5)

\([x = x + 1]\)^

P3

\(p1 = (x==0), p2 = (x==1), p3 = (x < 5)\)
Abstracting Expressions via F

- $F = \{ e_1, ..., e_n \}$

- $\text{Implies}_F(e)$
 - *best* boolean function over F that implies e

- $\text{ImpliedBy}_F(e)$
 - *best* boolean function over F implied by e
 - $\text{ImpliedBy}_F(e) = \neg \text{Implies}_F(\neg e)$
Implies_{F}(e) and ImpliedBy_{F}(e)
Computing $\text{Implies}_F(e)$

- *minterm* $m = d_1 \land \ldots \land d_n$
 - where $d_i = e_i$ or $d_i = \neg e_i$

- $\text{Implies}_F(e)$
 - disjunction of all minterms that imply e

- Naïve approach
 - generate all 2^n possible minterms
 - for each minterm m, use decision procedure to check *validity of each implication* $m \Rightarrow e$

- Many optimizations possible
Abstracting Assignments

- if \(\text{Implies}_F(\text{WP}(s, e_i)) \) is true before \(s \) then
 - \(e_i \) is true after \(s \)

- if \(\text{Implies}_F(\text{WP}(s, \neg e_i)) \) is true before \(s \) then
 - \(e_i \) is false after \(s \)

\[
\{e_i\} = \text{Implies}_F(\text{WP}(s, e_i)) \ ? \text{true} : \text{Implies}_F(\text{WP}(s, \neg e_i)) \ ? \text{false} : *;
\]
Assignment Example

Statement in P:
\[y = y + 1; \]

Predicates in E:
\[\{x == y\} \]

Weakest Precondition:
\[WP(y = y + 1, x == y) = x == y + 1 \]

\[\text{Implies}_F(x == y + 1) = \text{false} \]
\[\text{Implies}_F(x != y + 1) = x == y \]

Abstraction of assignment in B:
\[\{x == y\} = (\{x == y\} ? \text{false} : *) \]
Abstracting Assumes

- $\text{WP}(\text{assume}(e), Q) = e \Rightarrow Q$

- $\text{assume}(e)$ is abstracted to:
 \[\text{assume}(\text{ImpliedBy}_F(e)) \]

- Example:
 \[F = \{ x==2, x<5 \} \]
 \[\text{assume}(x < 2) \text{ is abstracted to:} \]
 \[\text{assume}(\{x<5\} \&\& !\{x==2\}) \]
Weakest Precondition:
WP(*p=3 , x==5) = x==5

What if *p and x alias?

Correct Weakest Precondition:
(p==&x and 3==5) or (p!=&x and x==5)
Precision

- For program P and E = \{e_1, ..., e_n\}, there exist two “ideal” abstractions:
 - Boolean(P, E): most precise abstraction
 - Cartesian(P, E): less precise abstraction, where each boolean variable is updated independently
 - [See Ball-Podelski-Rajamani, TACAS 00]

- Theory
 - with an “ideal” theorem prover, c2bp can compute Cartesian(P, E)

- Practice
 - c2bp computes a less precise abstraction than Cartesian(P, E)
 - we use Das/Dill’s technique to incrementally improve precision
 - with an “ideal” theorem prover, the combination of c2bp + Das/Dill can compute Boolean(P, E)
The SLAM Process

- prog. P
- SLIC rule
- slic
- prog. P'
- predicates
- newton
- c2bp
- bebop
- boolean program
- path
Bebop

- Model checker for boolean programs

- Based on CFL reachability
 - [Sharir-Pnueli 81] [Reps-Sagiv-Horwitz 95]

- Iterative addition of edges to graph
 - “path edges”: \(<entry,d_1> \rightarrow <v,d_2>\>
 - “summary edges”: \(<\text{call},d_1> \rightarrow <\text{ret},d_2>\)
Symbolic CFL reachability

- Partition path edges by their “target”
 - \(\text{PE}(v) = \{ <d_1,d_2> | <\text{entry},d_1> \rightarrow <v,d_2> \} \)

- What is \(<d_1,d_2> \) for boolean programs?
 - A bit-vector!

- What is \(\text{PE}(v) \)?
 - A set of bit-vectors

- Use a BDD (attached to \(v \)) to represent \(\text{PE}(v) \)
BDDs

- Canonical representation of boolean functions
 - set of (fixed-length) bitvectors
 - binary relations over finite domains

- Efficient algorithms for common dataflow operations
 - transfer function
 - join/meet
 - subsumption test

```c
void cmp ( e2 ) {
    Goto L1, L2
    L1: assume( e2 );
    gz = T; goto L3;
    L2: assume( !e2 );
    gz = F; goto L3
    L3: return;
}
```

BDD at line [10] of cmp:

```
e2 = e2' & gz' = e2'
```

Read: “cmp leaves e2 unchanged and sets gz to have the same final value as e2”
decl gz;
main(e){
 [1] cmp(e);
 [2] assume(gz);
 [3] assume(!e);
 [4] assert(F);
}

void cmp (e2) {
 [6] L1: assume(e2);
 [7] gz = T; goto L3;
 [8] L2: assume(!e2);
 [9] gz = F; goto L3
 [10] L3: return;
}
Bebop: summary

- Explicit representation of CFG
- Implicit representation of path edges and summary edges
- Generation of hierarchical error traces
- Complexity: $O(E \times 2^{O(N)})$
 - E is the size of the CFG
 - N is the max. number of variables in scope
The SLAM Process

prog. P → slic → prog. P' → c2bp → boolean program

SLIC rule

predicates

bebop

path

newton
Newton

- Given an error path \(p \) in boolean program \(B \)
 - is \(p \) a feasible path of the corresponding C program?
 - Yes: found an error
 - No: find predicates that explain the infeasibility

- uses the same interfaces to the theorem provers as c2bp.
Newton

- Execute path symbolically

- Check conditions for inconsistency using theorem prover (satisfiability)

- After detecting inconsistency
 - minimize inconsistent conditions
 - traverse dependencies
 - obtain predicates
Symbolic simulation for C--

Domains
- variables: names in the program
- values: constants + symbols

State of the simulator has 3 components:
- store: map from variables to values
- conditions: predicates over symbols
- history: past valuations of the store
Symbolic simulation Algorithm

Input: path p

For each statement s in p do

match s with

Assign(x,e):

let val = Eval(e) in
if (Store[x]) is defined then
 History[x] := History[x] \oplus Store[x]
Store[x] := val

Assume(e):

let val = Eval(e) in
Cond := Cond and val
let result = CheckConsistency(Cond) in
if (result == "inconsistent") then
 GenerateInconsistentPredicates()

End

Say “Path p is feasible”
Symbolic Simulation: Caveats

- Procedure calls
 - add a stack to the simulator
 - push and pop stack frames on calls and returns
 - implement mappings to keep values “in scope” at calls and returns

- Dependencies
 - for each condition or store, keep track of which values were used to generate this value
 - traverse dependency during predicate generation
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

void cmp (int a, int b){
 goto L1, L2

 L1: assume(a==b);
 g = 0;
 return;

 L2: assume(a!=b);
 g = 1;
 return;
}
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:

main:
(1) x: X
(2) y: Y

void cmp (int a, int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}

Conditions:
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:

main:
 (1) x: X
 (2) y: Y

cmp:
 (3) a: A
 (4) b: B

void cmp (int a, int b) {
 Goto L1, L2

 L1: assume(a==b);
 g = 0;
 return;

 L2: assume(a!=b);
 g = 1;
 return;
}
int g;

main(int x, int y)
{
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:
(6) g: 0

main:
(1) x: X
(2) y: Y

cmp:
(3) a: A
(4) b: B

void cmp (int a , int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}

Conditions:
(5) (A == B) [3, 4]
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

void cmp (int a , int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}

Global:
(6) g: 0

main:
(1) x: X
(2) y: Y

Maps:
X → A
Y → B

Conditions:
(5) (A == B) [3, 4]
(6) (X == Y) [5]
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:
(6) g: 0

main:
(1) x: X
(2) y: Y

cmp:
(3) a: A
(4) b: B

void cmp (int a, int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:
(6) g: 0
main:
(1) x: X
(2) y: Y
cmp:
(3) a: A
(4) b: B

void cmp (int a , int b) {
 Goto L1, L2

 L1: assume(a==b);
 g = 0;
 return;

 L2: assume(a!=b);
 g = 1;
 return;
}

Conditions:
(5) (A == B) [3, 4]
(6) (X == Y) [5]
(7) (X != Y) [1, 2]
int g;

main(int x, int y){
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

Global:
(6) g: 0

main:
(1) x: X
(2) y: Y

cmp:
(3) a: A
(4) b: B

void cmp (int a , int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}

Conditions:
(5) (A == B) [3, 4]
(6) (X == Y) [5]
(7) (X != Y) [1, 2]

Contradictory!
int g;

main(int x, int y) {
 cmp(x, y);
 assume(!g);
 assume(x != y)
 assert(0);
}

void cmp (int a, int b) {
 Goto L1, L2
 L1: assume(a==b);
 g = 0;
 return;
 L2: assume(a!=b);
 g = 1;
 return;
}
Recap

- Predicate Abstraction (via SLAM)
- CEGAR (without the details)
PREDICATE ABSTRACTION AND
CANONICAL ABSTRACTION
FOR SINGLY-LINKED LISTS

[Roman Manevich et. al. VMCAI’05]
Motivating Example 1: CEGAR

```
curr = head;
while (curr != tail) {
    assert (curr != null);
    curr = curr.n;
}
```

CEGAR generates following predicates:
- `curr.n \neq null`,
- `curr.n.n \neq null`,
- ... after i refinement steps:
- `curr(.n)^i \neq null`

Diagram:
```
head -> [n] -> ... -> [n] -> [n] -> tail
```
Motivating Example 1: CEGAR

```
curr = head;
while (curr != tail) {
    assert (curr != null);
    curr = curr.n;
}
```

In general, problem is undecidable:
V. Chakaravathy [POPL 2003]

State-of-the-art canonical abstractions can prove assertion
Motivating Example 2

// @pre cyclic(x)
t = null;
y = x;
while (t != x && y.data < low) {
 t = y.n; y = t;
}
z = y;
while (z != x && z.data < high) {
 t = z.n; z = t;
}
t = null;
if (y != z) {
 y.n = null;
 y.n = z;
}
// @post cyclic(x)
Motivating Example 2

@pre cyclic(x)

@post cyclic(x)
Existing Canonical Abstraction

concrete

abstract

order between variables lost!
cannot establish \(\text{post cyclic}(x) \)
Overview and Main Results

- Current predicate abstraction refinement methods not adequate for analyzing heaps

- Predicate abstraction can simulate arbitrary finite abstract domains
 - Often requires too many predicates

- New family of abstractions for lists
 - Bounded number of sharing patterns
 - Handles cycles more precisely than existing canonical abstractions

- Encode abstraction with two methods
 - Canonical abstraction
 - Polynomial predicate abstraction
Outline

- New abstractions for lists
 - Observations on concrete shapes
 - Static naming scheme
 - Encoding via predicate abstraction
 - Encoding via canonical abstraction
 - Controlling the number of predicates via heap-sharing depth parameter

- Conclusion
Concrete Shapes

- Assume the following class of (list-) heaps
 - Heap contains only singly-linked lists
 - No garbage (easy to handle)
- A heap can be decomposed into
 - Basic shape (sharing pattern)
 - List lengths
Concrete Shapes

class SLL {
 Object value;
 SLL n;
}

\[
\begin{array}{c}
\text{x} \rightarrow \text{n} \\
\text{y} \rightarrow \text{n} \rightarrow \text{n}
\end{array}
\]
Interrupting Nodes

Interruption:
node pointed-to by a variable
or shared by \(n \) fields

\[
\text{#interruptions} \leq 2 \cdot \text{#variables}
\]
(bounded number of sharing patterns)
Maximal Uninterrupted Lists

Maximal uninterrupted list:
maximal list segment between two interruptions
not containing interruptions in-between
Maximal Uninterrupted Lists
Maximal Uninterrupted Lists
Maximal Uninterrupted Lists

Abstract lengths: \{1, 2, >2\}
Using Static Names

- Goal: name all sharing patterns
- Prepare static names for interruptions
 - Derive predicates for canonical abstraction
- Prepare static names for max. uninterrupted lists
 - Derive predicates for predicate abstraction
- All names expressed by FO^TC formulae
Naming Interruptions

We name interruptions by adding auxiliary variables
For every variable $x : x_1, \ldots, x_k$ \hspace{1cm} ($k = \#\text{variables}$)
Naming Max. Uninterrupted Lists
A Predicate Abstraction

- For every pair of variables x,y (regular and auxiliary)
 - $\text{Aliased}[x,y] = x$ and y point to same node
 - $\text{UList1}[x,y] = \text{max. uninterrupted list of length 1}$
 - $\text{UList2}[x,y] = \text{max. uninterrupted list of length 2}$
 - $\text{UList}[x,y] = \text{max. uninterrupted list of any length}$

- For every variable x (regular and auxiliary)
 - $\text{UList1}[x,\text{null}] = \text{max. uninterrupted list of length 1}$
 - $\text{UList2}[x,\text{null}] = \text{max. uninterrupted list of length 2}$
 - $\text{UList}[x,\text{null}] = \text{max. uninterrupted list of any length}$

- Predicates expressed by FO^TC formulae
Predicate Abstraction Example

concrete

abstract

Aliased[x,x] Aliased[y,y] Aliased[x1,x1] Aliased[x2,x2]
Aliased[y1,y1] Aliased[y2,y2] Aliased[x1,y1] Aliased[y1,x1]
Aliased[x2,y2] Aliased[y2,x2] UList[x,x1] UList[x,y1]
UList2[x1,x2] UList2[x1,y2] UList2[y1,x2] UList2[y1,y2]
UList[x1,x2] UList[x1,y2] UList[y1,x2] UList[y1,y2]
UList[y,x1] UList[y,y1] UList[x2,x2] UList[x2,y2]
UList[y2,x2] UList[y2,y2]
A Canonical Abstraction

- For every variable x (regular and auxiliary)
 - $x(v) = v$ is pointed-to by x
 - $\text{cul}[x](v) = \text{uninterrupted list from node pointed-to by } x\text{ to } v$

- Predicates expressed by FO^{TC} formulae
Canonical Abstraction
Example
Canonical Abstraction

Example
Canonical Abstraction of Cyclic List

concrete

abstract

x → y → z

x → y → cul[x] → z

cul[z] → y → cul[y]
Canonical Abstraction of Cyclic List

\[\text{abstract pre}\]

\[\text{abstract post}\]
Related Work

- Dor, Rode and Sagiv [SAS ’00]
 - Checking cleanness in lists
- Sagiv, Reps and Wilhelm [TOPLAS ‘02]
 - General framework + abstractions for lists
- Dams and Namjoshi [VMCAI ‘03]
 - Semi-automatic predicate abstraction for shape analysis
- Balaban, Pnueli and Zuck [VMCAI ‘05]
 - Predicate abstraction for shapes via small models
- Deutsch [PLDI ’94]
 - Symbolic access paths with lengths
Conclusion

- New abstractions for lists
 - Observations about concrete shapes
 - Precise for programs containing heaps with sharing and cycles, ignoring list lengths
 - Parametric in sharing-depth $d: [1...k]$

- Encoded new abstractions via
 - Canonical abstraction $O(d \cdot k)$
 - **Polynomial** predicate abstraction $O(d^2 \cdot k^2)$
 - $d=1$ sufficient for all examples