Lecture 04 – Numerical Abstractions

PROGRAM ANALYSIS & SYNTHESIS

Eran Yahav
Previously...

- Trace semantics
- Collecting semantics
- Lattices
- Galois connection
- Least fixed point
Galois Connection

\[\alpha(C) \subseteq A \iff C \subseteq \gamma(A) \]
How do we figure out the abstract effect $[S]^#$ of a statement S?
Sound Abstract Transformer

\[\alpha \circ [S] \circ \gamma (A) \equiv [S]^\#(A) \]
Soundness of Induced Analysis

\[\alpha(lfp(G)) \sqsubseteq lfp(\alpha \circ G \circ \gamma) \sqsubseteq lfp(F) \]
Trivial Example

\[x = 42; \]
\[\text{while}(?) x++; \]

is \(x = 17 \) possible in \(\text{lfp}(G) \)? is it in \(\gamma(\text{lfp}(F)) \)?
Today

- A few more words about Lattices, Galois Connections, and friends
- Numerical Abstractions
- parity
- signs
- constant
- interval
- octagon
- polyhedra
Complete Lattices

- A complete lattice \((L, \sqsubseteq)\) is a poset such that all subsets have least upper bounds as well as greatest lower bounds.

- In particular:
 - \(\bot = \bigvee \emptyset = \bigwedge L\) is the least element (bottom).
 - \(\top = \bigvee L = \bigwedge \emptyset\) is the greatest element (top).

- Why do we care? (roughly speaking):
 - Use a lattice to represent properties of a program.
 - Join operation \(\sqcup\) handle information reaching a program point from multiple sources.
 - Meet operation \(\sqcap\) handle restrictions (e.g., conditions).
Galois Connection

- Connect two lattices
 - \((C, \sqsubseteq_c)\) representing “concrete” information
 - \((A, \sqsubseteq_a)\) representing abstract information

- Using two functions
 - \(\alpha: C \rightarrow A\) abstraction function
 - \(\gamma: A \rightarrow C\) concretization function

- such that
 - \(\alpha(C) \sqsubseteq_a A \iff C \sqsubseteq_c \gamma(A)\)

- Alternatively
 - \(\alpha\) and \(\gamma\) are order-preserving (monotone)
 - \(\forall a \in A \\alpha(\gamma(a)) \sqsubseteq_a a\)
 - \(\forall c \in C \ c \sqsubseteq_c \gamma(\alpha(c))\)
Galois Connection

- Why do we care? (roughly)
 - captures intuition: values in one lattice used to represent values in another lattice in a conservative manner
 - In a Galois Connection \(\alpha \) and \(\gamma \) determine one another, enough to define one, and can compute the other
 - \(\alpha(c) = \sqcap\{ a \mid c \sqsubseteq \gamma(a) \} \)
 - \(\gamma(a) = \sqcup\{ c \mid \alpha(c) \sqsubseteq a \} \)
 - global soundness theorem allows us to extend “local soundness” of individual operations to soundness of LFP computation
“Analysis Algorithm”

$\begin{align*}
a &= \perp \\
\text{while } a \sqsubseteq f(a) \text{ do } a = f(a)
\end{align*}$

- Complete lattice $(A, \sqsubseteq_a, \perp, T, \sqcup, \sqcap)$
- $\llbracket S \rrbracket^\#(a)$ the abstract transformer for each statement
- $a_1 \sqcup a_2$ join operation
- $a_1 \sqsubseteq a_2$ check for convergence (fixed point)
Parity Abstraction

1: while (x != 1) do {
2: if (x % 2 == 0) {
3: x := x / 2;
4: } else {
5: x := x * 3 + 1;
6: assert (x % 2 == 0);
7: }
8: }

Parity Abstraction

\[\alpha(C) \sqsubseteq A \iff C \sqsubseteq \gamma(A) \]

program traces

abstract state \(x \mapsto E \)

\(\gamma(A) \)

\(A \)

\(C \)

\(\alpha(C) \)
Parity Abstraction

\[\alpha(C) \sqsubseteq A \iff C \sqsubseteq \gamma(A) \]
Some traces of the example program

x = 3
1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (10) -> 6:assert 10 mod2==0 -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (5) -> 1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (16)
-> 6:assert 16 mod2==0 -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (8) -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (4) -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (2) ->
1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (1)

x = 5
1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (16) -> 6:assert 16 mod2==0 -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (8) -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (4) ->
1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (2) -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (1)

x = 7
1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (22) -> 6:assert 22 mod2==0 -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (11) -> 1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1
(34) -> 6:assert 34 mod2==0 -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (17) ->
1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (52) -> 6:assert 52 mod2==0 -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (26) -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (13) ->
1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1 (40) -> 6:assert 40 mod2==0 -> 1:x!=1
-> 2:xmod2==0 -> 3:x=x/2 (20) -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (10) ->
1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (5) -> 1:x!=1 -> 2:xmod2!=0 -> 5:x=x*3+1
(16) -> 6:assert 16 mod2==0 -> 1:x!=1 -> 2:xmod2==0 -> 3:x=x/2 (8) -> ...

16
Some traces of the example program

\[x = 9 \]

1: \(x = 1 \) -> 2: \(x \mod 2 \neq 0 \) -> 5: \(x = x \times 3 + 1 \) (28) -> 6: assert 28 \ mod 2 == 0 ->
1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (14) -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) ->
3: \(x = x/2 \) (7) -> 1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) -> 5: \(x = x \times 3 + 1 \) (22) -> 6: assert 22
mod2 == 0 -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (11) -> 1: \(x = 1 \) ->
2: \(x \mod 2 != 0 \) -> 5: \(x = x \times 3 + 1 \) (34) -> 6: assert 34 \ mod 2 == 0 -> 1: \(x = 1 \) ->
2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (17) -> 1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) -> 5: \(x = x \times 3 + 1 \) (52) ->
6: assert 52 \ mod 2 == 0 -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (26) ->
1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (13) -> 1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) ->
5: \(x = x \times 3 + 1 \) (40) -> 6: assert 40 \ mod 2 == 0 -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) ->
3: \(x = x/2 \) (20) -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (10) -> 1: \(x = 1 \) ->
2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (5) -> 1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) -> 5: \(x = x \times 3 + 1 \) (16) ->
6: assert 16 \ mod 2 == 0 -> ...

\[x = 11 \]

1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) -> 5: \(x = x \times 3 + 1 \) (34) -> 6: assert 34 \ mod 2 == 0 ->
1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (17) -> 1: \(x = 1 \) -> 2: \(x \mod 2 != 0 \) ->
5: \(x = x \times 3 + 1 \) (52) -> 6: assert 52 \ mod 2 == 0 -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) ->
3: \(x = x/2 \) (26) -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (13) -> 1: \(x = 1 \) ->
2: \(x \mod 2 == 0 \) -> 5: \(x = x \times 3 + 1 \) (40) -> 6: assert 40 \ mod 2 == 0 -> 1: \(x = 1 \) ->
2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (20) -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (10) ->
1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) -> 3: \(x = x/2 \) (5) -> 1: \(x = 1 \) -> 2: \(x \mod 2 == 0 \) ->
5: \(x = x \times 3 + 1 \) (16) -> 6: assert 16 \ mod 2 == 0 -> ...
Collecting Semantics (label 6)

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (10) -> 6: assert 10 mod 2 == 0

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (10) -> 6: assert 10 mod 2 == 0 -> 1: x! = 1 -> 2: x mod 2 == 0 -> 3: x = x / 2 (5) -> 1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (16) -> 6: assert 16 mod 2 == 0

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (16) -> 6: assert 16 mod 2 == 0

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (22) -> 6: assert 22 mod 2 == 0

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (22) -> 6: assert 22 mod 2 == 0 -> 1: x! = 1 -> 2: x mod 2 == 0 -> 3: x = x / 2 (11) -> 1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (34) -> 6: assert 34 mod 2 == 0

1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (22) -> 6: assert 22 mod 2 == 0 -> 1: x! = 1 -> 2: x mod 2 == 0 -> 3: x = x / 2 (11) -> 1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (34) -> 6: assert 34 mod 2 == 0 -> 1: x! = 1 -> 2: x mod 2 == 0 -> 3: x = x / 2 (17) -> 1: x! = 1 -> 2: x mod 2 != 0 -> 5: x = x * 3 + 1 (52) -> 6: assert 52 mod 2 == 0

...
From Set of Traces to Set of States

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (10) \(\rightarrow 6: \text{assert } 10 \mod 2 = 0 \)

6: \(x \mapsto 10 \)

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (10) \(\rightarrow 6: \text{assert } 10 \mod 2 = 0 \rightarrow 1: x! = 1 \rightarrow 2: x \mod 2 = 0 \rightarrow 3: x = x/2 \) (5) \(\rightarrow 1: x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (16) \(\rightarrow 6: \text{assert } 16 \mod 2 = 0 \)

6: \(x \mapsto 16 \)

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (16) \(\rightarrow 6: \text{assert } 16 \mod 2 = 0 \)

6: \(x \mapsto 16 \)

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (22) \(\rightarrow 6: \text{assert } 22 \mod 2 = 0 \)

6: \(x \mapsto 22 \)

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (22) \(\rightarrow 6: \text{assert } 22 \mod 2 = 0 \rightarrow 1: x! = 1 \rightarrow 2: x \mod 2 = 0 \rightarrow 3: x = x/2 \) (11) \(\rightarrow 1: x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (34) \(\rightarrow 6: \text{assert } 34 \mod 2 = 0 \)

6: \(x \mapsto 34 \)

1: \(x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (22) \(\rightarrow 6: \text{assert } 22 \mod 2 = 0 \rightarrow 1: x! = 1 \rightarrow 2: x \mod 2 = 0 \rightarrow 3: x = x/2 \) (11) \(\rightarrow 1: x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (34) \(\rightarrow 6: \text{assert } 34 \mod 2 = 0 \rightarrow 1: x! = 1 \rightarrow 2: x \mod 2 = 0 \rightarrow 3: x = x/2 \) (17) \(\rightarrow 1: x! = 1 \rightarrow 2: x \mod 2! = 0 \rightarrow 5: x = x \times 3 + 1 \) (52) \(\rightarrow 6: \text{assert } 52 \mod 2 = 0 \)

6: \(x \mapsto 52 \)

...
Set of States

- still unbounded
- can abstract it using parity
- cannot compute it through the concrete semantics
- need to compute directly in the abstract

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6: x</td>
<td>10</td>
</tr>
<tr>
<td>6: x</td>
<td>16</td>
</tr>
<tr>
<td>6: x</td>
<td>16</td>
</tr>
<tr>
<td>6: x</td>
<td>16</td>
</tr>
<tr>
<td>6: x</td>
<td>22</td>
</tr>
<tr>
<td>6: x</td>
<td>34</td>
</tr>
<tr>
<td>6: x</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parity Abstraction

- concrete state: \(\text{Var} \rightarrow \mathbb{Z} \)
- abstract state: \(\text{Var} \rightarrow \{ \bot, E, O, T \} \)
 - even / odd
 - \(\bot \) non-initialized (bottom)
 - \(T \) either even or odd (top)
- Transformers:
 - \(\left[x = x / 2 \right] \)(\(\sigma \)) = ?
 - \(\left[x = x \times 3 + 1 \right] \)(\(\sigma \)) =
 - \(x \) is even, then \(\sigma[x \leftarrow O] \)
 - \(x \) is odd, then \(\sigma[x \leftarrow E] \)
Parity Abstraction

1: while (x != 1) do { // x\rightarrow\{E, O\}
2: if (x \% 2) == 0 { // x\rightarrow\{E\}
3: x := x / 2; // x\rightarrow\{E, O\}
4: } else { // x\rightarrow\{O\}
5: x := x * 3 + 1; // x\rightarrow\{E\}
6: assert (x \%2 ==0); // x\rightarrow\{E\}
7: }
8: }
Where does the Galois Connection help me?

- Establish Galois connection
- Show each individual transformer is sound
- Show each individual transformer is monotonic

- soundness of the analysis is guaranteed

- global soundness theorem
Sign Abstraction

- concrete state: Var → Z
- abstract state: Var → {⊥, 0, +, -, T}
 - zero, positive, negative
 - ⊥ non-initialized (bottom)
 - T (top)
Example

```c
main(int i) {
    int x=3,y=1;
    do {
        y = y + 1;
    } while(--i > 0)
    assert 0 < x + y
}
```
Sign and Parity

(slide from Patrick Cousot)
Constant Abstraction

\[\begin{align*}
\rho &\in \mathbb{Z} \\
\text{State} &\equiv (\text{Var} \rightarrow \mathbb{Z}^T)_{\bot} \\
\end{align*} \]

(infinite lattice, finite height)

\[\begin{align*}
\mathbb{T} &\quad \text{Variable not a constant} \\
-\infty &\quad \ldots \\
-1 &\quad \theta &\quad 1 &\quad \ldots \\
\infty &
\end{align*} \]
Constant Abstraction

- $L = ((\operatorname{Var} \rightarrow \mathbb{Z}^\top) \downarrow, \sqsubseteq)$
- $\sigma_1 \sqsubseteq \sigma_2$ iff $\forall v: \sigma_1(v) \sqsubseteq \sigma_2(v)$
- \sqsubseteq ordering in the $\mathbb{Z}^\top \downarrow$ lattice

Examples:
- $[x \mapsto \bot, y \mapsto 42, z \mapsto \bot] \sqsubseteq [x \mapsto \bot, y \mapsto 42, z \mapsto 73]$
- $[x \mapsto \bot, y \mapsto 42, z \mapsto 73] \sqsubseteq [x \mapsto \bot, y \mapsto 42, z \mapsto \top]$
Constant Abstraction

\[A: \text{AExp} \rightarrow (\text{State} \rightarrow \mathbb{Z}) \]

\[
A[x] \sigma = \begin{cases}
\bot & \text{if } \sigma = \bot \\
\sigma(x) & \text{otherwise}
\end{cases}
\]

\[
A[n] \sigma = \begin{cases}
\bot & \text{if } \sigma = \bot \\
n & \text{otherwise}
\end{cases}
\]

\[
A[a_1 \text{ op } a_2] \sigma = A[a_1] \sigma \text{ op } A[a_2] \sigma
\]

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| \{x := a\} \text{lab} | \begin{cases}
\bot & \text{if } \sigma = \bot \\
\sigma[x \mapsto A[a] \sigma] & \text{otherwise}
\end{cases} |
| \{\text{skip}\} \text{lab} | \sigma |
| \{b\} \text{lab} | \sigma |
Example

\[x := 42]\;
\[y := 73]\;
\text{(if } [?]\text{ then)} \quad [z := x + y];
\text{else)} \quad [z := 12];
\text{else) } \quad [w := z];

\[X \mapsto \bot, y \mapsto \bot, z \mapsto \bot, w \mapsto \bot]\]
\[X \mapsto 42, y \mapsto \bot, z \mapsto \bot, w \mapsto \bot]\]
\[X \mapsto 42, y \mapsto 73, z \mapsto \bot, w \mapsto \bot]\]
\[X \mapsto 42, y \mapsto 73, z \mapsto 115, w \mapsto \bot]\]
\[X \mapsto 42, y \mapsto 73, z \mapsto 12, w \mapsto \bot]\]
\[X \mapsto 42, y \mapsto 73, z \mapsto 12, w \mapsto 12]\]
\[X \mapsto 42, y \mapsto 73, z \mapsto \bot, w \mapsto 12]\]
Constant Propagation is Non Distributive

- Consider the transformer $f = \llbracket [y=x*x] \rrbracket^*$
- Consider two states σ_1, σ_2
 - $\sigma_1(x) = 1$
 - $\sigma_2(x) = -1$

$(\sigma_1 \sqcup \sigma_2)(x) = \top$

$f(\sigma_1 \sqcup \sigma_2)$ maps y to \top

$f(\sigma_1)$ maps y to 1

$f(\sigma_2)$ maps y to 1

$f(\sigma_1) \sqcup f(\sigma_2)$ maps y to 1

$f(\sigma_1 \sqcup \sigma_2) \neq f(\sigma_1) \sqcup f(\sigma_2)$
Intervals Abstraction

\[y \mapsto [3, 6] \]

\[x \mapsto [1, 4] \]
Interval Lattice

(infinite lattice, infinite height)
Example

int x = 0;
if (?) x++;
if (?) x++;

[a1,a2] ∪ [b1,b2] = [min(a1,b1), max(a2,b2)]
Example

```c
int x = 0;
while(?) x++;
```

What now?
Widening

- Idea: replace join operator with a more conservative operator that will guarantee convergence
- a.k.a. acceleration

- Complete lattice \((A, \sqsubseteq)\)
- A function \(\nabla: A \times A \rightarrow A\) is a widening operator iff
 - for every two elements \(a_1, a_2 \in A\), \(a_1 \sqcup a_2 \sqsubseteq a_1 \nabla a_2\)
 - and for every increasing chain \(x_0, x_1, \ldots \in A\) the increasing chain \(y_0 = x_0, y_{n+1} = y_n \nabla x_{n+1}\) is finite.
An Algorithm for Computing Over-Approximation of lfp

$\text{lfp}(f) \subseteq \bigtriangleup_{n \in \mathbb{N}} f^n(\bot)$

$l = \bot$
while $f(l) \neq l$ do $l = f(l)$

- guarantee convergence even in infinite-height lattices with widening
Widening

- useful also in the finite case

```c
int x = 0;
while(x<10000) x++;
```
Cartesian vs. Relational Abstractions

- **Cartesian** (also called independent-attribute) abstraction abstracts each variable separately
 - set of points abstracted by a point of sets
 \{ (1,2), (3,4), (5,6) \} => \{1,3,5\},(2,4,6)\}
 - losing relationship between variables
 - e.g., intervals, constants, signs, parity

- **Relational abstraction** tracks relationships between variables
Octagon Abstraction

- abstract state is an intersection of linear inequalities of the form $\pm x \pm y \leq c$

- captures relationships common in programs (array access)
Example

proc incr (x:int) returns (y:int)
begin
 y = x+1;
end

var i:int;
begin
 i = 0;
 while (i<=10) do
 i = incr(i);
 done;
end
Result with Octagon

proc incr (x : int) returns (y : int) {
/* [x>=0; -x+10>=0] */
 y = x + 1;
/* [x>=0; -x+10>=0; -x+y-1>=0; x+y-1>=0; y-1>=0; -x-y+21>=0; x-y+1>=0; -y+11>=0] */
}
begin
/* top */
i = 0; /* [i>=0; -i+11>=0] */
while i <= 10 do
 /* [i>=0; -i+10>=0] */
 i = incr(i); /* [i-1>=0; -i+11>=0] */
done; /* [i-11>=0; -i+11>=0] */
end
Polyhedral Abstraction

- abstract state is an intersection of linear inequalities of the form $a_1 x_2 + a_2 x_2 + \ldots + a_n x_n \leq c$

- represent a set of points by their convex hull

McCarthy 91 function

proc MC (n : int) returns (r : int) var t1 : int, t2 : int;
begin
 /* top */
 if n > 100 then
 /* [n-101>=0] */
 r = n - 10; /* [-n+r+10=0; n-101>=0] */
 else
 /* [-n+100>=0] */
 t1 = n + 11; /* [-n+t1-11=0; -n+100>=0] */
 t2 = MC(t1); /* [-n+t1-11=0; -n+100>=0;
 -n+t2-1>=0; t2-91>=0] */
 r = MC(t2); /* [-n+t1-11=0; -n+100>=0;
 -n+t2-1>=0; t2-91>=0; r-t2+10>=0;
 r-91>=0] */
 endif; /* [-n+r+10>=0; r-91>=0] */
end

var a : int, b : int;
begin /* top */
 b = MC(a); /* [-a+b+10>=0; b-91>=0] */
end
Operations on Polyhedra
Recap

- Cartesian
 - parity – finite
 - signs – finite
 - constant – infinite lattice, finite height
 - interval – infinite height

- Relational
 - octagon – infinite
 - polyhedra – infinite
Back to a bit of dataflow analysis...
Recap

- Represent properties of a program using a lattice \((L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)

- A continuous function \(f: L \rightarrow L\)
 - Monotone function when \(L\) satisfies ACC implies continuous

- Kleene’s fixedpoint theorem
 - \(\text{lfp}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\bot)\)

- A constructive method for computing the lfp
Some required notation

blocks : Stmt → P(Blocks)
blocks([x := a]^{lab}) = {[x := a]^{lab}}
blocks([skip]^{lab}) = {[skip]^{lab}}
blocks(S_1; S_2) = blocks(S_1) \cup blocks(S_2)
blocks(if [b]^{lab} then S_1 else S_2) = {[b]^{lab}} \cup blocks(S_1) \cup blocks(S_2)
blocks(while [b]^{lab} do S) = {[b]^{lab}} \cup blocks(S)

FV: (BExp \cup AExp) → Var
Variables used in an expression

AExp(a) = all non-unit expressions in the arithmetic expression a
similarly AExp(b) for a boolean expression b
Available Expressions Analysis

\[\text{x := a+b}^1; \]
\[\text{y := a*b}^2; \]
while \[y > a+b \]^3 (
\[\text{a := a + 1}^4; \]
\[\text{x := a + b}^5 \])

(a+b) always available at label 3

For each program point, which expressions must have already been computed, and not later modified, on all paths to the program point.
Available Expressions Analysis

- **Property space**
 - \(\text{in}_{AE}, \text{out}_{AE}: \text{Lab} \rightarrow \varnothing (\text{AExp}) \)
 - Mapping a label to set of arithmetic expressions available at that label

- **Dataflow equations**
 - Flow equations – how to join incoming dataflow facts
 - Effect equations - given an input set of expressions \(S \), what is the effect of a statement
Available Expressions Analysis

- \(\text{in}_{AE}(\text{lab}) = \)
 - \(\emptyset \) when lab is the initial label
 - \(\cap \{ \text{out}_{AE}(\text{lab'}) | \text{lab'} \in \text{pred(lab)} \} \) otherwise
- \(\text{out}_{AE}(\text{lab}) = \ldots \)

<table>
<thead>
<tr>
<th>Block</th>
<th>out (lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x := a]^{lab})</td>
<td>(\text{in(lab)} \setminus { a' \in \text{AExp}</td>
</tr>
<tr>
<td>([\text{skip}]^{lab})</td>
<td>(\text{in(lab)})</td>
</tr>
<tr>
<td>([b]^{lab})</td>
<td>(\text{in(lab)} \cup \text{AExp(b)})</td>
</tr>
</tbody>
</table>

From now on going to drop the AE subscript when clear from context
Transfer Functions

1: \(x = a + b \)
2: \(y := a \times b \)
3: \(y > a + b \)
4: \(a = a + 1 \)
5: \(x = a + b \)

\[
\begin{align*}
\text{out(1)} &= \text{in(1)} \cup \{ a+b \} \\
\text{out(2)} &= \text{in(2)} \cup \{ a \times b \} \\
\text{out(3)} &= \text{in(3)} \cup \{ a + b \} \\
\text{out(4)} &= \text{in(4)} \setminus \{ a+b, a \times b, a+1 \} \\
\text{out(5)} &= \text{in(5)} \cup \{ a+b \}
\end{align*}
\]

\[
in(1) = \emptyset \\
in(2) = \text{out}(1) \\
in(3) = \text{out}(2) \cap \text{out}(5) \\
in(4) = \text{out}(3) \\
in(5) = \text{out}(4)
\]

\[
[x := a+b]^1; \\
[y := a \times b]^2; \\
\text{while } [y > a+b]^3 \text{ (}
\quad [a := a + 1]^4; \\
\quad [x := a + b]^5
\text{)}
\]
Solution

1: \(x = a + b \)

in(1) = \(\emptyset \)

2: \(y := a \times b \)

in(2) = out(1) = \{ a + b \}

out(2) = \{ a+b, a*b \} \quad \text{in(3) = \{ a + b \}}

3: \(y > a + b \)

out(2) = \{ a+b, a*b \} \quad \text{in(3) = \{ a + b \}}

4: \(a = a + 1 \)

in(4) = out(3) = \{ a + b \}

out(4) = \emptyset

5: \(x = a + b \)

out(5) = \{ a+b \}
Kill/Gen

<table>
<thead>
<tr>
<th>Block</th>
<th>out (lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x := a])_{lab}]</td>
<td>in(lab) (\setminus { a' \in \text{AExp} \mid x \in \text{FV}(a') } \cup { a' \in \text{AExp}(a) \mid x \notin \text{FV}(a') })</td>
</tr>
<tr>
<td>([\text{skip}]_{lab})</td>
<td>in(lab)</td>
</tr>
<tr>
<td>([b]_{lab})</td>
<td>in(lab) \union \text{AExp}(b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block</th>
<th>kill</th>
<th>gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x := a])_{lab}]</td>
<td>{ a' \in \text{AExp} \mid x \in \text{FV}(a') }</td>
<td>{ a' \in \text{AExp}(a) \mid x \notin \text{FV}(a') }</td>
</tr>
<tr>
<td>([\text{skip}]_{lab})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>([b]_{lab})</td>
<td>(\emptyset)</td>
<td>\text{AExp}(b)</td>
</tr>
</tbody>
</table>

\[\text{out}(\text{lab}) = \text{in}(\text{lab}) \setminus \text{kill}(B_{lab}) \cup \text{gen}(B_{lab})\]

\[B_{lab} = \text{block at label lab}\]
Why solution with largest sets?

\[
\text{in}(1) = \emptyset
\]

1: \(z = x + y \)

\[
\text{out}(1) = \text{in}(1) \cup \{ x+y \}
\]

\[
\text{in}(2) = \text{out}(1) \cap \text{out}(3)
\]

2: true

\[
\text{out}(2) = \text{in}(2)
\]

\[
\text{in}(3) = \text{out}(2)
\]

3: skip

\[
\text{out}(3) = \text{in}(3)
\]

\[
\text{in}(1) = \emptyset
\]

\[
\text{in}(2) = \text{out}(1) \cap \text{out}(3)
\]

\[
\text{in}(3) = \text{out}(2)
\]

\[
[z := x+y]^1;\\
\text{while [true]}^2 (\\
\quad [\text{skip}]^3;\\
\quad)
\]

After simplification: \(\text{in}(2) = \text{in}(2) \cap \{ x+y \} \)

Solutions: \(\{ x+y \} \) or \(\emptyset \)
Reaching Definitions Revisited

<table>
<thead>
<tr>
<th>Block</th>
<th>out (lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x := a]_{lab})</td>
<td>(\text{in(lab)} \setminus {(x, l)</td>
</tr>
<tr>
<td>([\text{skip}]_{lab})</td>
<td>(\text{in(lab)})</td>
</tr>
<tr>
<td>([b]_{lab})</td>
<td>(\text{in(lab)})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block</th>
<th>kill</th>
<th>gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x := a]_{lab})</td>
<td>({(x, l)</td>
<td>l \in \text{Lab}})</td>
</tr>
<tr>
<td>([\text{skip}]_{lab})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>([b]_{lab})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

For each program point, which assignments may have been made and not overwritten, when program execution reaches this point along some path.
Why solution with smallest sets?

\[\text{in}(1) = \{ (x,?), (y,?), (z,?) \} \]

1: \(z = x+y \)
\[
\text{out}(1) = (\text{in}(1) \setminus \{ (z,?) \}) \cup \{ (z,1) \}
\]
\[\text{in}(2) = \text{out}(1) \cup \text{out}(3) \]

2: \text{true}
\[
\text{out}(2) = \text{in}(2)
\]
\[\text{in}(3) = \text{out}(2) \]

3: \text{skip}
\[
\text{out}(3) = \text{in}(3)
\]

\[\text{in}(1) = \{ (x,?), (y,?), (z,?) \} \]
\[\text{in}(2) = \text{out}(1) \cup \text{out}(3) \]
\[\text{in}(3) = \text{out}(2) \]

After simplification: \(\text{in}(2) = \text{in}(2) \cup \{ (x,?), (y,?), (z,1) \} \)

Many solutions: any superset of \(\{ (x,?), (y,?), (z,1) \} \)
Live Variables

[x :=2]¹;
[y:=4]²;
[x:=1]³;
(if [y>x]⁴ then [z:=y]⁵
else [z:=y*y]⁶);
[x:=z]⁷

For each program point, which variables may be live at the exit from the point.
Live Variables

\[
\begin{align*}
[x:=2] &; \\
[y:=4] &; \\
[x:=1] &; \\
\text{(if } [y>x] \text{ then } [z:=y] &; \\
\text{else } [z:=y*y] &; \\
[x:=z] & \\
\end{align*}
\]
Live Variables

\[x := 2 \]
\[y := 4 \]
\[x := 1 \]
(if \[y > x \] then \[z := y \] else \[z := y \times y \])
\[x := z \]

Block	kill	gen
\[x := a \] | \{ x \} | \{ FV(a) \}
\[\text{skip} \] | \Ø | \Ø
\[b \] | \Ø | FV(b)

1: x := 2
2: y := 4
3: x := 1
4: y > x
5: z := y
6: z := y \times y
7: x := z
Live Variables: solution

\[x := 2 \]
\[y := 4 \]
\[x := 1 \]
(if \(y > x \) then \[z := y \]
else \[z := y \times y \])
\[x := z \]

<table>
<thead>
<tr>
<th>Block</th>
<th>kill</th>
<th>gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x := a]</td>
<td>{ x }</td>
<td>{ FV(a) }</td>
</tr>
<tr>
<td>[skip]</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>[b]</td>
<td>Ø</td>
<td>FV(b)</td>
</tr>
</tbody>
</table>

Diagram:

- \(x := 2 \)
- \(y := 4 \)
- \(x := 1 \)
- (if \(y > x \) then \(z := y \)
else \(z := y \times y \))
- \(x := z \)
Why solution with smallest set?

After simplification: \(\text{in}(1) = \text{in}(1) \cup \{x\} \)

Many solutions: any superset of \(\{x\} \)
Monotone Frameworks

\[\text{In}(\text{lab}) = \begin{cases} \text{Initial} & \text{when lab }\in\text{ Entry labels} \\ \sqcup \{ \text{out}(\text{lab}') \mid (\text{lab}', \text{lab}) \in \text{CFG edges} \} & \text{otherwise} \end{cases} \]

\[\text{out}(\text{lab}) = f_{\text{lab}}(\text{in}(\text{lab})) \]

- \sqcup is \cup or \cap
- CFG edges go either forward or backwards
- Entry labels are either initial program labels or final program labels (when going backwards)
- Initial is an initial state (or final when going backwards)
- f_{lab} is the transfer function associated with the blocks B^{lab}
Forward vs. Backward Analyses

1: \(x := 2 \)
\(\{ (x,?), (y,?), (z,?) \} \)

2: \(y := 4 \)
\(\{ (x,1), (y,?), (z,?) \} \)

4: \(y > x \)
\(\{ (x,1), (y,2), (z,?) \} \)

5: \(z := y \)

6: \(z = y \cdot y \)

7: \(x := z \)

\(\emptyset \)
Must vs. May Analyses

- When \cap is \cap - must analysis
 - Want largest sets that solve the equation system
 - Properties hold on all paths reaching a label (exiting a label, for backwards)

- When \cup is \cup - may analysis
 - Want smallest sets that solve the equation system
 - Properties hold at least on one path reaching a label (existing a label, for backwards)
Example: Reaching Definition

- $L = \emptyset (\text{Var} \times \text{Lab})$ is partially ordered by \subseteq
- \bot is \bigcup
- L satisfies the Ascending Chain Condition because $\text{Var} \times \text{Lab}$ is finite (for a given program)
Example: Available Expressions

- $L = \varnothing(AExp)$ is partially ordered by \supseteq
- \sqcup is \cap
- L satisfies the Ascending Chain Condition because $AExp$ is finite (for a given program)
Analyses Summary

<table>
<thead>
<tr>
<th></th>
<th>Reaching Definitions</th>
<th>Available Expressions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>$\mathcal{G}(\text{Var} \times \text{Lab})$</td>
<td>$\mathcal{G}(\text{AExp})$</td>
<td>$\mathcal{G}(\text{Var})$</td>
</tr>
<tr>
<td>\sqsubseteq</td>
<td>\sqsubseteq</td>
<td>\sqsupseteq</td>
<td>\sqsubseteq</td>
</tr>
<tr>
<td>\sqcup</td>
<td>\sqcup</td>
<td>\sqcap</td>
<td>\sqcup</td>
</tr>
<tr>
<td>\bot</td>
<td>\emptyset</td>
<td>AExp</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Initial</td>
<td>${(x,?) \mid x \in \text{Var}}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Entry labels</td>
<td>${\text{init}}$</td>
<td>${\text{init}}$</td>
<td>final</td>
</tr>
<tr>
<td>Direction</td>
<td>Forward</td>
<td>Forward</td>
<td>Backward</td>
</tr>
<tr>
<td>F</td>
<td>${f : \text{L} \rightarrow \text{L} \mid \exists k, g : f(\text{val}) = (\text{val} \setminus k) \cup g}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{lab}</td>
<td>$f_{lab}(\text{val}) = (\text{val} \setminus \text{kill}) \cup \text{gen}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses as Monotone Frameworks

- Property space
 - Powerset
 - Clearly a complete lattice

- Transformers
 - Kill/gen form
 - Monotone functions (let’s show it)
Monotonicity of Kill/Gen transformers

- Have to show that $x \subseteq x'$ implies $f(x) \subseteq f(x')$
- Assume $x \subseteq x'$, then for kill set k and gen set g
 $(x \setminus k) \cup g \subseteq (x' \setminus k) \cup g$

- Technically, since we want to show it for all functions in F, we also have to show that the set is closed under function composition
Distributivity of Kill/Gen transformers

- Have to show that \(f(x \sqcup y) \sqsubseteq f(x) \sqcup f(y) \)
- \(f(x \sqcup y) = ((x \sqcup y) \setminus k) \cup g \)
 = \(((x \setminus k) \sqcup (y \setminus k)) \cup g \)
 = \((((x \setminus k) \cup g) \sqcup ((y \setminus k) \cup g)) \)
 = \(f(x) \sqcup f(y) \)

- Used distributivity of \(\sqcup \) and \(\cup \)
 - Works regardless of whether \(\sqcup \) is \(\cup \) or \(\cap \)