Iterative Software Development - from Theory to Practice

Implementing the Unified Software Development Process in RAFAEL

Amir Tomer, Boaz Shani, Ely Bonne
RAFAEL at a Glance

Operations & Logistics
- R. Gal
- Dr. E. Ganani

Business Development & Marketing
- Dr. E. Ganani

Finance (CTO)
- M. Wainer
- Dr. D. Leshem
- L. Srebro

Research & Development

Strategic Programs & Human Resources

Systems Division
- D. Zait
- Dr. E. Yudilevich

Missiles Division
- Dr. G. Barak

Ordnance Systems Division
- M. Kidron

Propulsion & Explosive Systems Division

Commercial Activity

Export Market

2000 Sales (m$)

- Missile Division 400
- Ordnance Systems Division 110
- Propulsion and Explosive Systems Division 55
- Systems Division 140

Europe 27%
Latin America 46%
Asia + Oceania 32%
North America 37%
The Waterfall Model

Royce, 1970

- Requirements
 - Verification
- Specification
 - Verification
- Design
 - Verification
- Implementation
 - Testing
- Integration
 - Testing
- Maintenance
 - Retirement

Development

- Req. Change
 - Verification
What’s wrong with the Waterfall model?

- Document-based verification until late stages
- Attempt to stipulate unstable requirements too early
- Risk mitigation postponed
- Operational problems discovered too late
- Lengthy modification cycles and much rework

The inevitable result...
The Unified Software Development Process

aka RUP

Core Workflows

Process

Supporting

Business Modeling
Requirements
Analysis and Design
Implementation
Test
Deployment
Config. & Change Management
Project Management
Environment

Inception
Elaboration
Construction
Transition

Phases

preliminary iteration
iter. #1
iter. #2
iter. #n
iter. #n+1
iter. #n+2
iter. #m
iter. #m+1

Organization along Time

Organization along Content

USDP in Rafael - 5
Iterative Development Overview

- Transition
 - Operational system builds

- Construction
 - Operational skeletal system

- Elaboration
 - System scope & concept
 - Solution alternatives
 - SW/HW breakdown
 - System architecture

- Inception
 - Solution alternatives
CSCI Level Stages

Operational CSCIs

Source code modules

SAD/SDD
Software Architecture/Design Description

SRS
S/W Req’rmnts Spec.

Elaboration
Construction

8
CSCI Validation

7
Coding & Unit Testing

6
Software Design

5
Software Requirements

Operational CSCIs

Source code modules

SAD/SDD
Software Architecture/Design Description

SRS
S/W Req’rmnts Spec.
Stage 1: System Boundary

- **Purpose**
 - Provide a common understanding about the system
 - client
 - developers
 - other stakeholders

- **Activities**
 - Scope
 - Relationship with external systems
 - Main requirements

- **Products**
 - System charter / Vision document
Stage 2: System Requirements

• **Purpose**
 – Define system requirements
 • at the best level of knowledge

• **Activities**
 – Requirements elicitation from contract, proposal and other documents
 – Requirements classification and prioritization
 – QFD may be utilized

• **Products**
 – SSS = System/Subsystem Specification
 • Use Case modeling recommended
 – Requirements base
Stage 3: System Design

- **Purpose**
 - Provide a stable proposed solution and architecture

- **Activities**
 - System architectural design
 - Hardware/software breakdown
 - including requirements allocation
 - Feasibility tests to select alternatives

- **Products**
 - SSDD = System/Subsystem Design Description
 - ICD = Interface Control Description
 - External / internal interfaces
 - Either separate or included in SSDD
Stage 4: Software Planning

• **Purpose**
 – Generating a general plan for the software development

• **Activities**
 – Risk Analysis
 – Iteration planning
 • Detailed plan for 1st iteration
 • General plan for following iterations
 • Risk allocation to iterations
 – Resource allocation
 – Testing concept and general planning

• **Products**
 – SDP = Software Development Plan
 • Risk table and mitigation plan
 • Appendix: 1st iteration detailed plan
 – STP = Software Test Plan
Stage 5: Software Requirements

• **Purpose**
 - Provide a clear and detailed definition of the software requirements allocated to the appropriate CSCI
 - At the current iteration level

• **Activities**
 - Deriving software requirements from system requirements
 - Building/updating the Use Case model

• **Products**
 - Use Case model
 - Using CASE tools
 - SRS = Software Requirements Specification
 - Functional requirements (Use Cases)
 - Non-functional requirements
 - Software requirements base
 - Preferably as part of the system requirements base
Stage 6: Software Analysis & Design

- **Purpose**
 - Provide an architecture and design, in various aspects, of the current iteration
 - based on previous iterations + current requirements

- **Activities**
 - Analysis and design modeling
 - Using UML models

- **Products**
 - UML models
 - Class model
 - State charts
 - Sequence diagrams
 - SAD = Software Architecture Description
 - STD = Software Test Description
Stage 7: Coding and Unit Testing

• Purpose
 – Implementation of software modules

• Activities
 – Coding
 • Programming, compilation, link
 – Individual module testing
 • Informal documentation
 • Test coverage and completion approved by STL

• Products
 – Approved code modules
Stage 8: CSCI Validation and Approval

• **Purpose**
 – Approve the CSCI’s readiness for system integration

• **Activities**
 – Integrating the modules comprising the CSCI
 – Performing the tests specified in the STD

• **Products**
 – Approved CSCI version, ready for system integration
 – STR = Software Test Report
 • Detailed results of STD tests
Stage 9: System Integration and Testing

• **Purpose**
 – Accomplish the iteration with an operational approved version of the system

• **Activities**
 – Integration
 – System testing, according to system test specifications

• **Products**
 – Approved version of the system, ready for delivery
System Level Reviews

Inception
- 1 System Boundary
- 2 System Requirements
- 3 System Design
- 4 Software Planning

Elaboration
- 9 System Integration

Construction
- 9 System Integration
- CSCIA
- CSCIB
- ... CSCIC
- CSCII
- CSCIN

System Requirements Review
- System Design Review
- Critical Design Review (S/W)
- Test Readiness Review
- Iteration Completion Review

Test Readiness Review
- external review
- peer review

System Integration
- CSCIA
- CSCIB
- ... CSCIC
- CSCII
- CSCIN

Iteration Completion Review

USDP in Rafael - 18
CSCI Level Review

8
CSCI Validation

7
Coding & Unit Testing

selected iterations

6
Software Design

5
Software Requirements

Iteration Plan Review

Software Specification Review

Software Design Review

Elaboration
Construction

external review
peer review
Conclusions

• **USDP-based iterative software development** has many advantages over the waterfall model

• The process may be adapted and tailored to host most of MIL-STD-498 terminology
 – Tailoring requires modified templates

• The iterative process complies with RAFAEL software development procedures

• The tailored process is well accepted by engineers, managers and clients
Dr. Amir Tomer
Director of Systems & Software Engineering Processes
RAFAEL
P.O.Box 2250/1P
Haifa, 31021
ISRAEL
(+972)-4-879-5989
tomera@rafael.co.il