Does Public Key Encryption Exist?

Oleg Izmerly, Tal Mor

Technion, Israel Institute of Technology, 2003

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.1/25

One-Way Function (OWF)

- The description of f is publicly known and does not require any secret information for its operation.
- Solution Given x, it is easy to compute f(x).
- Solution Given y, in the range of f, it is hard to find an x such that f(x) = y.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.2/25

One-Way Function (OWF)

- The description of f is publicly known and does not require any secret information for its operation.
- **S** Given x, it is easy to compute f(x).
- Solution Given y, in the range of f, it is hard to find an x such that f(x) = y.
- **One-Way Permutation (OWP)** is similar to one-way function but it is a permutation.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.2/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.3/25

- **Trapdoor One-Way Function (TD-OWF)**
- f is one-way function.
- There is an efficient algorithm that inverts
 - f, when some some *trapdoor key* is given.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.4/25

- **Trapdoor One-Way Function (TD-OWF)**
- f is one-way function.
- There is an efficient algorithm that inverts f, when some some trapdoor key is given.
- **Trapdoor One-Way Permutation (TD-OWP)** is similar to trapdoor one-way function but it is a permutation.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.4/25

Public Key Encryption (PKE)

- Encryption may be done by anyone with access to the "public key".
- Decryption may be done only by the holder of the "private key".

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.5/25

Merkle-Hellman-Diffie

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.6/25

Candidates for Public Key Encryption

cryptosystem	based on
RSA	factoring
Rabin	factoring
ElGamal	discrete logarithm
Knapsack	NP hard problem
Ajtai-Dwork	u-SVP problem
Regev	u-SVP problem
McEliece	error correcting codes problem

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.8/25

The World of PKE

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.9/25

$$\mathcal{E}: \{0,1\} \to [0,N) \subset \mathbb{Z}$$

Encryption procedure must be probabilistic.

Decryption

$$\mathcal{D}: [0, N) \to \{0, 1\}$$

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.10/25

Theorem It is impossible to distinguish distributions of $\mathcal{E}(0)$ and $\mathcal{E}(1)$.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.11/25

Regev's PKE Security

Theorem It is impossible to distinguish distributions of $\mathcal{E}(0)$ and $\mathcal{E}(1)$. **Proof** resulting from an assumption on the hardness of u-SVP.

u-SVP might be secure in a quantum environment.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.13/25

Proof of Security

Under the assumption that the private key is secure, it is infeasible to distinguish the encryption of 0 from the encryption of 1.

Private key is secure

 $\mathcal{E}(0)$ and $\mathcal{E}(1)$ are indistinguishable

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.14/25

Chosen Plaintext Attacks

A form of attack in which the opponent can present arbitrary plaintext to be enciphered, and then capture the resulting ciphertext.

Not relevant for PKE, because anyone may encrypt.

A cryptanalysis technique in which the analyst tries to determine the key from knowledge of plaintext that corresponds to ciphertext selected or dictated by the analyst.

A cryptanalysis technique in which the analyst tries to determine the key from knowledge of plaintext that corresponds to ciphertext selected or dictated by the analyst.

Private key is secure

$\mathcal{E}(0)$ and $\mathcal{E}(1)$ are indistinguishable

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.16/25

A cryptanalysis technique in which the analyst tries to determine the key from knowledge of plaintext that corresponds to ciphertext selected or dictated by the analyst.

$$\left[(A \Rightarrow B) \Longrightarrow (\neg B \Rightarrow \neg A) \right]$$

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.16/25

A cryptanalysis technique in which the analyst tries to determine the key from knowledge of plaintext that corresponds to ciphertext selected or dictated by the analyst.

Private key is insecure

 $\mathcal{E}(0)$ and $\mathcal{E}(1)$ are distinguishable

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.16/25

PKE in Context of CCA

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.17/25

PKE in Context of CCA

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.17/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.18/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.20/25

We need two neighboring ciphertexts separated by a threshold (the point where the decryption oracle changes its value).

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.21/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.21/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.21/25

Regev's Cryptosystem. CCA

We need two neighboring ciphertexts separated by a threshold (the point where the decryption oracle changes its value).

Double it again ...

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.21/25

Regev's Cryptosystem. CCA

We need two neighboring ciphertexts separated by a threshold (the point where the decryption oracle changes its value).

And again ...

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.21/25

Practical Results

$\lfloor \log N \rfloor$	# of ciphertexts
100	197
200	397
300	603
400	798
500	996
600	1203

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.22/25

Regev's Cryptosystem. CCA

Corollary: Regev's cryptosystem is weak against chosen ciphertext attacks. Ajtai-Dwork cryptosystem has the same weakness.

Regev's Cryptosystem. CCA

Corollary: Regev's cryptosystem is weak against chosen ciphertext attacks. Ajtai-Dwork cryptosystem has the same weakness.

Is it possible to make a PKE resistant against chosen ciphertext attacks?

$PKE \Longrightarrow PKE - CCA$

Some known constructions providing security against chosen ciphertext attacks *require* trapdoor one-way permutation (TD-OWP).

- 1. M. Naor, M. Yung, 1996.
- 2. D. Dolev, C. Dwork, M. Naor, 2000.
- 3. Y. Lindell, 2002.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.24/25

$PKE \Longrightarrow PKE - CCA$

Some known constructions providing security against chosen ciphertext attacks *require* trapdoor one-way permutation (TD-OWP). The only known candidate for TD-OWP is RSA.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.24/25

$PKE \Longrightarrow PKE - CCA$

Some known constructions providing security against chosen ciphertext attacks *require* trapdoor one-way permutation (TD-OWP). The only known candidate for TD-OWP is RSA. Other constructions are based on the random oracle model. D. Pointcheval, 2000.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.24/25

$PKE \Longrightarrow PKE - CCA$

Some known constructions providing security against chosen ciphertext attacks *require* trapdoor one-way permutation (TD-OWP). The only known candidate for TD-OWP is RSA. Other constructions are based on the random oracle model.

But there is no theoretical justification for this model.

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? - p.24/25

Oleg Izmerly, Tal Mor, Does Public Key Encryption Exist? – p.25/25