
Efficient Fork-Linearizable Access to
Untrusted Shared Memory

Christian Cachin
IBM Research

Zurich Research Laboratory
Ruschlikon, Switzerland
cca@zurich.ibm.com

abhi shelat
IBM Research

Zurich Research Laboratory
Ruschlikon, Switzerland
abs@zurich.ibm.com

Alexander Shraer
Dept. of Electrical Engineering

Technion
Haifa, Israel

shralex@tx.technion.ac.il

ABSTRACT
When data is stored on a faulty server that is accessed concurrently
by multiple clients, the server may present inconsistent data to dif-
ferent clients. For example, the server might complete a write op-
eration of one client, but respond with stale data to another client.
Mazières and Shasha (PODC 2002) introduced the notion of fork-
consistency, also called fork-linearizability, which ensures that the
operations seen by every client are linearizable and guarantees that
if the server causes the views of two clients to differ in a single
operation, they may never again see each other’s updates after that
without the server being exposed as faulty. In this paper, we im-
prove the communication complexity of their fork-linearizable stor-
age access protocol with n clients from Ω(n2) to O(n). We also
prove that in every such protocol, a reader must wait for a con-
current writer. This explains a seeming limitation of their and of
our improved protocol. Furthermore, we give novel characteriza-
tions of fork-linearizability and prove that it is neither stronger nor
weaker than sequential consistency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms, Performance, Reliability, Theory

Keywords
Fork-consistency, Storage emulations, Arbitrary failures

1. INTRODUCTION
Many users no longer keep all their data on local storage. In-

stead, their data often resides on remote, online service providers.
Systems with such remotely stored information include network
filesystems, online collaboration servers such as Wikis, source code
repositories using versioning tools like CVS, and web-based email
providers. Users rely on the provider to maintain the integrity of
the stored data, but there is no generally available technology that
allows a user to easily verify that no subtle modification has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

introduced to the data. In other words, users must trust the storage
provider.

When the users locally maintain even a small amount of trusted
memory, the trust in the storage provider can be greatly reduced
using well-known cryptographic methods. A single, isolated user
may verify the integrity of its remotely stored data by keeping a
short hash value of the data in its local memory. When the vol-
ume of data is large, this method is usually implemented using a
Merkle hash tree. But in multi-user environments, integrity should
be guaranteed between a writer and multiple readers, for which
hashing alone is not enough. Digital signatures achieve data in-
tegrity against modifications by the server when the users sign all
their data. Every user only needs to store an authenticated signa-
ture public-key of the others or the root certificate of a public-key
infrastructure in its trusted memory.

Neither of the above methods rules out all attacks by a faulty or
malicious server. Even if all data is signed during write operations,
the server might present the modifications in a different order to
a client, it may decide to omit a recent update to some user and
present a different subset of the write operations to another user.

In the model considered here, there are no common clocks and
the clients do not communicate with each other. Some of the above
attacks can therefore never be prevented. In particular, the server
may use an outdated value in the reply to a reader and omit a more
recent update. Mazières and Shasha [18] present a protocol called
SUNDR that does not prevent such attacks, but makes them eas-
ily detectable. The SUNDR protocol ensures that whenever the
server causes the views of two clients to differ in a single opera-
tion, the two clients may never again see each other’s updates after
that. Such partitioning can easily be detected through out-of-band
communication.

Mazières and Shasha [18] introduced the notion of fork con-
sistency for the properties that their protocol provides to a set of
clients concurrently accessing the server. Fork-consistency ensures
that every client sees a linearizable [11] history of read and write
operations, i.e., one that is consistent with all operations observed
by the client, such that the operations seen in the histories of all
clients can be arranged in a “forking tree.” Oprea and Reiter [19]
suggested the name fork-linearizability for fork-consistency.

Contribution. In this paper, we make two contributions. First,
we investigate the notion of fork-linearizability of shared memory
consisting of read/write registers. We show that every protocol em-
ulating fork-linearizable shared memory on a possibly faulty server
involves executions, where the server is correct but one client can-
not complete an operation because it must wait for another client to
perform some computation steps. In other words, no such emula-
tion is obstruction-free [10]. This result explains a seeming limita-



tion of the SUNDR protocol and of our protocol, where a reader
must wait for a concurrent writer. This also explains why any
asynchronous protocol emulating fork-linearizable shared memory,
which guarantees that all operations by correct clients complete if
the server is correct, must assume that clients do not fail. Next,
we show that sequential consistency cannot be guaranteed with a
possibly malicious server, and that fork-linearizability is neither
stronger nor weaker than sequential consistency in the sense that
fork-linearizable executions may not be sequentially consistent and
vice versa. These results give further motivation for studying fork-
ing conditions. Furthermore, we give a “global” definition of fork-
linearizability in terms of a single sequential history of operations,
of which the clients observe subsequences that respect the sequen-
tial specification.

Second, we provide an efficient protocol for emulating fork-lin-
earizable shared memory on an untrusted server. Our protocol is
inspired by the SUNDR protocol [18] and is also based on vector
timestamps. In a system with n clients, our protocol improves the
communication complexity to O(n) from Ω(n2) in the SUNDR
protocol. Intuitively, our improvement results from relying only
on the vector timestamp of the client that executed the most recent
operation, instead of relying on the vector timestamps of all clients.

Analogously to the work about SUNDR [18], we present two
protocols: a protocol that proceeds in “lock-step,” where the server
blocks during every client operation, and a “concurrent” protocol,
where the clients may proceed at their own speed and interact con-
currently with the server, up to the limitation mentioned above.
We note that even though our protocol follows the general pat-
tern of the SUNDR protocol, we need a new proof that it guar-
antees fork-linearizability. Our efficiency improvement comes at
the cost of introducing certain vulnerabilities that may be exploited
by faulty clients colluding with the server. The SUNDR protocol
prevents some of these attacks by using n vector timestamps, al-
though Mazières and Shasha [18] do not formally state any proper-
ties about the SUNDR protocol with faulty clients.

To see the significance of our contribution, consider a widely
used Internet-based storage system with thousands of registered
users. Suppose that n = 10000. Our algorithm and the SUNDR
protocol both require that at least one timestamp per user is sent
during every operation, i.e., typically at least 4 Bytes. Thus, whereas
our algorithm will send 4n = 40KB per operation, the SUNDR
protocol will require to send 4n2 = 380MB per operation.

Related work. The SUNDR protocol [18] has been implemented
in a practical distributed filesystem called SUNDR [14], which pro-
vides fork-linearizable semantics for its “fetch” and “modify” oper-
ations. SUNDR demonstrates that ensuring fork-linearizability in
network filesystems is practical. There are many distributed filesys-
tems that rely on digital signatures for checking the integrity of the
stored data, but only SUNDR prevents attacks on the consistency
of the client views through fork-linearizability.

Oprea and Reiter [19] generalize fork-linearizability and intro-
duce, among other notions, the interesting concept of fork-sequen-
tial-consistency, where the sequence of read and write operations
seen by every client is only required to be sequentially consistent.
They investigate cryptographic filesystems, where a high-level en-
crypted file object is implemented by a file-key object and a file-
data object stored on an untrusted server.

There is a rich literature on verifying the correctness of untrusted
memories without concurrent access by using hashing. It ranges
from the fundamental work of Blum et al. [3] to investigations on
“incremental” hash functions [5], motivated by the goal to construct
secure processors with untrusted main memory [6]. Hash trees have

also been used in several filesystems, starting with Fu’s work [8]
and the SFSRO filesystem [7].

Finally, it is worth pointing out that this paper does not address
the question of emulating shared memory on a set of storage servers,
of which a fraction may fail or deviate in arbitrary ways from their
specification [17, 1]. These emulations do not provide any guaran-
tees with a majority of faulty servers, unlike the protocols consid-
ered here.

Outlook. Our work can be extended in several directions. Our
proof that waiting is necessary in fork-linearizable executions does
not apply to fork-sequentially-consistent executions. Thus, pro-
tocols emulating the weaker notion of fork-sequential-consisten-
cy (defined in Section 2) are potentially more efficient and more
robust. Another important avenue for future work is to consider
faulty clients and to investigate communication-efficient protocols
that achieve forking consistency conditions in this model. Some
simple precautions by the server, such as checking signatures and
orderings, may already prevent many attacks by malicious clients.
But formal consistency notions taking into account faulty clients
are necessary to capture this realistic situation. It would also be
interesting to provide lower bounds on the communication com-
plexity of fork-linearizable emulations and to investigate the use of
other methods for ensuring causal order between operations.

Organization of the paper. The remainder of the paper is orga-
nized as follows. Definitions are presented in Section 2. The three
results that characterize fork-linearizability are contained in Sec-
tion 3. Section 4 describes the lock-step protocol to emulate fork-
linearizable shared memory, and Section 5 presents the emulation
allowing concurrent operations.

2. DEFINITIONS
2.1 System Model

The system consists of n clients C1, . . . , Cn and a server S that
are modeled as I/O Automata [16, 15]. Clients and servers are col-
lectively called parties. All clients are assumed to be correct and to
follow the protocol. The server, however, may be faulty and deviate
arbitrarily from its protocol, exhibiting so-called “Byzantine” [20]
or “NR-arbitrary” faults [12].

The parties interact by sending messages over an asynchronous
network which consists of reliable point-to-point links. We wish
to design a protocol where the server provides a shared functional-
ity F to the clients; the functionality is defined using terminology
from the “shared memory model” of distributed computation. F
is similar to a shared object, but may violate liveness because the
server that implements it may be faulty. Our goal will be to show
that the protocol constrains the server so that it simulates to the
clients an interaction with F .

The clients interact with the functionality F by accessing opera-
tions provided by F . An operation is defined in terms of two events
occuring at the client, denoting the invocation and the completion
of the operation. These two events are sometimes also called re-
quest and response, respectively. An operation is invoked on a
client at some point in time and completes at a later point in time
when a response from F reaches the client. An operation o1 is said
to precede another operation o2 whenever o1 completes before o2
is invoked. Two operations are called sequential if one of them
precedes the other one and concurrent otherwise. A sequence of
events is called sequential if it only contains sequential operations.

An execution of the system consists of a sequence of events and
internal state transitions at the parties and is asynchronous.



The clients generate arbitrary sequences of requests for F , but
we assume that clients always interact sequentially with a given
functionality, i.e., the sequence of events on a client consists of al-
ternating invocations and matching responses, starting with an in-
vocation. A functionality may further require that clients comply
with problem-specific restrictions on the allowed sequences of re-
quests.

The functionality F is defined via a sequential specification,
which indicates the behavior of F when all interactions between
the clients and F are sequential.

2.2 Read/Write Registers
The basic functionality that we consider is a read/write regis-

ter X . It is defined as follows. The register stores a value v from
a domain V and offers a read and a write operation. Initially, ev-
ery register contains a special value ⊥ 6∈ V . When a client Ci

invokes the read operation, denoted readi(X), the functionality re-
sponds by returning a value v, denoted readi(X) → v. When Ci

invokes the write operation with a value v, denoted writei(X, v),
the response of X is an acknowledgment OK. The sequential spec-
ification of X requires that each read operation from X returns the
value written by the most recent preceding write operation, if there
is one, and the initial value otherwise. We assume that the values
written to any particular register are unique. This can easily be im-
plemented by including the identity of the writer and a sequence
number together with the stored value.

Registers come in several variations [13] depending on whether
one or more clients can invoke its operations. In this paper, we
consider single-writer/multi-reader (SWMR) registers, where for
every register, only a designated “writer” may invoke the write op-
eration, but any client may invoke the read operation. The func-
tionality considered here consists of n SWMR read/write registers
X1, . . . , Xn. The registers are usually identified by their indices
and may be accessed independently of each other.

2.3 Consistency Conditions
When a shared functionality is accessed by concurrent opera-

tions, the sequential specification alone may not be powerful enough
to provide a meaningful semantics to the clients. In this subsec-
tion, we define three different consistency conditions with respect
to a shared functionality under concurrent access. Two of them are
well-known [2]: sequential consistency and linearizability. The
third one, fork-linearizability, has been introduced by Mazières
and Shasha [18] under the name of fork-consistency in the con-
text of storage systems that may deviate from their specification.
Implementing a fork-linearizable shared memory with an untrusted
server is the main goal of this work.

A consistency condition is expressed in terms of the sequence of
events that the shared functionality may exhibit in an execution, as
observed by the clients. Such a sequence is also called a history; a
history σ is said to be complete whenever all invocations in σ have
a matching response.

Definition 1 (Preservation of real-time order). A permutation π
of a sequence of events σ is said to preserve the real-time order of
σ if for every operation o that precedes an operation o′ in σ, the
operation o also precedes o′ in π.

An important consistency condition is linearizability [11], which
guarantees that all operations occur “atomically,” i.e., appear to be
executed at a single point in time.

Definition 2 (Linearizability [11]). A sequence of events σ ob-
served by the clients demonstrates linearizability with respect to a

functionalityF if and only if there exists a sequential permutation π
of σ such that:

1. π preserves the real-time order of σ; and

2. The operations of π satisfy the sequential specification of F .

In other words, a sequence of operations on a functionality is lin-
earizable if there is a way to reorder the operations into a sequential
execution that respects the semantics of the functionality and that
respects the ordering of events as seen by a global observer.

Sequential consistency is a weaker notion than linearizability and
only imposes a total order on the events observed by every client in
isolation.

Definition 3 (Sequential consistency). A sequence of events σ ob-
served by the clients demonstrates sequential consistency with re-
spect to a functionality F if and only if there exists a sequential
permutation π of σ such that:

1. For every client Ci, the restriction of π to the events occur-
ing at Ci preserves the real-time order of σ restricted to the
events occurring at Ci; and

2. The operations of π satisfy the sequential specification of F .

Neither linearizability nor sequential consistency can be achieved
when F is implemented on a Byzantine server (at least not for
functionalities F where some operations do not commute). For
instance, suppose thatCi was the last client to execute an operation
on F ; no matter what protocol the clients use to interact with the
server, a faulty server might roll back its internal memory to the
point in time before executing the operation on behalf of Ci, and
pretend to a client Cj that Ci’s operation did not occur. As long as
Cj and Ci do not communicate with each other, neither party can
detect this violation and thus neither definition can be satisfied (for
a formal proof, see Section 3.3).

Mazières and Shasha [18] called such behavior a forking attack.
They postulate that forking two (sets of) clients by introducing dis-
crepancies between the events observed by them is the only way in
which a faulty server may violate the consistency of a functionality
that it provides. In particular, it should be ruled out that the server
causes any common operation to be observed by two distinct clients
after they have been forked, i.e., to join the sequences of observed
operations again. In the above example, Ci should not see any data
written by Cj after the forking attack.

The notion of fork-linearizability [18] captures this intuition by
requiring that the history of events occuring at every client satisfies
the conditions of linearizability and that for any operation visible to
multiple clients, the history of events occuring before the operation
is the same.

Definition 4 (Fork-Linearizability). A sequence of events σ ob-
served by the clients is called fork-linearizable with respect to a
functionality F if and only if for each client Ci, there exists a sub-
sequence σi of σ consisting only of completed operations and a
sequential permutation πi of σi such that:

1. All completed operations in σ occurring at client Ci are con-
tained in σi; and

2. πi preserves the real-time order of σi; and

3. The operations of πi satisfy the sequential specification of
F ; and

4. For every o ∈ πi ∩ πj , the sequence of events that precede
o in πi is the same as the sequence of events that precede o
in πj .



Note that a fork-linearizable history that does not fork and satis-
fies πi = π for all clients is linearizable. Moreover, conditions 2
and 3 imply that each σi is linearizable with respect to F .

Oprea and Reiter [19] consider forking attacks not only for lin-
earizable implementations but also with other consistency condi-
tions. For instance, they define the notion of fork-sequential-con-
sistency; but we do not address it in this work.

2.4 Byzantine Emulations
Our goal is to provide a protocol for the clients that emulates a

functionality F with the help of server S under a given consistency
condition. Such a protocol P consists of n identical algorithms
running locally on every client and one algorithm running on the
server (when it is correct). The algorithms may send messages to
each other over the network. We define an emulation in terms of
events observed by the clients when they run P , and require that
the sequence of these events correspond to a possible interaction of
the clients with F .

Our notion of Byzantine emulation is derived from the definition
of a fault-tolerant implementation of a shared object by Jayanti et
al. [12]. It differs from the latter with respect to handling non-
responsive faults of the server and by allowing forking attacks. If
the server is faulty, any functionality that it should emulate may
have operations that do not complete, causing the emulation to vi-
olate liveness; furthermore, the server may fork two clients in ar-
bitrary ways. The intuition behind our notion of Byzantine emula-
tion is that introducing forks and violating liveness are also the only
possible ways in which the protocol execution may differ from an
interaction of the clients with F . If the server is correct, of course,
the emulation has to satisfy liveness and must not fork.

An execution of a system is called admissible when the requests
generated by the clients comply with the problem-specific restric-
tions for F and the execution satisfies “fairness.” Fairness means,
informally, that the execution does not halt prematurely, when there
are still steps to be taken or messages to be delivered; we refer to
the standard literature for a formal definition [15, 2].

Definition 5 (Fork-linearizable Byzantine emulation). We say
that a protocol P for a set of clients emulates a functionality F
on a Byzantine server S with fork-linearizability if and only if in
every admissible execution of P , the sequence of events observed
by the clients is fork-linearizable with respect to F . Moreover, if
S is correct, then every admissible execution is complete and has a
linearizable history.

We remark that for other consistency conditions Γ such as se-
quential consistency, the notion of a fork-Γ-consistent Byzantine
emulation may be defined analogously.

2.5 Cryptographic Primitives
The protocols of this paper require hash functions and digital

signatures from cryptography. Because the focus of this work is on
concurrency and correctness and not on cryptography, we model
both as ideal functionalities implemented by a trusted entity.

A hash function maps a bit string of arbitrary length to a short,
unique representation. The functionality provides only a single op-
eration H; its invocation takes a bit string x as parameter and re-
turns an integer hwith the response. The implementation maintains
a list L of all x that have been queried so far. When H is invoked
with x ∈ L, then H responds with the index of x in L; otherwise,
H adds x to L at the end and returns its index. This ideal imple-
mentation models only collision-resistance but no other properties
of real hash functions. The server may also invoke H .

The functionality of the digital signature scheme provides two
operations, sign and verify. The invocation of sign takes an in-
dex i ∈ {1, . . . , n} and a string m ∈ {0, 1}∗ as parameters and
returns a signature s ∈ {0, 1}∗ with the response. The verify op-
eration takes the index i of a client, a putative signature s, and a
string m ∈ {0, 1}∗ as parameters and returns a Boolean value b ∈
{FALSE, TRUE} with the response. Its implementation satisfies that
verify(i, s,m) = TRUE for all i ∈ {1, . . . , n} and m ∈ {0, 1}∗
if and only if Ci has executed sign(i,m) → s before, and ver-
ify(i, s,m) = FALSE otherwise. Only Ci may invoke sign(i, ·)
and S cannot invoke sign. Every party may invoke verify. In the
following we denote sign(i,m) by signi(m) and verify(i, s,m) by
verifyi(s,m).

3. ON FORK-LINEARIZABILITY
This section contains three results that characterize the notion

of fork-linearizability. We first show that no protocol for fork-
linearizable shared memory emulation on a faulty server is obstruc-
tion free, then provide an alternative definition of fork-linearizability,
and finally demonstrate that fork-linearizability is incomparable
with sequential consistency.

3.1 Waiting is Necessary
It is well-understood that lock-based algorithms for synchroniz-

ing concurrent access to shared data are problematic and that wait-
free [9] synchronization methods are desirable and often more effi-
cient. A wait-free algorithm ensures that any client may complete
any operation in a finite number of steps, regardless of the execu-
tion speeds of the other clients. Weaker progress conditions have
also been introduced, and include lock-freedom, fw-termination [1],
and obstruction freedom [10]. In an obstruction-free algorithm, ev-
ery operation of a correct client is guaranteed to complete eventu-
ally when the client is allowed to take enough steps alone, without
other clients taking steps, i.e., when there is no contention.

In this section, we show that any emulation of fork-linearizable
shared memory with a possibly faulty server must involve execu-
tions where some client is delayed by another client. The basic idea
of the proof is to consider a read operation by Pj and then a write
operation by Pi along with a series of concurrent read operations
by Pj . The first read operation must return the old value of Pi’s
register. But if one of Pj’s reads occurs after the very last message
from Pi to the server, then fork-linearizability requires the read op-
eration to return the newly written value. Thus, at some point the
read operations of Pj switch from returning the old value to return-
ing the new value. We argue formally that the point at which this
switch occurs creates an opportunity for a faulty server to violate
fork-consistency. The only solution around this problem is for the
concurrent reader to wait.

Theorem 1. Let P be a protocol for emulating n ≥ 1 SWMR reg-
isters on a Byzantine server S with fork-linearizability. Then there
is an execution of P where S is correct and an operation of some
client cannot complete unless another client takes some steps.

Proof. Towards a contradiction, assume that in all states of every
execution of P in which S is correct and a client Ci has invoked
an operation o that has not yet completed, there is a continuation
of the execution that includes the completion of o and that consists
entirely of events and transitions of S and of Ci.

Recall that protocol P describes the asynchronous interaction of
Ci with S for emulating o. We assume w.l.o.g. that the emulation of
o consists of an exchange of messages a1, b1, a2, b2, . . . , bk, ak+1

between S andCi, whereCi first sends a1, and for j = 1, 2, . . . , k,



the server sends bj in response to receiving aj and Ci sends aj+1

in response to receiving bj . Message bk is the last message from
S and o completes only after Ci receives it; message ak+1 may be
missing, in which case the emulation of o ends with bk.

We construct an execution α, in which S is correct. The execu-
tion is shown in Figure 1 and consists of operations by clients C1

and C2 that access only one register X1. First, C1 executes w1
1 =

write1
1(X1, u) → OK. Let s0 denote the point in time when the

server receives the last message from C1 in the emulation of w1
1 .

After w1
1 completes, C2 invokes an operation r12 = read1

2(X1)
that returns u. Subsequently, C1 executes a write operation w2

1 =
write2

1(X1, v) → OK, which eventually completes because S is
correct. Operation w2

1 consists of messages a1, b1, . . . , bk, and
possibly ak+1, as defined above. Let s1, . . . , sk denote the points
in time when S sends b1, . . . , bk, respectively. The points s0, s1,
. . . , sk are marked by dots in Figure 1.

Concurrently to the execution of w2
1 , client C2 performs a se-

quence of read operations r22, . . . , rk
2 , such that rm

2 executes be-
tween sm−1 and sm for m = 2, . . . , k. By the assumption of the
theorem, every operation rm

2 can terminate without any steps byC1

and before S receives am. Finally, C2 invokes another read oper-
ation rk+1

2 after sk that completes before ak+1 reaches S (if ak+1

exists).
Observe the values returned by the read operations r12, r22, . . .,

rk+1
2 of C2. Since the server is correct, the execution is lineariz-

able. Hence, the first read r12 must return u because it occurs se-
quentially after w1

1 and before w2
1 . The last read rk+1

2 might return
either u or v by linearizability alone, because it is concurrent to
w2

1 and two concurrent operations may be ordered either way. But
we now show that rk+1

2 cannot return u under the condition that P
produces only linearizable executions when S is correct.

Claim 1.1. Operation rk+1
2 in execution α returns v.

Proof. Towards a contradiction, assume that rk+1
2 returns u. Con-

sider another execution α′, in which the server is correct and which
is identical to α up to the following difference: Operation w2

1 com-
pletes in α′ before rk+1

2 is invoked, but ak+1 (if it exists) still ar-
rives after the completion of rk+1

2 . Client C2 cannot distinguish
executionα′ fromα and returns u as inα. But this violates lineariz-
ability, which must be preserved in α′ because S is correct.

Thus, the first read r12 returns u and the last read rk+1
2 returns v.

Since α is linearizable, there exists a point in time (the “lineariza-
tion point” of w2

1) at which the reads by C2 switch from returning
u to returning v. We let z > 1 be the index of the first read that
returns v, i.e., r12, . . . , r

z−1
2 return u and rz

2 , . . . , r
k+1
2 return v.

However, we next show that rz
2 cannot return v under the condition

that P produces only fork-linearizable executions when S is faulty.

Claim 1.2. Operation rz
2 in execution α cannot return v.

Proof. Assume towards a contradiction that rz
2 in α returns v. We

construct an execution β, in which S is correct. First, C1 executes
w1

1 as in α. If z > 2, then the continuation of β is identical to α
up to the point sz−2, when S has received az−2 and sent bz−2, and
after operation rz−2

2 by C2 has completed. After sz−2, no further
operations by C2 occur and w2

1 completes by steps of S and C1

alone. Otherwise, if z = 2, the continuation of β after s0 consists
only of w2

1 and there are no read operations by C2.
We next construct an execution γ, in which S deviates from the

protocol. Execution γ starts out by performing all steps of β, thus,
client C1 cannot distinguish these two runs. After w2

1 has com-
pleted, C2 invokes rz−1

2 and then rz
2 . Notice that a faulty S can

construct the state at point sz−2 just like in α, since β is a prefix

w11(u)
C1

a1 b1

s0 s1

az-2 bz-2

sz-2

az-1 bz-1

sz-1

az bz

sz

ak bk

sk

r12→u

... ... ak+1

rz-12→u

rz2→vr22→u

w21(v)

rk+12→v

Execution 

C2

S

... ...rz-22→u

rz-22→u

w11(u)
C1

s0 s1 sz-2

r12→u r22→u

w21(v)

Execution 

C2

S

...

rz-12→u

w11(u)
C1

s0 s1 sz-2

r12→u r22→u

w21(v)

Execution 

C2

S

... rz-22→u rz2→v

Figure 1: Three executions α, β, and γ with z > 2, as described
in the text. C1 cannot distinguish execution γ from β and C2

cannot distinguish γ from α.

of γ, and because β is also a prefix of α up to sz−2. Thus, S can
emulate rz−1

2 toC2 in the same way as the correct S in α, and rz−1
2

returns u as in α.
But now, the faulty server may also reconstruct the state of S

at point sz−1 in α. Note that this state may only depend on the
state of S at sz−2, on operation rz−1

2 , and on message az−1. The
server possesses the same information also in γ: the state at sz−2

and operation rz−1
2 are exactly as in α by construction, and mes-

sage az−1 from C1 in α does not depend on operation rz−1
2 by C2

because az−1 may only depend on bz−2 that was sent before the
invocation of rz−1

2 . Given the state at point sz−1 in α, the server
can emulate rz

2 to C2 in the same way as the correct S in α, and rz
2

returns v as in α.
Note that C1 cannot distinguish execution γ from β and C2 can-

not distinguish γ from a prefix of α. Executions α and β are both
linearizable with a correct server. But γ is not fork-linearizable be-
cause the subsequences σ2 and π2 according to Definition 4 would
have to include all operations of γ, and γ is not linearizable. Hence,
the faulty server can violate fork-linearizability in γ, contradicting
the requirement that protocol P allows only fork-linearizable exe-
cutions.

We have shown that no read operation among r22, . . . , r
k+1
2 can

be the first to return v. Thus, rk+1
2 in execution α returns neither u

nor v. This contradicts our assumption that in every execution with
a correct server, any operation of a client may always complete
without waiting for another client to take any steps.

This result explains why in the concurrent algorithm of Mazières
and Shasha [18] and in our concurrent algorithm of Section 5, a
read operation is blocked until a concurrent write operation has
completed. Let us extend the standard terminology [9, 12] and call



an emulation protocol using a Byzantine server S wait-free if every
client Ci that has invoked an operation can complete the operation
together with a correct S from any state of its execution, even when
no other client takes any steps. Theorem 1 implies that no fork-
linearizable emulation of n ≥ 1 SWMR registers on a Byzantine
server is wait-free.

If we consider a slightly more general model, where clients may
fail by crashing, we also obtain the following corollary.

Corollary 2. No protocol for emulating n ≥ 1 SWMR registers on
a Byzantine server with fork-linearizability is obstruction-free.

Proof. According to Theorem 1, there exist executions in which
the server is correct and a client Ci must wait for another client
Cj to take steps. Now, if Cj crashes, Ci remains blocked forever
because it has no way to distinguish the situation from a situation
with a slow network. This situation is obviously obstruction-free
since a crashed client does not take any steps.

3.2 Global Fork-Linearizability
The existing definition of fork-linearizability requires that all op-

erations of a history σ can be arranged in a “forking tree” such
that the history on every branch, represented by σi, is linearizable;
that is, for every Ci, there exists a sequential permutation πi of σi

that preserves the real-time order of σi and satisfies the sequential
specification of the functionality. We show here that this notion
of fork-linearizability is equivalent to the seemingly stronger no-
tion in which there exists a “global,” sequential permutation π of σ
that respects the real-time order of σ. The histories πi are merely
subsequences of π. This clarifies the notion of fork-linearizability
and may lead to simpler arguments about protocols emulating fork-
linearizable behavior.

Definition 6 (Global Fork-Linearizability). A sequence of events
σ observed by the clients demonstrates global fork-linearizability
with respect to a functionality F if and only if there exists a se-
quential permutation π of σ such that:

1. π preserves the real-time order of σ; and
2. For each client Ci, there exists a subsequence πi of π such

that:

(a) All events in π occurring at client Ci are contained in
πi; and

(b) The operations of πi satisfy the sequential specification
of F ; and

(c) For every o ∈ πi ∩ πj , the sequence of events that
precede o in πi is the same as the sequence of events
that precede o in πj .

We prove the following theorem in the full version [4].

Theorem 3. A sequence of events is fork-linearizable if and only if
it is globally fork-linearizable.

3.3 Comparing with Sequential Consistency
Recall that every linearizable history is trivially fork-linearizable

and that there is no protocol that provides a linearizable emulation
of even one SWMR register on a Byzantine server S. But this does
not rule out that S may emulate a register with a weaker consistency
notion. Sequential consistency, for example, does not have to pre-
serve the real-time order of operations. It would be acceptable for
a correct server to return old register values, as long as it preserves
the relative order in which it shows them to every client. How-
ever, we show in the following theorem that a faulty server may
also violate sequential consistency when it emulates more than one
register.

Theorem 4. There is no protocol that emulates n > 1 SWMR reg-
isters on a Byzantine server with sequential consistency.

Proof. For any protocol P which emulates two SWMR registers
X1 and X2, we demonstrate an execution λ involving a faulty
server S which violates sequential consistency.

The execution consists of four operations by the clients C1 and
C2. ClientC1 executes write1(X1, v)→ OK and read1(X2)→ ⊥.
The server interacts with C1 as if it was the only client executing
any operation. Concurrently, C2 executes write2(X2, v) → OK
and read2(X1) → ⊥ and S also pretends to C2 that it is the only
client executing any operation. Such “split-brain” behavior is obvi-
ously possible when S is faulty: it can act as if the write operations
to X1 and X2 have completed, as far as the writing client is con-
cerned, but still return the old values of X1 and X2 in the read op-
erations. Since the only interaction of the clients is with S, neither
client can distinguish execution λ from a sequentially consistent
execution where it executes alone.

Notice λ is not sequentially consistent: There is no permuta-
tion of the operations in λ in which the sequential specification of
both X1 and X2 is preserved and, at the same time, the order of
operations occurring at each client is the same as their real-time
order in λ. Specifically, in any possible permutation of λ, the op-
eration read1(X2) → ⊥ cannot be positioned after write2(X2, v),
since the read would have to return v 6= ⊥ according to the se-
quential specification of X2. However, read1(X2) → ⊥ may
neither occur before write2(X2, v) as we now argue. Since the
local order of operations has to be the same as in λ in this case,
write1(X1, u) must occur before read1(X2) → ⊥ and hence
also before write2(X2, v). But since the latter operation precedes
read2(X1) → ⊥ in the local order seen by C2, we conclude that
write1(X1, u) precedes read2(X1) → ⊥, which contradicts the
sequential specification of X1. Thus, λ is not sequentially consis-
tent.

Note that execution λ constructed in the proof above is fork-
linearizable but not sequentially consistent. On the other hand, ex-
ecution γ exhibited in the proof of Theorem 1 and shown in Fig-
ure 1 is sequentially consistent but not fork-linearizable. Hence, we
obtain the following result.

Corollary 5. Fork-linearizability is neither stronger nor weaker
than sequential consistency.

4. A SIMPLE IMPLEMENTATION
In this section, we present a simple protocol that implements

a shared memory on a Byzantine server S and guarantees fork-
linearizability. It is called the lock-step protocol and is derived from
the bare-bones protocol of Mazières and Shasha [18], but achieves
the same task more efficiently. Whereas their bare-bones protocol
requires messages of size Ω(n2), the size of the messages in our
lock-step protocol is O(n).

In the lock-step protocol, a client sends a SUBMIT message con-
taining a request to server S. Upon accepting the request, S sends
a REPLY message with current state information to the client and
stops accepting further requests, until it receives a final COMMIT
message from the client. Hence, the name lock-step protocol. The
detailed protocol is shown in Algorithms 1 and 2. The main result
about the lock-step protocol is the following theorem, proved in the
full version [4].

Theorem 6. The lock-step protocol described in Algorithms 1 and 2
emulates n SWMR registers on a Byzantine server with fork lin-
earizability.



Algorithm 1 Lock-step protocol, algorithm for client Ci.
1: state
2: T [j] ∈ N, initially 0, for j = 1, . . . , n // current version of Ci

3: x̄ ∈ {0, 1}∗ // most recently written value

4: write(x)
5: x̄← x
6: send 〈SUBMIT,WRITE,⊥〉 to S
7: wait for a message 〈REPLY, V, `, ϕ′〉 from S
8: if not

([
V = (0, . . . , 0) or verify`(ϕ′, COMMIT‖V )

]
9: and T ≤ V and T [i] = V [i]

)
then halt

10: T ← V ; T [i]← T [i] + 1
11: ϕ← signi(COMMIT‖T )
12: σ ← signi(VALUE‖x‖T [i])
13: send 〈COMMIT, T, ϕ, x, σ〉 to S
14: return OK

15: read(j)
16: x← x̄
17: send 〈SUBMIT,READ, j〉 to S
18: wait for a message 〈REPLY, V, `, ϕ′, (y, ρ)〉 from S
19: if not

([
V = (0, . . . , 0) or verify`(ϕ′, COMMIT‖V )

]
20: and T ≤ V and T [i] = V [i]

)
then halt

21: if not
(
V [j] = 0 or verifyj(ρ, VALUE‖y‖V [j])

)
then halt

22: T ← V ; T [i]← T [i] + 1
23: ϕ← signi(COMMIT‖T )
24: σ ← signi(VALUE‖x‖T [i])
25: send 〈COMMIT, T, ϕ, x, σ〉 to S
26: return y

Description. Our shared memory consists of n SWMR registers
X1, . . . , Xn with domain V; client Ci may write only to Xi but
read from any register. The domain V of a register is arbitrary.
In practice, however, an array of fixed-size registers can provide
consistent access to an array of arbitrarily large data sets through
using a hash tree [14].

Every client locally maintains a timestamp that it increments dur-
ing every operation. We call a vector of n such timestamps a ver-
sion vector or simply a version; it acts as a vector clock for ordering
operations. We define a partial order on version vectors. For two
version vectors u and v, we say that u is smaller than or equal to
v, denoted u ≤ v, whenever u[i] ≤ v[i] for i = 1, . . . , n. We say
that u is smaller than v, denoted u < v, if and only if u ≤ v and
u[i] < v[i] for some i.

The state of the client consists of a version vector T representing
its most recently completed operation, together with a copy of its
own data value x̄. For simplicity of the protocol description, the
client stores x̄ and writes it back during every read operation.

The server S maintains an array X , representing the register
values, where entry X[i] represents Xi and is a pair of the form
(xi, σi) ∈ {0, 1}∗ × {0, 1}∗. The string xi contains the actual
value, and σi is a digital signature byCi on the string VALUE‖xi‖ti,
where ti is a timestamp equal to Ci’s own timestamp T [i] at the
time of completing the operation that wrote xi. Furthermore, S
keeps information related to the most recently executed operation:
the version vector V of the operation, the identity c of the client
performing the operation, and a digital signature ϕ by Cc on V .

When a clientCi invokes an operation, it sends the request to the
server in a SUBMIT message. The server sends a REPLY message,
containing the version vector V and the accompanying signature ω
from the most recently completed operation. In a read operation for
register j, the server also sends (xj , σj), representing the current
value of the register. The server then waits for another message
from Ci and does not process any messages from other clients.

The client verifies that the reply contains valid data: the version

Algorithm 2 Lock-step protocol, algorithm for server S.
1: state
2: X[i] ∈ {0, 1}∗ × {0, 1}∗, // current state
3: initially (⊥,⊥), for i = 1, . . . , n
4: V [i] ∈ N, // current version
5: initially 0, for i = 1, . . . , n
6: ` ∈ {1, . . . , n}, // client that completed the last operation
7: initially 1
8: ω ∈ {0, 1}∗, // sig. by C` for last operation
9: initially the empty string

10: loop
11: wait for receiving a message 〈SUBMIT, o, j〉 from some client Ci

12: if o = READ then
13: send 〈REPLY, V, `, ω,X[j]〉 to Ci

14: else
15: send 〈REPLY, V, `, ω〉 to Ci

16: wait for receiving a message 〈COMMIT, T, ϕ, x, σ〉 from Ci

17: (V, `, ω)← (T, i, ϕ)
18: X[i]← (x, σ)

V must be at least as big as its own version T , the i-th entry of
V must correspond to the i-th entry of T , and the signature on
COMMIT‖V must be valid. In a read operation, the client also ver-
ifies the signature on the data value and the associated timestamp.
When a client detects any inconsistency in the reply, it considers
the server to be Byzantine and stops the execution. In practice, the
client might generate an alarm in this situation and alert an operator
to invoke a recovery procedure.

AfterCi has successfully verified the reply, it adopts the received
version V as its own version T , increments its timestamp T [i], and
signs the new version T , resulting in a signature ϕ. It also signs
its own value together with T [i]. Then it sends a COMMIT mes-
sage to S, containing the T , ϕ, its value x and the signature on
VALUE‖x‖T [i].

The server then stores T and ϕ as its version V and signature ω
from the most recent operation, and updates X[i] with the received
value and signature.

Complexity. All messages sent in the protocol have size O(n +
|x|+κ), where |x| denotes an upper bound on the length of the reg-
ister values and κ denotes the length of a digital signature. Hence,
the protocol uses network bandwidth economically. In particu-
lar, this improves the communication complexity of the bare-bones
protocol of Mazières and Shasha [18] by an order of magnitude;
their protocol achieves the same guarantees, but has communica-
tion complexity Ω(n2 + nκ+ |x|).

5. A CONCURRENT IMPLEMENTATION
In the lock-step protocol, when a correct server executes an op-

eration o submitted by a client, it is not allowed to start processing
any other request until o completes. This section extends the proto-
col to allow concurrent processing of independent operations, while
maintaining O(n) communication complexity. When the server
follows the protocol and the execution is admissible, every client
may complete its operations independently of the speed of other
clients, unless the two operations depend on each other. A write
operation never depends on another operation, whereas a read op-
eration depends on the most recent write operation to the same reg-
ister. Hence, if the server receives a write operation o and later a
read operation o′ from the same register, it blocks o′ until o com-
pletes. As shown in Section 3.1, blocking is unavoidable for any
protocol that emulates shared memory on a Byzantine server with
fork-linearizability.



Algorithm 3 Concurrent protocol, algorithm for client Ci, part 1.
1: notation
2: Strings = {0, 1}∗ ∪ {⊥}; Clients = {1, . . . , n} ∪ {⊥}
3: Opcodes = {READ,WRITE,⊥}
4: Operations = Clients× Opcodes× N× Clients× Strings

// lists of tuples from Operations and hash values
5: OpHashSets = 2{(o,h)|o∈Operations,h∈Strings}

6: state
7: Vold[i] ∈ N, // version vector of last operation
8: initially 0, for i ∈ {1, . . . , n}
9: Mold ∈ OpHashSets, initially empty // list of missing proofs

10: w̄ ∈ Strings, initially ⊥ // most recently written value
11: write(w)
12: w̄ ← w
13: τ ′ ← signi(SUBMIT‖WRITE‖Vold[i]‖i)
14: op← (i,WRITE, Vold[i], i, τ ′)
15: send 〈SUBMIT, op〉 to S
16: wait for a message 〈REPLY, Sinfo, C,P〉 from S
17: where Sinfo = (s, hoS , hxS , VS ,MS , ϕS)
18: (Vnew,Mnew)← common(op, Sinfo, C,P)
19: (Vold,Mold)← (Vnew,Mnew)
20: ϕ′ ← signi(COMMIT‖H(op)‖H(w)‖H(Vnew)‖H(Mnew))
21: send 〈COMMIT, op, w, Vnew,Mnew, ϕ′〉 to S
22: return OK

23: read(l)
24: w ← w̄
25: τ ′ ← signi(SUBMIT‖READ‖Vold[i]‖l)
26: op← (i,READ, Vold[i], l, τ ′)
27: send 〈SUBMIT, op〉 to S
28: wait for a message 〈REPLY, Sinfo, Xinfo, C,P〉 from S
29: where Sinfo = (s, hoS , hxS , VS ,MS , ϕS)
30: and Xinfo = (hox , x, Vx,Mx, ϕx)

31: if not
(
verifyl(ϕx, COMMIT‖hox‖H(x)‖H(Vx)‖H(Mx))

32: or Vx = (0, . . . , 0)
)

then halt
33: if (VS ,MS) 6≥ (Vx,Mx) then halt
34: (Vnew,Mnew)← common(op, Sinfo, C,P)
35: if exists (o,E) ∈Mnew where o is a WRITE by client Cl then
36: halt
37: if exists (o,E) ∈Mnew where o is a READ by client Cl

38: then if Vnew[l] 6= Vx[l] + 1 then halt
39: else if Vnew[l] 6= Vx[l] then halt
40: (Vold,Mold)← (Vnew,Mnew)
41: ϕ′ ← signi(COMMIT‖H(op)‖H(w)‖H(Vnew)‖H(Mnew))
42: send 〈COMMIT, op, w, Vnew,Mnew, ϕ′〉 to S
43: return x

The protocol for clients is presented in Algorithms 3 and 4, and
the protocol for the server appears in Algorithm 5. Our protocol
follows the general lines of the concurrent version of the SUNDR
protocol [18], and improves the communication complexity from
Ω(n2) to O(n), while providing the same guarantees. In the full
version [4], we prove the following theorem.

Theorem 7. The concurrent protocol emulates n SWMR registers
on a Byzantine server with fork-linearizability.

Description. We first describe the algorithm of the clients (all
line numbers refer to Algorithms 3 and 4). Every client locally
maintains a version vector Vold, which acts as a vector clock sim-
ilarly to the lock-step protocol, and a listMold of missing proofs,
which holds information about operations that were concurrent to
the client’s previous operation. The client also maintains the latest
written value w̄.

A client invokes an operation by sending a SUBMIT message to
the server, which includes an announcement, consisting of a tuple
of the form (c, oc, v, l, τ), where c is the index of the client sub-
mitting the operation, oc is the operation code (READ or WRITE),
v is the sequence number of this operation, l is the register being

Algorithm 4 Concurrent protocol, algorithm for client Ci, part 2.
44: common(op, (s, hoS , hxS , VS ,MS , ϕS), C,P)

45: if not
(
verifys(ϕS , COMMIT‖hoS‖hxS‖H(VS)‖H(MS))

46: or VS = (0, . . . , 0)
)

then halt
47: if not

(
(VS ,MS) ≥ (Vold,Mold)

48: and VS [i] = Vold[i]
)

then halt
49: if op is not the last operation in C then halt
50: Mnew ←MS

51: verify-proofs(P,Mnew)
52: Vnew ← VS

53: for o = (c, oc, v, l, τ) in C do
54: if not

(
verifyc(τ, SUBMIT‖oc‖v‖l)

55: and v = Vnew[c]
)

then halt
56: Vnew[c]← Vnew[c] + 1
57: if o 6= op then add (o,H(Vnew)) toMnew

58: if (Vnew,Mnew) 6> (VS ,MS) then halt
59: if exists an operation by Ci inMnew then halt
60: if exists a client Cj with more than one entry inMnew then halt
61: return (Vnew,Mnew)

62: verify-proofs(P,M)
63: for (c, oc, hxc , hVc , hMc , ϕc) ∈ P do
64: if not verifyc(ϕc, COMMIT‖H(oc)‖hxc‖hVS

‖hMc ) then
65: halt
66: if exists E s.t. (oc, E) ∈M
67: if E 6= hVc then halt
68: remove (oc, E) fromM

read (relevant only for read operations), and τ is a signature. The
server sends back a REPLY message, containing a data structure
Sinfo representing the operation which committed with the largest
version vector thus far. In the client code, this operation is denoted
by oS , the associated version vector by VS , and the associated list
of missing proofs byMS .

Announcements are used by the server to notify a client invoking
a new operation op about all uncommitted operations that started
after oS had committed and that were scheduled by the server be-
fore op. Specifically, the announcement of a new operation is ap-
pended to a list C of concurrent operations that is maintained by
the server, and this list is sent in the REPLY message to clients.
The last operation in C received from the server during operation
op is always op itself. A client Ci, executing op computes its new
version vector by taking VS as a base, and incrementing the entries
corresponding to every clientCc having an operation in C (lines 52-
57). Since op is in C as well, the i-th entry of the vector is always
incremented as in the lock-step protocol. When encountering an
operation by client Cc in C, Ci first checks that VS reflects all pre-
vious operations of that client. Otherwise the server must be faulty
and the execution is halted.

In the algorithm as described thus far, a client cannot know whe-
ther the operations in C are presented in the same order to other
clients, and whether these operations are really concurrent, i.e.,
that the server did not just retransmit some old announcements. To
solve this problem, every version vector is augmented by a list of
missing proofsM, as described next.

When a client Ci executing an operation o encounters an an-
nouncement of an operation o′ in C, it is able to predict the ver-
sion vector V ′ that should be committed by o′, if o and o′ receive
consistent information about concurrent operations from the server.
Operation o then includes the pair (o′, H(V ′)) in itsMnew, which
it sends to the server in its COMMIT message. When o′ commits,
it signs and sends its real new version vector Vnew to the server.
The server then uses the pair (o′, H(Vnew)) as a proof to other
clients, which they use to remove (o′, hV ′ ) fromM, by comparing
the “proof,” H(Vnew), to the expected version vector hash, hV ′ ,



in verify-proofs (line 51). We thus call operations in M unveri-
fied. Proofs are transmitted in a set P in the REPLY message. Since
clients execute operations sequentially, no operation by client Ci

could be unverified during op (line 59), and no client can have more
than one unverified operation (line 60).

As mentioned above, when a client Ci commits, it sends to the
serverMnew, a list that includes all operations known to Ci that
remain unverified. The server stores all information included in
Ci’s latest COMMIT message. Additionally,Mnew is saved by Ci

in the local variableMold. When a new operation o by Ci starts, it
receivesMS (theMnew list sent to the server as oS committed).
If o is a read operation of register l, Ci additionally receivesMx

which is theMnew list included in Cl’s latest COMMIT message.
The client then initializesMnew for the new operation withMS

(line 50). Next, using verify-proofs procedure, the client verifies
(i.e., removes from Mnew) all operations that match a proof in-
cluded in P . If there is a proof in P for some operation o such
that the hash of the real (signed) version vector committed by o
(as appears in P) does not match the one saved with o inMnew,
the server must be Byzantine and the execution is halted. Next, as
was already mentioned, all operations that appear in C are added to
Mnew together with a hash of the version vector the operation is
expected to sign upon completion (line 57).

In order to simplify the presentation of the protocol and the proof,
we define an order on version-vector/list-of-missing-proof pairs. A
similar order, but for different data structures, was used by Maziè-
res and Shasha [18].

Definition 7 (Order of version/list-of-missing-proofs pairs).
Consider an operation o which commits with version vector V and
a list of missing proofs M, and an operation o′ which commits
with V ′ andM′. We say that (V,M) ≤ (V ′,M′) if the following
conditions hold:

1. V ≤ V ′ (order on version vectors from Section 4); and
2. For each (o′′, E) ∈M′ where o′′ = (c, oc, v, l, τ),

one of the following holds:

(a) V [c] < V ′[c]
(o was scheduled before o′′)

(b) V [c] = V ′[c] and (o′′, E) ∈M
(o′′ was unverified during o)

(c) V [c] = V ′[c] and E = H(V )
(o and o′′ are the same operation).

The protocol makes sure that all operations of the same client
are ordered according to this relation, and that a read operation
is ordered with the write operation that wrote the value returned
by the read. This is achieved by lines 47 and 58 and additionally
by line 33 for a read. If a faulty server conceals operation o with
associated version V from a later operation o′ whose associated
version is V ′, then it can be shown that V 6≥ V ′ and V ′ 6≥ V . The
concurrent protocol guarantees that no later operation o′′ can sign a
version V ′′ and a missing proof listM′′ s.t. (V ′′,M′′) ≥ (V,M)
and (V ′′,M′′) ≥ (V ′,M′) (where M and M′ are the missing
proof lists committed by o and o′ respectively).

A read operation by client Cr from register l receives additional
information in the REPLY message from the server. Specifically,
it receives Xinfo committed by Cl (the client that writes to register
l), which includes the written data, x, the version vector of the
operation that wrote the data, Vx, and the missing proof listMx.
Although clientCr executing the read cannot generally know if the
server returns data corresponding to the latest preceding committed
operation by Cl, Cr can make sure that it itself is not aware of
a later operation by Cl. If there are no unverified operations by

Algorithm 5 Concurrent protocol, algorithm for server S.
1: state
2: C ∈ Operations∗, initially empty // list of concurrent operations
3: X[i] = (opi, xi, Vi,Mi, ϕi) // current state
4: ∈ Operations× Strings× Nn ×OpHashSets× Strings,
5: initially (⊥,⊥, (0, . . . , 0), ∅,⊥), for i ∈ {1, . . . , n}
6: c ∈ Clients, initially 1.
7: upon receiving a message 〈SUBMIT, op〉 from Ci,
8: where op = (i, oc, v, l, τ):
9: if

(
(oc = READ) and exists op′, a WRITE operation by Cl,

10: s.t. [op′ ∈ C or (op′, ∗) ∈Mc]
)

then
11: wait until opl = op′

12: append op to the end of C
13: P ← ∅
14: for each o by client Cj s.t. (o, ∗) ∈Mc do
15: if (opj = o) then
16: add (j, opj , H(xj), H(Vj), H(Mj), ϕj) to P
17: if oc = READ then
18: send 〈REPLY, (c,H(opc), H(xc), Vc,Mc, ϕc),
19: (H(opl), xl, Vl,Ml, ϕl), C,P〉 to Ci

20: else
21: send 〈REPLY, (c,H(opc), H(xc), Vc,Mc, ϕc), C,P〉 to Ci

22: upon receiving a message 〈COMMIT, op, x, V,M, ϕ〉 from Ci:
23: X[i]← (op, x, V,M, ϕ)
24: if (V > Vc) then
25: c← i
26: remove from C the prefix of operations up to (including) op

Cl, then the data returned by Cr must have been written by the
last operation of Cl as known to Cr . Specifically, the check on
line 39 makes sure that Vx[l] = Vr[l], where Vr is the version
vector committed by the reader. On the other hand, if there is an
unverified operation by Cl, then this operation can only be a read if
the server follows the protocol, which is checked by line 35. In this
case, Vx should be the operation ofCl which immediately preceded
the concurrent read. This is assured by line 38 which makes sure
that Vr[l] = Vx[l] + 1.

We now describe the server code (all line numbers refer to Algo-
rithm 5). The server maintains in X[i] all information committed
by the last operation of client Ci. It additionally maintains the list
C of concurrent operations. The server stores in c the identifier
of the client that committed with the largest version vector out of
all committed operations thus far. The server code consists of two
procedures (lines 7–21 and lines 22–26), which operate on com-
mon variables. Only one of the procedures is allowed to run at
any given time, but if the processing of an operation is blocked on
line 11, another operation can be processed meanwhile, and when
the blocking condition is satisfied, processing of the blocked oper-
ation will be able to resume when no process executes either pro-
cedure. The queue of pending operations, i.e., which wait for a
permission to enter one of the procedures, is implicitly managed as
a FIFO queue. When a REPLY message is sent to a client Ci for its
operation o, the list C always includes o as its last operation. When
an operation o commits and has the largest version vector out of all
operations that committed thus far, the server updates c. Further-
more, S may delete the prefix of C up to o. Intuitively, this is done
since all important information about this prefix can be deducted
from information committed by o.

The first procedure (lines 7–21) deals with the receipt of a SUB-
MIT message from a client Ci. If the submitted operation is a read
from register l, and there is a write operation by client Cl (the only
client that writes to l) that was received by the server before the
read but which COMMIT message was not yet received, then Ci’s
read is blocked until this operation by Cl completes. Note that if
the server is correct, the operation must be either in C or inMc.



The server then examines the list of missing proofs Mc that it
sends to Ci, and collects in P all necessary “proofs” it has for op-
erations in this list. These are tuples containing an operation and
the hash of the actual version vector committed by the operation.
Then, S sends a REPLY message, which includes the data com-
mitted by operation oc which had the largest version vector thus
far (was scheduled later than any other operation that committed),
including its associated list of missing proofs Mc. The REPLY
message also contains the data requested by the client, the list C of
concurrent operations, and P .

When a COMMIT message is received from client Ci (lines 22–
26), the received information is saved inX[i], and if the committed
operation has a greater version vector then the operation committed
by c, then c becomes i and the prefix of C up to the newly commit-
ted operation is deleted. The server’s code does not include any
checks for correctness of the client responses because we assume
that clients are correct. Such checks could be added easily (the
server can calculate precisely with what version vector and missing
proof list a client is supposed to commit).

Complexity. During an execution of operation op by client Ci, all
operations in C (other than op itself) are inserted intoMnew and
then Ci checks that there is at most one operation by each client in
Mnew, and no operations by Ci. Thus, the size of C is bounded by
the size of n− 1 operations, i.e. O(nκ), where κ denotes the max-
imal length of digital signatures and hashes. For the same reason,
any list of missing proofs can contain at most n− 1 operation/hash
pairs, thus its size is O(nκ) as well. Furthermore, P has at most
n− 1 entries becauseM has at most n− 1 entries, and the size of
P is also O(nκ). Using |x| to denote an upper bound on the length
of register values, the communication complexity of the protocol
when run with a correct server is therefore O(nκ+ |x|).

A faulty server could obviously send larger messages. Because
most data sent by S must successfully verify a signature issued
by a client, together with including some additional checks, we
can actually guarantee a stronger notion: whenever a client com-
pletes an operation, its communication complexity was no more
than O(nκ + |x|). The additional checks in the verify-proofs pro-
cedure should check that no operation is included more than once
in P and that every operation oc with a “proof” in P is actually
needed because it is inM.

This improves the complexity of the concurrent SUNDR proto-
col [18] by an order of magnitude; the protocol provides the same
guarantees, in the same model, but has communication complexity
O(n2 +n(κ+ |x|)), which remains its worst-case complexity even
with the bandwidth optimizations suggested therein.

Observe that writing during read operations is not necessary,
however if read operations do not update the version of the data,
a reader of the data must be able to distinguish stale data from data
that was not updated by read operations. This can be solved by
maintaining two version vectors instead of one, one for the number
of write operations only, while the other counts the total number of
operations. We have avoided this for simplifying the presentation.

Acknowledgments
We thank Idit Keidar, Gregory Chockler, Eshcar Hillel, Petr Kouz-
netsov, and Marko Vukolić for many helpful discussions and valu-
able comments.

6. REFERENCES
[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi.

Byzantine disk Paxos: Optimal resilience with Byzantine
shared memory. Distributed Computing, 18(5):387–408,
2006.

[2] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics. Wiley,
second edition, 2004.

[3] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. Algorithmica,
12:225–244, 1994.

[4] C. Cachin, A. Shelat, and A. Shraer. Efficient
fork-linearizable access to untrusted shared memory. TR
RZ3688, IBM Research, Apr. 2007.

[5] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E.
Suh. Incremental multiset hash functions and their
application to memory integrity checking. In ASIACRYPT
2003.

[6] D. Clarke, G. E. Suh, B. Gassend, A. Sudan, M. van Dijk,
and S. Devadas. Towards constant bandwidth overhead
integrity checking of untrusted data. In Proc. 26th IEEE
Symposium on Security & Privacy, 2005.

[7] K. Fu, F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. ACM Transactions on
Computer Systems, 20(1):1–24, Feb. 2002.

[8] K. E. Fu. Group sharing and random access in cryptographic
storage file systems. Master Thesis, MIT LCS, 1998.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 11(1):124–149, Jan.
1991.

[10] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
ICDCS 2003, pages 522–529.

[11] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, July
1990.

[12] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant
wait-free shared objects. J. ACM, 45(3):451–500, May 1998.

[13] L. Lamport. On interprocess communication. Distributed
Computing, 1(2):77–85, 86–101, 1986.

[14] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure untrusted
data repository (SUNDR). In OSDI, pages 121–136, 2004.

[15] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
San Francisco, 1996.

[16] N. A. Lynch and M. R. Tuttle. An introduction to
input/output automata. CWI Quaterly, 2(3):219–246, Sept.
1989.

[17] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
storage. In DISC 2002, pages 311–325.

[18] D. Mazières and D. Shasha. Building secure file systems out
of Byzantine storage. In PODC, pages 108–117, 2002.

[19] A. Oprea and M. K. Reiter. On consistency of encrypted
files. In DISC, pages 254–268, 2006.

[20] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, Apr. 1980.


