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CH-8803 Rüschlikon, Switzerland

cca@zurich.ibm.com

Idit Keidar Alexander Shraer

Department of Electrical Engineering, Technion
Haifa 32000, Israel

{idish@ee, shralex@tx}.technion.ac.il

Abstract

We consider a set of clients collaborating through an on-
line service provider that is subject to attacks, and hence
not fully trusted by the clients. We introduce the abstraction
of a fail-aware untrusted service, with meaningful seman-
tics even when the provider is faulty. In the common case,
when the provider is correct, such a service guarantees con-
sistency (linearizability) and liveness (wait-freedom) of all
operations. In addition, the service always provides accu-
rate and complete consistency and failure detection.

We illustrate our new abstraction by presenting a Fail-
Aware Untrusted STorage service (FAUST). Existing stor-
age protocols in this model guarantee so-called forking se-
mantics. We observe, however, that none of the previously
suggested protocols suffice for implementing fail-aware un-
trusted storage with the desired liveness and consistency
properties (at least wait-freedom and linearizability when
the server is correct). We present a new storage protocol,
which does not suffer from this limitation, and implements
a new consistency notion, called weak fork-linearizability.
We show how to extend this protocol to provide eventual
consistency and failure awareness in FAUST.

1 Introduction
Nowadays, it is common for users to keep data at re-

mote online service providers. Such services allow clients
that reside in different domains to collaborate with each
other through acting on shared data. Examples include
distributed filesystems, versioning repositories for source
code, Web 2.0 collaboration tools like Wikis and Google
Docs [9], and cloud computing. Clients access the provider
over an asynchronous network in day-to-day operations,
and occasionally communicate directly with each other. Be-
cause the provider is subject to attacks, or simply because

∗This work is partially supported by the Israel Science Foundation and
the European Commission through the IST Programme under Contract
IST-4-026764-NOE ReSIST.

the clients do not fully trust it, the clients are interested
in a meaningful semantics of the service, even when the
provider misbehaves.

The service allows clients to invoke operations and
should guarantee both consistency and liveness of these
operations whenever the provider is correct. More pre-
cisely, the service considered here should ensure lineariz-
ability [12], which provides the illusion of atomic opera-
tions. As a liveness condition, the service ought to be wait-
free, meaning that every operation of a correct client even-
tually completes, independently of other clients. When the
provider is faulty, it may deviate arbitrarily from the pro-
tocol, exhibiting so-called Byzantine faults. Hence, some
malicious actions cannot be prevented. In particular, it is
impossible to guarantee that every operation is live, as the
server can simply ignore client requests. Linearizability
cannot be ensured either, since the server may respond with
an outdated return value to a client, omitting more recent
update operations that affected its state.

In this paper, we tackle the challenge of providing mean-
ingful service semantics in such a setting, and present
FAUST, a Fail-Aware Untrusted STorage service, which
demonstrates our new notion for online storage. We do this
by reinterpreting in our model, with an untrusted provider,
two established notions: eventual consistency and fail-
awareness.

Eventual consistency [23] allows an operation to com-
plete before it is consistent in the sense of linearizability,
and later notifies the client when linearizability is estab-
lished and the operation becomes stable. Upon completion,
only a weaker notion holds, which should include at least
causal consistency [13], a basic condition that has proven
to be important in various applications [1, 24]. Whereas
the client invokes operations synchronously, stability noti-
fications occur asynchronously; the client can invoke more
operations while waiting for a notification on a previous op-
eration.

Fail-awareness [8] additionally introduces a notification
to the clients in case the service cannot provide its specified



semantics. This gives the clients a chance to take appro-
priate recovery actions. Fail-awareness has previously been
used with respect to timing failures; here we extend this
concept to alert clients of Byzantine server faults whenever
the execution is not consistent.

Our new abstraction of a fail-aware untrusted service, in-
troduced in Section 3, provides accurate and complete con-
sistency and failure notifications; it requires the service to
be linearizable and wait-free when the provider is correct,
and to be causally consistent when the provider is faulty.

The main building block we use to implement our fail-
aware untrusted storage service is an untrusted storage pro-
tocol. Such protocols guarantee linearizability when the
server is correct, and weaker, so-called forking consistency
semantics when the server is faulty [20, 16, 5]. Forking se-
mantics ensure that if certain clients’ perception of the exe-
cution is not consistent, and the server causes their views to
diverge by mounting a forking attack, they eventually cease
to see each other’s updates or expose the server as faulty.
The first protocol of this kind, realizing fork-linearizable
storage, was implemented by SUNDR [20, 16].

Although we are the first to define a fail-aware service,
such untrusted storage protocols come close to supporting
fail-awareness, and it has been implied that they can be ex-
tended to provide such a storage service [16, 17]. However,
none of the existing forking consistency semantics allow
for wait-free implementations; in previous protocols [16, 5]
concurrent operations by different clients may block each
other, even if the provider is correct. In fact, no fork-
linearizable storage protocol can be wait-free in all execu-
tions where the server is correct [5].

A weaker notion called fork-*-linearizability has been
proposed recently [17]. But as we show in the full pa-
per [3], the notion (when adapted to our model) cannot pro-
vide wait-free client operations either, and in addition also
permits a faulty server to violate causal consistency. Thus,
no existing semantics for untrusted storage protocols is suit-
able for realizing our notion of fail-aware storage.

In Section 4, we define a new consistency notion, called
weak fork-linearizability, which circumvents the above im-
possibility and has all necessary features for building a fail-
aware untrusted storage service. We present a weak fork-
linearizable storage protocol in Section 5 and show that it
never causes clients to block, even if some clients crash.
The protocol is efficient, requiring a single round of mes-
sage exchange between a client and the server for every op-
eration, and a communication overhead of O(n) bits per
request, where n is the number of clients.

Starting from the weak fork-linearizable storage proto-
col, we introduce our fail-aware untrusted storage service
(FAUST) in Section 6. FAUST adds mechanisms for consis-
tency and failure detection, eventually issues stability notifi-
cations whenever the views of correct clients are consistent

with each other, and detects all violations of consistency
caused by a faulty server. The FAUST protocol uses offline
message exchange among clients.

In summary, the contributions of this work are:

1. The new abstraction of a fail-aware untrusted service,
which guarantees linearizability and wait-freedom
when the server is correct, eventually provides either
consistency or failure notifications, and ensures causal-
ity;

2. The insight that no existing forking consistency no-
tion can be used for fail-aware untrusted storage, be-
cause they inherently rule out wait-free implementa-
tions; and

3. An efficient wait-free protocol for implementing fail-
aware untrusted storage, relying on the novel notion of
weak fork-linearizability.

Although this paper focuses on storage, which is but one
example of a fail-aware untrusted service, we believe that
the notion is useful for tolerating Byzantine faults in a vari-
ety of additional services.

Related Work. In order to provide wait-freedom when
linearizability cannot be guaranteed, numerous real-world
systems guarantee eventual consistency, for example,
Coda [14], Bayou [23], Tempest [19], and Dynamo [7]. As
in many of these systems, the clients in our model are not
simultaneously present and may be disconnected temporar-
ily. Thus, eventual consistency is a natural choice for the
semantics of our online storage application.

The notion of fail-awareness [8] is exploited by many
systems in the timed asynchronous model, where nodes are
subject to crash failures [6]. Note that unlike in previous
work, detecting an inconsistency in our model constitutes
evidence that the server has violated its specification, and
that it should no longer be used.

The pioneering work of Mazières and Shasha [20] in-
troduces untrusted storage protocols and the notion of
fork-linearizability (under the name of fork consistency).
SUNDR [16] and later work [5] implement storage sys-
tems respecting this notion. The weaker notion of fork-
sequential consistency has been suggested by Oprea and
Reiter [21]. Neither fork-linearizability nor fork-sequential
consistency can guarantee wait-freedom for client opera-
tions in all executions where the server is correct [5, 4].
Fork-*-linearizability [17] has been introduced recently
(under the name of fork-* consistency), with the goal of al-
lowing wait-free implementations of a service constructed
using replication, when more than a third of the replicas
may be faulty.

The idea of monitoring applications to detect consis-
tency violations due to Byzantine behavior was considered
in previous work in peer-to-peer settings, for example in
PeerReview [10]. Eventual consistency has recently been



used in the context of Byzantine faults by Zeno [22]; Zeno
uses replication to tolerate server faults and always requires
some servers to be correct. Zeno relaxes linearizable se-
mantics to eventual consistency for gaining liveness, as does
FAUST, but provides a slightly different notion of eventual
consistency to clients than FAUST. In particular, Zeno may
temporarily violate linearizability even when all servers are
correct, whereas FAUST never compromises linearizability
when the server is correct.

2 Model and Definitions

Figure 1. System architecture.

System model. We consider an asynchronous distributed
system consisting of n clients C1, . . . , Cn, a server S, and
asynchronous reliable FIFO channels between the clients
and S. In addition, there is a reliable offline communi-
cation method between clients, which eventually delivers
messages, even if the clients are not simultaneously con-
nected; see Figure 1. All clients follow the protocol, and
any number of clients can fail by crashing. The server might
be faulty and deviate arbitrarily from the protocol. A party
that does not fail in an execution is correct.

The protocol emulates a shared functionality F , i.e., a
shared object, to the clients. F is defined via a sequen-
tial specification, which indicates its behavior in sequen-
tial executions. The functionality considered in this paper
is n SWMR registers X1, . . . , Xn, storing values from a
domain X . Initially, each register holds a special value
⊥ 6∈ X . A client Ci writes only to register Xi by invoking
writei(Xi, x) with some value x, which returns OK. The
client can read from any registerXj , which responds with a
value x, denoted readi(X) → x. The sequential specifica-
tion requires that each read operation returns the value writ-
ten by the most recent preceding write operation, if there
is one, and the initial value otherwise. For simplicity, we
assume that the values written to all registers are unique.

We use a collision-resistant hash function H and digital
signatures from cryptography: all parties know and can use
H , only client Ci can create a signature by invoking signi,
and any party can verify that signature supposedly issued
by Ci by calling verifyi. For formal definitions, see [3].

Operations and Histories. Clients interact with the func-
tionality F via operations provided by F . As operations
take time, they are represented by two events occurring at
the client, an invocation and a response. A history of an
execution σ consists of the sequence of invocations and re-
sponses of F occurring in σ. An operation is complete in
a history if it has a matching response. For a sequence
of events σ, complete(σ) is the maximal subsequence of σ
consisting only of complete operations.

An operation o precedes another operation o′ in a se-
quence of events σ, denoted o <σ o

′, whenever o completes
before o′ is invoked in σ. A sequence of events π preserves
the real-time order of a history σ if for every two opera-
tions o and o′ in π, if o <σ o

′ then o <π o
′. Two operations

are concurrent if neither one of them precedes the other. A
sequence of events is sequential if it does not contain con-
current operations. For a sequence of events σ, the subse-
quence of σ consisting only of events occurring at client Ci

is denoted by σ|Ci
. For some operation o, the prefix of σ

that ends with the last event of o is denoted by σ|o.
An execution is well-formed if the sequence of events at

each client consists of alternating invocations and matching
responses, starting with an invocation. An execution is fair,
informally, if it does not halt prematurely when there are
still steps to be taken or messages to be delivered (see the
standard literature for a formal definition [18]).

Traditional Consistency and Liveness Properties. Our
definitions rely on the notion of a possible view of a client.

Definition 1 (View). A sequence of events π is called a view
of a history σ at a client Ci w.r.t. a functionality F if σ
can be extended (by appending zero or more responses) to
a history σ′ s.t.:

1. π is a sequential permutation of some subsequence of
complete(σ′);

2. π|Ci
= complete(σ′)|Ci

; and
3. π satisfies the sequential specification of F .

Intuitively, a view π of σ at Ci contains at least all those
operations that either occur at Ci or are apparent from Ci’s
interaction with F . Note there are usually multiple views
possible at a client. If two clients Ci and Cj do not have a
common view of a history σ w.r.t. a functionality F , we say
that their views of σ are inconsistent with each other.

One of the most important consistency conditions for
concurrent operations is linearizability, which guarantees
that all operations occur atomically.

Definition 2 (Linearizability [12]). A history σ is lineariz-
able w.r.t. a functionality F if there exist a sequence of
events π s.t.:

1. π is a view of σ at all clients w.r.t. F ; and
2. π preserves the real-time order of σ.



The notion of causal consistency weakens linearizabil-
ity and allows that clients observe a different order of those
operations that do not conflict with each other. It is based
on the notion of potential causality [15]. We formalize it
for a general F by adopting the reads-from relation and
the distinction between query and update operations from
database theory [2]. Identifying operations of F with trans-
actions, an operation o′ reads-from an operation o when o
writes a value v to some low-level data item x, and o′ reads
v from x.

For two operations o and o′ in a history σ, we say that
o causally precedes o′, denoted o →σ o′, whenever one of
the following conditions holds:

1. Operations o and o′ are both invoked by the same client
and o <σ o

′;
2. o′ reads-from o; or
3. There exists an operation o′′ ∈ σ such that o →σ o′′

and o′′ →σ o
′.

In the literature, there are several variants of causal con-
sistency. Our definition of causal consistency reduces to the
intuitive notion of causal consistency for shared memory by
Hutto and Ahamad [13], when instantiated for read/write
registers.

Definition 3 (Causal consistency). A history σ is causally
consistent w.r.t. a functionality F if for each client Ci there
exists a sequence of events πi s.t.:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi contains all update operations o ∈ σ that causally

precede some operation o′ ∈ πi; and
3. For all operations o, o′ ∈ πi such that o→σ o

′, it holds
that o <πi

o′.
Finally, a shared functionality needs to ensure liveness.

A common requirement is that clients should be able to
make progress independently of the actions or failures of
other clients. A notion that formally captures this idea is
wait-freedom [11].

Definition 4 (Wait-freedom). A history is wait-free if every
operation by a correct client is complete.

3 Fail-Aware Untrusted Services
Consider a shared functionality F that allows clients to

invoke operations and returns a response for each invoca-
tion. Our goal is to implement F with the help of server S,
which may be faulty.

We define a fail-aware untrusted service OF from F as
follows. When S is correct, then it should emulate F and
ensure linearizability and wait-freedom. When S is faulty,
then the service should always ensure causal consistency
and eventually provide either consistency or failure notifi-
cations. For defining these properties, we extend F in two
ways.

First, we include with the response of every operation
of F an additional parameter t, called the timestamp of the
operation. We say that an operation of OF returns a time-
stamp t when the operation completes and its response con-
tains timestamp t. The timestamps returned by the opera-
tions of a client increase monotonically.

Second, we add two new output actions at client Ci,
called stablei and faili, which occur asynchronously. (From
now on, we always add the subscript i to actions at
client Ci.) The action stablei includes a timestamp vec-
tor W as a parameter and informs Ci about the stability of
its operations with respect to the other clients. When sta-
blei(W ) occurs, then we say that all operations of Ci that
returned a timestamp less than or equal to W [j] are stable
w.r.t. Cj , for j = 1, . . . , n. An operation o of Ci is stable
w.r.t. a set of clients C, where C includes Ci, when o is sta-
ble w.r.t. all Cj ∈ C. Operations that are stable w.r.t. all
clients are simply called stable. Informally, stablei defines
a stability cut among the operations of Ci with respect to
the other clients, in the sense that if an operation o of client
Ci is stable w.r.t. Cj , thenCi and Cj are guaranteed to have
the same view of the execution up to o. If o is stable, then
the prefix of the execution up to o is linearizable.

Failure detection should be accurate in the sense that it
should never output false suspicions. When the action faili
occurs, it indicates that the server is demonstrably faulty,
has violated its specification, and has caused inconsistent
views among the clients. According to the stability guar-
antees, the client application does not have to worry about
stable operations, but might invoke a recovery procedure for
other operations.

When considering an execution σ of OF we sometimes
focus only on the actions corresponding to F , without the
added timestamps, and without the stable and fail actions.
We refer to this as the restriction of σ to F , denoted by σ|F .

Definition 5 (Fail-aware untrusted service). A shared
functionality OF is a fail-aware untrusted service with
functionality F , if OF implements the invocations and re-
sponses of F and extends it with timestamps in responses
and with stable and fail output actions, and where the his-
tory σ of every fair execution s.t. σ|F is well-formed satis-
fies the following conditions:

1. (Linearizability with correct server) If S is correct,
then σ|F is linearizable w.r.t. F ;

2. (Wait-freedom with correct server) If S is correct, then
σ|F is wait-free;

3. (Causality) σ|F is causally consistent w.r.t. F ;
4. (Integrity) When an operation o of Ci returns a time-

stamp t, then t is bigger than any timestamp returned
by an operation of Ci that precedes o;

5. (Failure-detection accuracy) If faili occurs, then S is
faulty;

6. (Stability-detection accuracy) If o is an operation ofCi



that is stable w.r.t. some set of clients C then there ex-
ists a sequence of events π that includes o and a prefix
τ of σ|F such that π is a view of τ at all clients in C
w.r.t. F . If C includes all clients, then τ is linearizable
w.r.t. F ;

7. (Detection completeness) For every two correct clients
Ci and Cj and for every timestamp t returned by an
operation of Ci, eventually either fail occurs at all cor-
rect clients, or stablei(W ) occurs at Ci withW [j] ≥ t.

We now illustrate how the fail-aware service can be used
by clients who collaborate on editing a file from across the
world. Suppose that the server S is correct and three correct
clients are using it to collaborate: Alice and Bob from Eu-
rope, and Carlos from America. Since S is correct, lineariz-
ability is preserved. However, the clients do not know this,
and rely on stable notifications for detecting consistency.
Suppose that it is day time in Europe, and Alice and Bob
use the service and see the effects of each other’s updates.
However, they do not observe any operations of Carlos be-
cause he is asleep.

Figure 2. The stability cut of Alice indicated by the noti-
fication stableAlice([10, 8, 3]). The values of t are the time-
stamps returned by the operations of Alice.

Suppose Alice completes an operation that returns time-
stamp 10, and receives a notification stableAlice([10, 8, 3]),
indicating that she is consistent with Bob up to her oper-
ation with timestamp 8, consistent with Carlos up to her
operation with 3, and trivially consistent with herself up to
her last operation (see Figure 2). At this point, it is unclear
to Alice (and to Bob) whether Carlos is only temporarily
disconnected and has a consistent state, or if the server is
faulty and hides operations of Carlos from Alice (and from
Bob). If Alice and Bob continue to execute operations while
Carlos is offline, Alice will continue to see vectors with in-
creasing timestamps in the entries corresponding to Alice
and Bob. When Carlos goes back online, since the server is
correct, all operations issued by Alice, Bob, and Carlos will
eventually become stable at all clients.

4 Weak Fork-Linearizability

Intuitively, fork-linearizability [20] allows clients’ views
to diverge, but once there is any inconsistency in the views
of two clients, these clients can never again see common
operations. This is called the no-join property of fork-
linearizability.

Fork*-linearizability [17] weakens this notion to an at-
most-one-join property, where once the view of one client
becomes inconsistent with that of a second client, the for-
mer can see at most one additional operation of the lat-
ter, and vice versa. Thus, the views of two clients that
contain common operations are identical up to the penul-
timate common operation by each client. But oddly, fork-
*-linearizability still requires that the real-time order of all
operations in the view is preserved, including the last oper-
ation of every other client.

We introduce a new consistency notion, called weak
fork-linearizability, which permits wait-free protocols and
is therefore suitable for implementing our notion of a fail-
aware untrusted service. It is based on the notion of weak
real-time order that removes the above anomaly and allows
the last operation of every client to violate real-time or-
der. Let π be a sequence of events and let lastops(π) be
a function of π returning the set containing the last opera-
tion from every client in π; in other words, lastops(π) =
⋃

i∈{1,...,n}

{

o ∈ π : o is the last operation in π|Ci

}

. We
say that π preserves the weak real-time-order of a sequence
of operations σ whenever π excluding all events belong-
ing to operations in lastops(π) preserves the real-time order
of σ. In addition to weakening the real-time-order condi-
tion, we also require causal consistency.

Definition 6 (Weak fork-linearizability). A history σ is
weakly fork-linearizable w.r.t. a functionality F if for each
client Ci there exists a sequence of events πi s.t.:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves the weak real-time order of σ;
3. For every operation o ∈ πi and every update operation
o′ ∈ σ s.t. o′ →σ o, it holds that o′ ∈ πi and that
o′ <πi

o; and
4. (At-most-one-join) For every client Cj and every two

operations o, o′ ∈ πi ∩ πj by the same client such that
o precedes o′, it holds that πi|

o = πj |
o.

Compared to fork-linearizability, the second condition
only requires preservation of the real-time order of the ex-
ecution for each view excluding the last operation of ev-
ery client that appears in it. The third condition requires
causal consistency, which is implicit in fork-linearizability.
The fourth condition allows again an inconsistency for
the last operation of every client in a view. Weak fork-
linearizability is neither stronger nor weaker than fork-*-
linearizability, as illustrated in the full paper [3].

Consider the following history, shown in Figure 3: Ini-
tially, X1 contains ⊥. Client C1 executes write1(X1, u),
then client C2 executes read2(X1) → ⊥ and read2(X1) →
u. During the execution of the first read operation ofC2, the
server pretends that the write operation of C1 did not occur.



Figure 3. A weak fork-linearizable history that is not
fork-linearizable.

This example is weak fork-linearizable. The sequences:

π1 : write1(X1, u)
π2 : read2(X1) → ⊥, write1(X1, u), read2(X1) → u

are a view of the history at C1 and C2, respectively. They
preserve the weak real-time order of the history because
the write operation in π2 is exempt from the requirement.
However, there is no way to construct a view of the execu-
tion at C2 that preserves the real-time order of the history,
as required by fork-linearizability. Intuitively, every proto-
col that guarantees fork-linearizability prevents this exam-
ple because the server is supposed to reply to C2 in a read
operation with evidence for the completion of a concurrent
or preceding write operation to the same register. But this
implies that a reader should wait for a concurrent write op-
eration to finish (a formal proof appears in a companion pa-
per [4]).

5 A Weak Fork-Linearizable Protocol

We present a weak fork-linearizable untrusted storage
protocol (USTOR) that implements n SWMR registers
X1, . . . , Xn with an untrusted server, where clientCi writes
to registerXi. When the server is correct, our protocol guar-
antees linearizability and wait-freedom in all fair and well-
formed executions. The protocol for clients is presented in
Algorithm 1, and the protocol for the server S appears in
Algorithm 2. Proofs and complexity analysis are deferred
to the full paper [3].

At a high level, our untrusted storage protocol (USTOR)
works as follows. When a client invokes a read or write op-
eration, it sends a SUBMIT message to the server S. The
client then waits for a REPLY message from S. When this
message arrives, Ci verifies its content and halts if it de-
tects any inconsistency. Otherwise, Ci sends a COMMIT
message to the server and returns without waiting for a re-
sponse, returning OK for a write and the register value for
a read. Sending a COMMIT message is simply an optimiza-
tion to expedite garbage collection at S; this message can
be eliminated by piggybacking its contents on the SUBMIT
message of the next operation.

The server processes arriving SUBMIT messages in FIFO
order, and the execution of each event handler is atomic.
The order in which SUBMIT messages are received there-
fore defines the schedule of the corresponding operations,
which is the linearization order when S is correct. Since

communication channels are reliable and the event handler
for SUBMIT messages sends a REPLY message to the client,
the protocol is wait-free in executions where S is correct.
The bulk of the protocol logic is devoted to dealing with a
faulty server.

Data structures. The variables representing the state of
client Ci are denoted with the subscript i. Every client lo-
cally maintains a timestamp t that it increments during every
operation (lines 12 and 25). Client Ci also stores a hash x̄i

of the value most recently written to Xi (line 6).
A SUBMIT message sent by Ci includes t and a DATA-

signature δ by Ci on t and x̄i; for write operations, the mes-
sage also contains the new register value x. The timestamp
of an operation o is the value t contained in the SUBMIT
message of o.

The operation is represented by an invocation tuple of
the form (i, oc, j, σ), where oc is either READ or WRITE, j
is the index of the register being read or written, and σ is a
SUBMIT-signature by Ci on oc, j, and t.

Client Ci holds a timestamp vector Vi, so that when Ci

completes an operation o, entry Vi[j] holds the timestamp of
the last operation byCj scheduled before o and Vi[i] = t. In
order forCi to maintain Vi, the server includes in the REPLY
message of o information about the operations that precede
o in the schedule. Although this prefix could be represented
succinctly as a vector of timestamps, clients cannot rely on
such a vector maintained by S. Instead, clients rely on digi-
tally signed timestamp vectors sent by other clients. To this
end, Ci signs Vi and includes Vi and the signature in the
COMMIT message.

The server stores the register value, the timestamp, and
the DATA-signature most recently received in a SUBMIT
message from every client in an array MEM (line 102),
and stores the timestamp vector and the signature of the
last COMMIT message received from every client in an ar-
ray SVER (line 104).

At the point when S sends the REPLY message of opera-
tion o, however, the COMMIT messages of some operations
that precede o in the schedule may not yet have arrived at S.
Hence, S sends explicit information about the invocations
of such submitted and not yet completed operations. Con-
sider the schedule at the point when S receives the SUBMIT
message of o, and let o∗ be the most recent operation in the
schedule for which S has received a COMMIT message. The
schedule ends with a sequence o∗, o1, . . . , o`, o for ` ≥ 0.
We call the operations o1, . . . , o` concurrent to o; the server
stores the corresponding sequence of invocation tuples in L
(line 105). Furthermore, S stores the index of the client that
executed o∗ in c (lines 103 and 120). The REPLY message
from S to Ci contains c, L, and the timestamp vector V c

from the COMMIT message of o∗.
We now define the view history VH(o) of an operation o

to be a sequence of operations, as will be explained shortly.



ClientCi executing o receives a REPLY message fromS that
contains a timestamp vector V c, which is either 0n or ac-
companied by a COMMIT-signature ϕc by Cc, correspond-
ing to some operation oc of Cc. The REPLY message also
contains the list of invocation tuples L, representing a se-
quence of operations ω1, . . . , ωm. Then we set

VH(o) ,

{

ω1 · · · ‖ωm ‖ o if V c = 0n

VH(oc) ‖ω
1 · · · ‖ωm ‖ o otherwise,

where ‖ denotes concatenation. Note that if S is correct,
it holds that oc = o∗ and o1, . . . , o` = ω1, . . . , ωm. View
histories will be important in the protocol analysis.

After receiving the REPLY message (lines 16 and 28), Ci

updates its vector of timestamps to reflect the position of o
according to the view history. It does that by starting from
V c (line 37), incrementing one entry in the vector for every
operation represented in L (line 42), and finally increment-
ing its own entry (line 46).

During this computation, the client also derives its own
estimate of the view history of all concurrent operations rep-
resented in L. For representing these estimates compactly,
we introduce the notion of a digest of a sequence of opera-
tions ω1, . . . , ωm. In our context, it is sufficient to represent
every operation ωµ in the sequence by the index iµ of the
client that executes it. The digest of ω1, . . . , ωm is defined
using a hash functionH as

D(ω1, . . . , ωm) ,

{

⊥ if m = 0

H
(

D(ω1, . . . , ωm−1)‖im
)

otherwise.

The collision resistance of the hash function implies that the
digest can serve a unique representation for a sequence of
operations in the sense that no two distinct sequences that
occur in an execution have the same digest.

Client Ci maintains a vector of digests Mi together with
Vi, computed as follows during the execution of o. For
every operation ok by a client Ck corresponding to an in-
vocation tuple in L, the client computes the digest d of
VH(o)|ok , i.e., the digest of Ci’s expectation of Ck’s view
history of ok, and stores d in Mi[k] (lines 38, 45, and 47).

The pair (Vi,Mi) is called a version; client Ci includes
its version in the COMMIT message, together with a so-
called COMMIT-signature on the version. We say that an
operation o or a client Ci commits a version (Vi,Mi) when
Ci sends a COMMIT message containing (Vi,Mi) during
the execution of o.

Definition 7 (Order on versions). We say that a version
(Vi,Mi) is smaller than or equal to a version (Vj ,Mj), de-
noted (Vi,Mi) ≤̇ (Vj ,Mj), whenever the following condi-
tions hold:

1. Vi ≤ Vj , i.e., for every k = 1, . . . , n, it holds that
Vi[k] ≤ Vj [k]; and

2. For every k such that Vi[k] = Vj [k], it holds that
Mi[k] = Mj [k].

We say that (Vi,Mi) is smaller than (Vj ,Mj), denoted
(Vi,Mi) <̇ (Vj ,Mj), whenever (Vi,Mi) ≤̇ (Vj ,Mj) and
(Vi,Mi) 6= (Vj ,Mj).

Suppose that an operation oi of client Ci commits
(Vi,Mi) and an operation oj of Cj commits (Vj ,Mj). The
first condition orders the operations according to their time-
stamp vectors, while the second checks the consistency of
the view histories of Ci and Cj for operations that may not
yet have committed. The precondition Vi[k] = Vj [k] means
that some operation ok of Ck is the last operation of Ck

in the view histories of oi and of oj . In this case, the pre-
fixes of the two view histories up to ok should be equal,
i.e., VH(oi)|

ok = VH(oj)|
ok ; since Mi[k] and Mj [k] rep-

resent these prefixes in the form of their digests, the con-
dition Mi[k] = Mj [k] verifies this. We show [3] that this
order is transitive, and that for all versions committed by
the protocol, (Vi,Mi) ≤̇ (Vj ,Mj) if and only if VH(oi) is
a prefix of VH(oj). Clearly, if S is correct, then the ver-
sion committed by an operation is bigger than the versions
committed by all operations that were scheduled before.

The COMMIT message from the client also includes a
PROOF-signature ψ by Ci on Mi[i] that will be used by
other clients. The server stores the PROOF-signatures in an
array P (line 106) and includes P in every REPLY message.

Algorithm flow. In order to support its extension to
FAUST in Section 6, protocol USTOR not only implements
read and write operations, but also provides extended read
and write operations. They serve exactly the same func-
tion as their standard counterparts, but additionally return
the relevant version(s) from the operation.

Client Ci starts executing an operation by incrementing
the timestamp and sending the SUBMIT message (lines 15
and 27). When S receives this message, it updates the time-
stamp and the DATA-signature in MEM[i] with the received
values for every operation, but updates the register value
in MEM[i] only for a write operation (lines 110 and 113).
Subsequently,S retrieves c, the index of the client that com-
mitted the last operation in the schedule, and sends a REPLY
message containing c and SVER[c] = (V c,M c, ϕc). For
a read operation from Xj , the reply also includes MEM[j]
and SVER[j], representing the register value and the largest
version committed by Cj , respectively. Finally, the server
appends the invocation tuple to L.

After receiving the REPLY message, Ci invokes a
procedure updateVersion. It first verifies the COMMIT-
signature ϕc on the version (V c,M c) (line 35). Then it
checks that (V c,M c) is at least as large as its own version
(Vi,Mi), and that V c[i] has not changed compared to its
own version (line 36). These conditions always hold when
S is correct, since the channels are reliable with FIFO order



Algorithm 1 USTOR, code for client Ci.
1: notation
2: Strings = {0, 1}∗ ∪ {⊥}; Clients = {1, . . . , n}
3: Opcodes = {READ,WRITE,⊥}
4: Invocations = Clients × Opcodes × Clients × Strings

5: state
6: x̄i ∈ Strings, initially ⊥
7: (Vi,Mi) ∈ N

n
0
× Stringsn, initially (0n,⊥n)

8: operation writei(x) // write x to register Xi

9: (· · · )← writexi(x)
10: return OK

11: operation writexi(x) // extended write x to register Xi

12: t← Vi[i] + 1 // timestamp of the operation
13: x̄i ← H(x)
14: τ ← signi(SUBMIT‖WRITE‖i‖t); δ ← signi(DATA‖t‖x̄i)
15: send 〈SUBMIT, t, (i,WRITE, i, τ), x, δ〉 to S
16: wait for receiving 〈REPLY, c, (V c,Mc, ϕc), L, P 〉 from S

17: updateVersion(i, (c, V c,Mc, ϕc), L, P )
18: ϕ← signi(COMMIT‖Vi‖Mi); ψ ← signi(PROOF‖Mi[i])
19: send 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
20: return (Vi,Mi)

21: operation readi(j) // read from register Xj

22: (xj , · · · )← readxi(j)
23: return xj

24: operation readxi(j) // extended read from register Xj

25: t← Vi[i] + 1 // timestamp of the operation
26: τ ← signi(SUBMIT‖READ‖j‖t); δ ← signi(DATA‖t‖x̄i))
27: send 〈SUBMIT, t, (i, READ, j, τ),⊥, δ〉 to S
28: wait for receiving 〈REPLY, c, (V c,Mc, ϕc), (V j ,Mj , ϕj),

(tj , xj , δj), L, P 〉 from S

29: updateVersion(j, (c, V c,Mc, ϕc), L, P )
30: checkData(c, (V c,Mc, ϕc), j, (V j ,Mj , ϕj), (tj , xj , δj))
31: ϕ← signi(COMMIT‖Vi‖Mi); ψ ← signi(PROOF‖Mi[i])
32: send 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
33: return (xj , Vi,Mi, V

j ,Mj)

34: procedure updateVersion(j, (c, V c,Mc, ϕc), L, P )
35: if not

(

(V c,Mc) = (0n,⊥n) or
verifyc(ϕ

c, COMMIT‖V c‖Mc)
)

then output faili; halt
36: if not

(

(Vi,Mi) ≤̇ (V c,Mc) and V c[i] = Vi[i]
)

then
output faili; halt

37: (Vi,Mi)← (V c,Mc)
38: d←Mc[c]
39: for q = 1, . . . , |L| do
40: (k, oc, l, τ)← L[q]
41: if not

(

Mi[k] = ⊥ or verifyk(P [k], PROOF‖Mi[k])
)

then
output faili; halt

42: Vi[k]← Vi[k] + 1
43: if k = i or not verifyk(τ, SUBMIT‖oc‖l‖Vi[k]) then

output faili; halt
44: d← H(d‖k)
45: Mi[k]← d

46: Vi[i] = Vi[i] + 1
47: Mi[i]← H(d‖i)

48: procedure checkData(c, (V c,Mc, ϕc), j, (V j ,Mj , ϕj),
(tj , xj , δj))

49: if not
(

(V j ,Mj) = (0n,⊥n) or
verifyj(ϕ

j , COMMIT‖V j‖Mj)
)

then output faili; halt
50: if not

(

tj = 0 or verifyj(δ
j , DATA‖tj‖H(xj))

)

then
output faili; halt

51: if not
(

(V j ,Mj) ≤̇ (V c,Mc) and tj = Vi[j]
)

then
output faili; halt

52: if not
(

V j [j] = tj or V j [j] = tj − 1
)

then output faili; halt

Algorithm 2 USTOR, code for server.
101: state
102: MEM[i] ∈ N0 × X × Strings, initially (0,⊥,⊥), i = 1, . . . , n

// last timestamp, value, and DATA-sig. from Ci

103: c ∈ Clients, initially 1
// client who committed last operation in schedule

104: SVER[i] ∈ N
n
0
× Stringsn × Strings,

initially (0n,⊥n,⊥), for i = 1, . . . , n
// last version and COMMIT-signature received from Ci

105: L ∈ Invocations∗, initially empty
// invocation tuples of concurrent operations

106: P ∈ Stringsn, initially ⊥n // PROOF-signatures

107: upon receiving 〈SUBMIT, t, (i, oc, j, τ), x, δ〉 from Ci

108: if oc = READ then
109: (t′ , x′, δ′)← MEM[i]
110: MEM[i]← (t, x′, δ)
111: msg← 〈REPLY, c, SVER[c], SVER[j],MEM[j],L, P 〉
112: else
113: MEM[i]← (t, x, δ)
114: msg← 〈REPLY, c, SVER[c],L, P 〉
115: send msg to Ci

116: append (i, oc, j, τ) to L

117: upon receiving 〈COMMIT, Vi,Mi, ϕ, ψ〉 from Ci:
118: (V c,Mc, ϕc)← SVER[c]
119: if Vi > V c then
120: c← i

121: remove last tuple (i, · · · ) and all preceding tuples from L

122: SVER[i]← (Vi,Mi, ϕ)
123: P [i]← ψ

and therefore, S receives and processes the COMMIT mes-
sage of an operation before the SUBMIT message of the next
operation by the same client.

Next, Ci computes its new version. It starts from
(V c,M c) and for every invocation tuple in L, represent-
ing a concurrent operation by Ck, it checks the following
(lines 39–45): first, that S received the COMMIT message
of Ck’s previous operation and included the corresponding
PROOF-signature in P [k] (line 41); second, that k 6= i, i.e.,
thatCi has no concurrent operation with itself (line 43); and
third, after incrementing Vi[k], that the SUBMIT-signature
of the operation is valid and contains the expected time-
stamp Vi[k] (line 43). Again, these conditions always hold
when S is correct. During this computation, Ci also in-
crementally updates the digest d and assigns d to Mi[k]
for every operation. Finally, Ci increments its own time-
stamp Vi[i], computes the new digest, and assigns it toMi[i]
(line 47). If any of the checks fail, the protocol outputs faili,
which signals to a higher-layer protocol that the client has
detected an inconsistency caused by S, and halts.

For read operations, Ci also invokes a procedure check-
Data. It first verifies the COMMIT-signatureϕj by the writer
Cj on the version (V j ,M j). If S is correct, this is the
largest version committed by Cj and received by S before
it replied to Ci’s read request. The client also checks the
integrity of the returned value xj by verifying the DATA-
signature δj on tj and on the hash of xj (line 50). Further-



more, it checks that the version (V j ,M j) is smaller than
or equal to (V c,M c) (line 51). Although Ci cannot know
if S returned data from the most recently submitted opera-
tion of Cj , it can check that Cj issued the DATA-signature
during the most recent operation oj of Cj represented in the
version of Ci by checking that tj = Vi[j] (line 51). If S
is correct and has already received the COMMIT message of
oj , then it must be V j [j] = tj , and if S has not received this
message, it must be V j [j] = tj − 1 (line 52).

Finally, Ci sends a COMMIT message containing its ver-
sion (Vi,Mi), a COMMIT-signature ϕ on the version, and a
PROOF-signature ψ on Mi[i]. When the server receives the
COMMIT message from Ci containing a version (V,M), it
stores the version and the PROOF-signature in SVER[i] and
the COMMIT-signature in P [i] (lines 122 and 123). Last but
not least, the server checks if this operation is now the last
committed operation in the schedule by testing V > V c; if
this is the case, the server stores i in c and removes from
L the tuples representing this operation and all operations
scheduled before.

6 Fail-Aware Untrusted Storage Protocol

In this section, we extend the USTOR protocol to a fail-
aware untrusted storage protocol (FAUST) which satisfies
Definition 5. As illustrated in Figure 4, FAUST is executed
by clients and uses the extended read and write operations of
USTOR as well as off-line client-to-client communication.
Below we describe at a high level how FAUST achieves its
goals, and refer to the full paper [3] for details.

To detect server failures, a client that ceases to obtain
new versions from another client via the server contacts the
other client directly with a PROBE message via offline com-
munication and asks for the maximal version that it knows.
The other client replies with this information in a VERSION
message, and the first client verifies that all versions are
consistent. If any check fails, the client reports the fail-
ure and notifies the other clients about this with a FAILURE
message. For stability detection, the protocol periodically
invokes dummy read operations, and uses the versions re-
ceived from other clients in VERSION messages. Although
using client-to-client communication has been suggested
before to detect server failures [20, 16], this mechanism of
FAUST is the first in the context of untrusted storage to em-
ploy offline communication for detecting stability and for
aiding progress when no inconsistency occurs.

Protocol overview. For every invocation of a read or write
operation, the FAUST protocol at client Ci directly invokes
the corresponding extended operation of the USTOR proto-
col. For every response received from the USTOR protocol
that belongs to such an operation, FAUST adds the time-
stamp of the operation to the response and then outputs the
modified response. FAUST retains the version committed

Figure 4. Architecture of the FAUST protocol.

by the operation of the USTOR protocol and takes the time-
stamp from the i-th entry in the timestamp vector. More pre-
cisely, client Ci stores an array VERi containing the maxi-
mal version that it has received from every other client. It
sets VERi[i] to the version committed by the most recent
operation of its own and updates the value of VERi[j] when
a readxi(j) operation of the USTOR protocol returns a ver-
sion (Vj ,Mj) committed by Cj . Let maxi denote the index
of the maximum of all versions in VERi.

To implement stability detection, Ci periodically issues
a dummy read operation for the register of every client in
a round-robin fashion, when no operation invoked by the
user is ongoing. However, dummy read operations alone
do not guarantee stability-detection completeness accord-
ing to Definition 5 because a faulty server, even when it only
crashes, may not respond to the client messages in protocol
USTOR. This prevents two clients that are consistent with
each other from ever discovering that. To solve this prob-
lem, the clients communicate directly with each other and
exchange their versions, as explained next.

For every entry VERi[j], the protocol stores the time
when the entry was most recently updated. If a periodic
check of these times reveals that more than δ time units
have passed without an update from Cj , then Ci sends a
PROBE message directly to Cj . Upon receiving a PROBE
message, Cj replies with a VERSION message containing
VERj [maxj ], the maximal version that Cj knows. Client Ci

also updates the value of VERi[j] when it receives a big-
ger version from Cj in a VERSION message. In this way,
the stability detection mechanism eventually propagates the
maximal version to all clients. Note that a VERSION mes-



sage sent by Ci does not necessarily contain a version com-
mitted by an operation of Ci.

The client detects server failures in one of three ways:
First, the USTOR protocol may output USTOR.faili if it
detects any inconsistency in the messages from the server.
Second, whenever Ci receives a version (V,M) from Cj ,
either in a response of the USTOR protocol or in a VER-
SION message, it checks (V,M) for consistency with the
versions that it already knows, by verifying that (V,M) is
comparable to VERi[maxi]. And last, another client that has
detected a server failure sends a FAILURE message via of-
fline communication. When one of these conditions occurs,
the client sends a FAILURE message to alert all other clients,
outputs faili, and halts.

The vector Wi in stablei(Wi) notifications contains the
i-th entries of the timestamp vectors in VERi, i.e., Wi[j] =
Vj [i] for every j, where (Vj ,Mj) = VERi[j]. Hence, when-
ever the i-th entry in a timestamp vector in VERi[j] is larger
than Wi[j] after an update to VERi[j], then Ci updates
Wi[j] accordingly and issues a notification stablei(Wi).
This means that all operations of FAUST at Ci that returned
a timestamp t ≤W [j] are stable w.r.t. Cj .

7 Conclusion

We tackled the problem of providing meaningful seman-
tics for a service implemented by an untrusted provider. As
clients increasingly use online services provided by third
parties in computing “clouds,” the importance of address-
ing this problem becomes more prominent. We introduced
the abstraction of a fail-aware untrusted service, generaliz-
ing the concepts of eventual consistency and fail-awareness
to account for Byzantine faults. We realize this new ab-
straction with an online storage service providing so-called
forking semantics. It guarantees linearizability and wait-
freedom when the server is correct, provides failure and sta-
bility detection, and ensures causality at all times. No pre-
vious forking consistency notion can be used for building
fail-aware untrusted storage, because these notions inher-
ently rule out wait-free implementations. Our new notion of
weak fork-linearizability is key to circumventing this limi-
tation. We developed an efficient wait-free storage protocol
with weak fork-linearizability and used it to implement fail-
aware untrusted storage.
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