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We define ordered sequential consistency (OSC), a generic criterion for concurrent objects. 
We show that OSC encompasses a range of criteria, from sequential consistency to 
linearizability, and captures the typical behavior of real-world coordination services, such 
as ZooKeeper. A straightforward composition of OSC objects is not necessarily OSC, e.g., 
a composition of sequentially consistent objects is not sequentially consistent. We define 
a global property we call leading ordered operations, and prove that it enables correct OSC 
composition.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

In this work we define a generic correctness criterion 
named Ordered Sequential Consistency (OSC), which captures 
a range of criteria, from sequential consistency [1] to lin-
earizability [2].

We use OSC to capture the semantics of coordination 
services such as ZooKeeper [3]. These coordination ser-
vices provide so-called “strong consistency” for updates 
and some weaker semantics for reads. They are replicated 
for high-availability, and each client submits requests to 
one of the replicas. Reads are not atomic so that they can 
be served fast, i.e., locally by any of the replicas, whereas 
update requests are serialized via a quorum-based proto-
col based on Paxos [4]. Since reads are served locally, they 
can be somewhat stale but nevertheless represent a valid 
system state.

In the literature, these services’ guarantees are de-
scribed as atomic writes and FIFO ordered operations for 
each client [3]. This definition is not tight in two ways: 
(1) linearizability of updates has no meaning when no op-
eration reads the written values; and (2) this definition 
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allows read operations to read from a future write, which 
obviously does not occur in any real-world service. A spe-
cial case of OSC, which we call OSC(U ), captures the actual 
guarantees of existing coordination services.

Although supporting OSC(U ) semantics instead of atom-
icity of all operations enables fast local reads, this makes 
services non-composable: correct OSC(U ) coordination ser-
vices may fail to provide the same level of consistency 
when combined [5]. Intuitively, the problem arises because 
OSC(U ), similarly to sequential consistency [1], allows sub-
set of operations to occur “in the past”, which can intro-
duce cyclic dependencies.

In a companion systems paper [5] we present ZooNet, 
a system for modular composition of coordination services, 
which addresses this challenge: Consistency is achieved on 
the client side by judiciously adding synchronization re-
quests called leading ordered operations. The key idea is to 
place a “barrier” that limits how far in the past reads can 
be served from. ZooNet does so by adding a “leading” up-
date request prior to a read request whenever the read is 
addressed to a different service than the previous one ac-
cessed by the same client. We provide here the theoretical 
underpinnings for the algorithm implemented in ZooNet.

Proving the correctness of ZooNet is made possible by 
the OSC definition that we present in this paper. Interest-
ingly, Vitenberg and Friedman [6] showed that sequential 
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consistency, when combined with any local (i.e., compos-
able) property continues to be non-composable. Our ap-
proach circumvents this impossibility result since having 
leading ordered operations is not a local property.

2. Model and notation

We use a standard shared memory execution model [2], 
where a set φ of sequential processes access shared objects
from some set X. An object has a name label, a value, and 
a set of operations used for manipulating and reading its 
value. An operation’s execution is delimited by two events, 
invoke and response.

A history σ is a sequence of operation invoke and re-
sponse events. An invoke event of operation op is denoted 
iop , and the matching response event is denoted rop . For 
two events e1, e2 ∈ σ , we denote e1 <σ e2 if e1 precedes 
e2 in σ , and e1 ≤σ e2 if e1 = e2 or e1 <σ e2. For two oper-
ations op and op′ in σ , op precedes op′ , denoted op <σ op′ , 
if rop <σ iop′ , and op ≤σ op′ if op = op′ or op <σ op′ . Two 
operations are concurrent if neither precedes the other.

For a history σ , complete(σ ) is the sequence ob-
tained by removing all operations with no response events 
from σ . A history is sequential if it begins with an invoke 
event and consists of an alternating sequence of invoke 
and response events, s.t. each invoke is followed by the 
matching response.

For p ∈ φ, the process subhistory σ |p of a history σ is 
the subsequence of σ consisting of events of process p. 
The object subhistory σx for an object x ∈ X is similarly de-
fined. A history σ is well-formed if for each process p ∈ φ, 
σ |p is sequential. For the rest of our discussion, we assume 
that all histories are well-formed. The order of operations 
in σ |p is called the process order of p.

For the sake of our analysis, we assume that each sub-
history σx starts with a dummy initialization of x that 
updates it to a dedicated initial value v0, denoted dix(v0), 
and that there are no concurrent operations with dix(v0)

in σx .
We refer to an operation that changes the object’s value 

as an update operation. The sequential specification of an ob-
ject x is a set of allowed sequential histories in which all 
events are associated with x. For example, the sequential 
specification of a read-write object is the set of sequential 
histories in which each read operation returns the value 
written by the last update operation that precedes it.

3. Ordered sequential consistency

Definition 1 (OSC(A)). A history σ is OSC w.r.t. a subset A of 
the objects’ operations if there exists a history σ ′ that can 
be created by adding zero or more response events to σ , 
and there is a sequential permutation π of complete(σ ′), 
satisfying the following:

OSC1 (sequential specification): ∀x ∈ X, πx belongs to 
the sequential specification of x.
OSC2 (process order): For two operations o and o′ , if 
∃p ∈ φ : o <σ |p o′ then o <π o′ .
OSC3 (A-real-time order): ∀x ∈ X, for an operation o ∈
A and an operation o′ (not necessarily in A) s.t. o, o′ ∈
σx , if o′ <σ o then o′ <π o.

Such π is called a serialization of σ . An object is OSC(A) 
if all of its histories are OSC(A).

We assume that ∀x ∈ X, dix(v0) ∈ A. Linearizability and 
sequential consistency are both special cases of OSC(A): 
(1) we get linearizability using A that consist of all of the 
objects’ operations; and (2) we get sequential consistency 
with A that consists only of dummy initialization opera-
tions, which means that there is no operation that pre-
cedes an A-operation, i.e., OSC3 is null, and we left with 
the sequential specification and process order of an object.

If A consists of the objects’ update operations, de-
noted U , then OSC(U ) captures the semantics of coor-
dination services: (1) updates are globally ordered (by 
OSC3); and (2) all operations see some prefix of that or-
der (by OSC3), while respecting each client process order 
(by OSC2).

4. OSC(A) composability via leading A-operations

In this section we show that a history σ of OSC(A) 
objects satisfies OSC(A), if σ has leading ordered A-opera-
tions. Generally, we prove the composition by ordering 
every A-operation oA on object x, according to the first 
event e ∈ σ s.t. e ≤σ roA and ioA <πx e. Then, we extend 
that order to a total order on all operations, by placing ev-
ery non-A-operation after the A-operation that precedes 
it in their object’s serialization. Finally, we show that if 
σ has leading ordered A-operations, then the total order 
satisfies OSC(A). Intuitively, we can think of the leading 
A-operations as a barrier for the non-A-operations, that 
maintains the total order between objects.

Given a history σ of OSC(A) objects, and a set of seri-
alizations � = {πx}x∈X of {σx}x∈X, we define a strict total 
order on all operations in �. We refer to an operation 
o ∈ A as an A-operation, and define the future set of an 
A-operation as follows:

Definition 2 (A-operation future set). Given a history σ of 
OSC(A) objects, an object x ∈ σ , a serialization πx of σx , 
and an A-operation oA ∈ σx , the future set of oA in πx is 
F πx
σ (oA) � {o ∈ πx|oA ≤πx o}.

We now define an A-operation’s first response event to 
be the earliest response event of an operation in its future 
set.

Definition 3 (First response event). Given a history σ of 
OSC(A) objects, an object x ∈ σ , a serialization πx of σx , 
and an A-operation oA ∈ πx , the first response event of oA in 
πx , denoted f rπx

σ (oA), is the earliest response event in σ
of an operation in F πx

σ (oA).

Note that it is possible that f rπx
σ (oA) is oA ’s re-

sponse event. We make two observations regarding first 
responses:
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Observation 1. Given OSC(A) objects’ σ , an object x ∈ σ , a se-
rialization πx of σx, and an A-operation oA ∈ πx, then ioA <σ

f rπx
σ (oA).

Proof. By definition, f rπx
σ (oA) is a response event in σ of 

an operation o s.t. oA ≤πx o. If f rπx
σ (oA) <σ ioA , i.e., ro <σ

ioA , then o <σ oA , a contradiction to OSC3. �
Observation 2. Let σ be OSC(A) objects’ history, and let πx be 
a serialization of σx for some x. For two A-operations o, o′ ∈ πx, 
if o <πx o′ , then f rπx

σ (o) ≤σ f rπx
σ (o′).

Proof. Since o <πx o′ , we get F πx
σ (o′) ⊂ F πx

σ (o). By Def-
inition 3, f rπu

σ (o′) is a response event of an operation 
o1 ∈ F πx

σ (o′), and therefore o1 ∈ F πx
σ (o). Thus, f rπx

σ (o) is ei-
ther f rπx

σ (o′) or an earlier response event in σ . �
To define our strict total order on operations we begin 

with A-operations:

Definition 4 (A-�-order). Let σ be a history of OSC(A) ob-
jects. Let � = {πx}x∈X be a set of serializations of {σx}x∈X. 
Let x, y ∈ X, then for two A-operations oA ∈ πx and o′

A ∈
πy , we define their A-�-order, denoted <A� , as follows: 
(<) If x = y, i.e., oA, o′

A ∈ πx , then oA <A� o′
A iff oA <πx

o′
A ; otherwise, (fr) x 	= y, and oA <A� o′

A iff f rπx
σ (oA) <σ

f r
πy
σ (o′

A).

Lemma 1. For a history σ of OSC objects and a set of serializa-
tions � = {πx}x∈X of {σx}x∈X , A-�-order is a strict total order 
on A-operations in �.

Proof. Irreflexivity, antisymmetry, and comparability fol-
low immediately from the definition of <A� . We show 
that <A� satisfies transitivity.

Let oA , o′
A , and o′′

A be three A-operations s.t. uo1 <A�

uo2 <A� uo3; we need to prove that uo1 <A� uo3. We 
consider four cases according to the condition by which 
each of the pairs is ordered:

(<, <) If ∃x ∈ X oA, o′
A, o′′

A ∈ πx , then oA <πx o′
A <πx o′′

A
implies oA <πx o′′

A , and thus oA <A� o′′
A .

(<, fr) If ∃x, y ∈ X, x 	= y : oA <πx o′
A , o′′

A ∈ πy , and 
f rπx

σ (o′
A) <σ f r

πy
σ (o′′

A), by Observation 2, f rπx
σ (oA) ≤σ

f rπx
σ (o′

A), therefore f rπx
σ (oA) <σ f r

πy
σ (o′′

A), and oA <A� o′′
A .

(fr, <) If ∃x, y ∈ X, x 	= y : oA ∈ πx , o′
A <πy o′′

A , and 
f rπx

σ (oA) <σ f r
πy
σ (o′

A), by Observation 2, f r
πy
σ (o′

A) ≤σ

f r
πy
σ (o′′

A). We get f rπx
σ (oA) <σ f r

πy
σ (o′′

A), therefore oA <A�

o′′
A .

(fr, fr) If ∃x, y, z ∈ X, x 	= y, y 	= z : oA ∈ πx , o′
A ∈ πy , 

and o′′
A ∈ πz , this means that f rπx

σ (oA) <σ f r
πy
σ (o′

A) and 
f r

πy
σ (o′

A) <σ f rπz
σ (o′′

A). By transitivity of <σ , f rπx
σ (oA) <σ

f rπz
σ (o′′

A). If z 	= x, then oA <A� o′′
A . If z = x, by the contra-

positive of Observation 2, oA <πx o′′
A , and oA <A� o′′

A . �
We extend <A� to a weak total order in the usual way: 

o1 ≤A� o2 if o1 <A� o2 or o1 = o2. For a history σ , a se-
rialization πx of σx , and an operation o in πx , the last 
A-operation before o in πx , denoted lAπx(o), is the latest 
A-operation in the prefix of πx that ends with o. Note 
that if o is an A-operation then lAπx(o) = o; and that 
since every history starts with a dummy initialization, ev-
ery operation that is not in A is preceded by at least one 
A-operation and so lAπx(o) is well-defined. We use last 
A-operations to extend the A-�-order to a strict total or-
der on all operations in �.

Definition 5 (�-order). Let σ be a history of OSC(A) ob-
jects. Let � = {πx}x∈X be a set of serializations of {σx}x∈X, 
and let x and y be objects in X. For two operations o1 ∈ πx , 
and o2 ∈ πy , we define �-order, denoted <� , as follows:
(lAπx(o1) 	= lAπy (o2)) if the last A-operation before o1 and 
o2 are different, then o1 <� o2 iff lAπx(o1) <A� lAπy (o2);
(lAπx(o1) = lAπy (o2)) otherwise, x = y, and o1 <� o2 iff 
o1 <πx o2.

We now observe that <� generalizes all the serializa-
tions πx ∈ �:

Observation 3. Let σ be a history of OSC(A) objects, and πx ∈
� a serialization of σx for some object x ∈ X. For two operations 
o1, o2 ∈ πx, if o1 <πx o2 then o1 <� o2 .

Proof. Since o1 <πx o2, then lAπx(o1) ≤πx lAπx(o2). If 
lAπx(o1) = lAπx(o2) then by Definition 5, o1 <� o2. Oth-
erwise, by Definition 4, lAπx(o1) <A� lAπx(o2) and by Def-
inition 5, o1 <� o2. �
Lemma 2. Let σ be a history of OSC(A) objects, and � =
{πx}x∈X be a set of serializations of {σx}x∈X , then �-order is 
a strict total order on all operations in �.

Proof. Irreflexivity, antisymmetry, and comparability fol-
low immediately from the definition of <� . We show that 
<� satisfies transitivity.

Let o1, o2, and o3 be three operations on objects x, y, z, 
resp., s.t. o1 <� o2 <� o3; we need to prove that o1 <� o3.

For every oi and o j , by Definition 5, oi <� o j implies 
lAπi (oi) ≤A� lAπ j (o j). By transitivity of ≤A� (Lemma 1), 
we get from lAπx(o1) ≤A� lAπy (o2) ≤A� lAπz (o3) that 
lAπx(o1) ≤A� lAπz (o3).

If lAπx(o1) <A� lAπz (o3) then by Definition 5 o1 <� o3. 
If lAπx(o1) = lAπz (o3), then by lAπx(o1) ≤A� lAπy (o2) ≤A�

lAπz (o3) we get lAπx(o1) = lAπy (o2) = lAπz (o3), and x =
y = z. Therefore by o1 <� o2 <� o3 and Definition 5, 
o1 <πx o2 <πx o3, and thus by Definition 5 o1 <� o3. �

Note that �-order is always defined for compositions 
of OSC objects. Since it generalizes all the serializations πx

(Observation 3), it preserves OSC1 and OSC3. Nevertheless, 
OSC2 is not guaranteed.

To support OSC(A) composition we extend each object 
with a sync operation, which does not change the object’s 
state and does not return any value, but belongs to A. For 
example, to compose OSC({dix(v0)|∀x ∈ X}) objects, we ex-
tend each of them to be an OSC({sync} ∪ {dix(v0)|∀x ∈ X}) 
object and then compose them via adding sync operations.

We say that in a history σ there are leading ordered op-
erations if for every operation o /∈ A by a process p in σ , 



50 K. Lev-Ari et al. / Information Processing Letters 123 (2017) 47–50
the last operation of p before o is on the same object. This 
also means that between every two operations o /∈ A and 
o′ /∈ A of different objects by the same process in σ , there 
is an operation oA ∈ A to the second object. We next prove 
that adding leading ordered operations allows for correct 
OSC composition.

Theorem 1. If a history σ of OSC(A) objects has leading ordered 
operations, then σ is OSC(A).

Proof. Let � = {πx}x∈X be a set of serializations of {σx}x∈X, 
and let π be the sequential permutation of σ defined by 
<� . We now prove that π satisfies OSC(A). OSC1 and OSC3
follow immediately from Observation 3.

We prove OSC2. Let o1 and o2 be two operations in �
for which ∃p ∈ φ : o1 <σ |p o2. We now show that o1 <� o2.

We start by proving the claim for two consecutive op-
erations in σ |p. If both operations are on the same object, 
then by Observation 3, o1 <� o2, as needed. Otherwise, 
∃x, y ∈ X, x 	= y : o1 ∈ πx, o2 ∈ πy , and o1 immediately pre-
cedes o2 in σ |p. By leading ordered operations, since o1
and o2 are not on the same object, o2 is a A-operation 
and hence lAπy (o2) = o2.

By definition, f rπx
σ (lAπx(o1)) ≤σ ro1 . Since ro1 <σ io2 , 

and by Observation 1, io2 <σ f r
πy
σ (o2), we get that

f rπx
σ (lAπx(o1)) <σ f r

πy
σ (o2). By Definition 4, lAπx(o1) <A�

o2, and by Definition 5, o1 <� o2.
Thus, every two consecutive operations oi, oi+1 ∈ �

that are in σ |p satisfy oi <� oi+1. By Lemma 2, <� is a 
strict total order on all operations, and therefore by transi-
tivity, we get o1 <� o2. �
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