Knowledge Considered Harmful

Shaul Markovitch
&
Paul Scott

Research Paper #030788

Center for Machine Intelligence

2001, Commonwealth Blvd
Ann Arbor, Michigan 48105



1. Introduction

The dominant theme of Al research for the last two decades
has been the central role of knowledge. As Buchanan and
Feigenbaum (1982) put it "the power of an intelligent program to
perform its task well depends primarily on the quantity and
quality of knowledge it has about that task". Hence there is a
widely held view that it is always beneficial for a program to be
given additional knowledge about its task domain. In this paper
we consider how far this view is correct. In particular we ask
whether additional knowledge can actually be detrimental and if
so under what circumstances. We also consider what form the
- detrimental effects may take and examine some of the possible
remedies. We shall only be concerned with additional knowledge
which is correct. The problems arising from the acquisition of
incorrect knowledge are of great importance but they fall outside
the scope of this paper.

Suppose that we have a knowledge-based problem solving
system that is capable of solving problems in some task domain.
Suppose further that we provide it with additional correct |
knowledge about that domain. There are two kinds of detrimental
effect which the additional knowledge might produce. It could
impair the actual process of solving problems by requiring more
resources, such as time or memory space, to produce the same
solutions. It could also lead to the production of poorer solutions,
the extreme case being solutions that are wrong. We will consider

each of these kinds of detrimental effect in turn.

2. Knowledge That Impairs Problem Solving
The reason that knowledge can sometimes have a
deleterious effect on problem solving performance is that there are

costs as well as benefits associated with adding knowledge. These

1



costs take various forms. The most obvious is the additional
memory requirement. The significance of this depends on how
close to its memory limits the program is operating. Of greater
importance for many systems is the effect on search time. Adding
knowledge to a system is likely to increase the size of the space that
must be searched during problem solving. Hence adding
knowledge to a system may slow it down. The real value of a piece
of knowledge to a system is the difference between the benefits and
the costs. If the costs exceed the benefits then the knowledge is

harmful.

2.1. Irelevant Knowledge

| The simplest example of knowledge whose net value is
negative is knowledge which is irrelevant; that is, knowledge
which, though correct, can never be used in the process of solving
problems drawn from the task domain of the problem solver Such
knowledge produces no benefits to the system and yet has costs.
Hence its value is negative.

In principle, irrelevant knowledge could be identified by
solving all the problems in the task domain and determining if the
knowledge was ever used. In practice the relevance must be
estimated from the solutions to a sample set of problems.
Learning systems typically attempt to eliminate irrelevant
knowledge in one or both of two ways. The first is to ensure that
the knowledge has some relevance by only acquiring knowledge
which has made a contribution to solving a problem drawn from
the task domain. The second is to monitor the use of retained
knowledge and discard that which does not make a significant
positive contribution. Such monitoring may involve simply noting
the frequency with which a piece of knowledge is used or it may

also consider the magnitude of the contribution that is made.



2.2. Learning to Search State Spaces
It might reasonably be conjectured that the addition of

knowledge to a system would not impair the process of problem
solving if steps were taken to ensure that the knowledge added to a
system was both correct and relevant. We have run a series of
experiments with a simple learning program, FUNES, to
demonstrate that this conjecture is wrong.

Our work builds on that of Minton (1985), who observed that
systems which learn by storing successful solutions (or partial
solutions) to problems gradually become "swamped" by acquired
knowledge. His program, MORRIS, was written to assess

whether the problem could be éliminated or reduced by retaining
| only those solutions which satisfy his proposed criteria of
usefulness. Our concern is with investigating the nature and
extent of the "swamping" rather than with testing potential
remedies.

FUNES (Markovitch & Scott, 1988) solves problems by
performing best first search of a state space representation.
Learning takes the form of retaining sequences of state transitions
which have been encountered in the course of solving problems in
a training set. These transition sequences are called macros.
During subsequent problem solving, macros are used in the same
way as simple transitions in the search for solutions. Only macros
which have formed part of a solution during training are retained.

Hence all the additional knowledge the system acquires is relevant

An experiment comprises two phases: a learning phase
followed by a forgetting phase. During the learning phase the
system solves randomly generated problems and retains all
sequences which form part of solutions as macros. During the

forgetting phase, in which no further learning takes place,

3



macros are removed at random. At intervals during both the
learning and forgetting phases performance of the system is
evaluated by giving it a sample of 100 randomly generated
problems. The mean number of nodes visited during the process
of solving the problem is used as a performance metric. No
learning or forgetting occurs during evaluation.

The results of a typical experiment are shown in Figure 1.
In this case the learning phase was continued until 3000 macros

had been acquired.

90

70 - & |earning
- Forgetting

Mean number of nodes visited

10

Number of macros learned/retained
Figure 1
During the initial portion of the learning phase
performance continues to improve until it reaches an optimal level
of 25.6 nodes visited after about 2000 macros have been learned.
Beyond this point the performance slowly but steadily deteriorates.
This is the "swamping" effect , noted by Minton (1985), in which

newly acquired macros increase the search space without

4



contributing compensating benefits. During the initial portion of
the forgetting phase the performance level retraces the learning
curve. Thus the performance slowly improves. However, once the
forgetting curve reaches the optimal value achieved during
learning the curves separate as the forgetting curve continues to
show steady improvement right down to an optimal value of 20.8 at
a point where only about 500 macros are retained. This is about
20% better than the optimal performance achieved during the
learning phase and about twice as good as the performance with
the same number of macros during the learning phase. Beyond
this optimal point in the forgetting phase performance deteriorates
rapidly to reach the initial performance level when all the
acquired macros have been discarded.

Experiments with shorter and longer learning phases
produce essentially similar results. In experiments with longer
learning phases the swamping continues monotonically during
learning and the forgetting curve retraces the learning curve
down to its optimal point and then continues on to its own optimal
value. In shorter learning phases, in which the optimal point is
not reached, the forgetting curve shows immediate improvement
which continues to an optimal value which is poorer than that
achieved for longer learning phases.

The most striking feature of these results is that substantial
performance improvements are achieved by random removal of
knowledge. This finding appears to be extremely paradoxical
because it implies that it does not matter what is forgotten. When
the number of macros retained gets down to about 500 an optimum
performance level is reached. Beyond this point performance
deteriorates rapidly. Thus learning 2000 macros and discarding a
random 75% of them leads to very much better performance than

simply learning 500.



The explanation of this paradoxical result lies in the fact
that most of the knowledge acquired is redundant. After the
system has acquired 2000 macros it has numerous alternative
ways of traversing the space and hence the branching factor at
each node is large. Because of the redundancy drastic pruning is
possible without any deleterious affect on performance. Thus the
random forgetting eliminates redundant paths and hence the
search space is reduced. Only when the random deletion starts to
remove non-redundant paths is there a deterioration in

performance.

2.3. RedundantKnowledge

This examples shows that redundant knowledge can have a
deleterious effect on performance. Redundant knowledge differs
from irrelevant knowledge in two ways, each of which makes it a
more difficult problem to deal with.

First, while irrelevant knowledge is at best harmless,
redundant knowledge is often very useful. All the additional
knowledge learned by FUNES is redundant because the state
transitions which make up any macro were already known at the
start of learning. The acquired knowledge does not permit any
additional solutions to be found but is useful because it speeds
problem solving. A large number of learning programs only
acquire knowledge which is, in this sense, redundant. Examples
include STRIPS (Fikes, Hart & Nilsson, 1972), Korf's (1983) macro-
operators, SOAR (Laird, Rosenbloom & Newell, 1986), EBL (Dejong
& Mooney, 1986) and EBG (Mitchell, Keller & Kedar-Cabelli, 1986).
A particular piece of knowledge may speed the solution of some
problems while retarding the solution of others. Hence deciding
whether a piece of redundant knowledge is worthwhile involves
considering its effects on both increasing and reducing search

time on a population of problems. The problem therefore is not

6



simply a matter of eliminating redundancy but rather of
eliminating harmful redundancy.

The second difference is that while the irrelevance of a piece
of knowledge for a given task domain is a property of that
knowledge alone, redundancy depends on the entire set of
knowledge that a system has. One cannot speak of an isolated
piece of knowledge as being redundant. It only makes sense to say
either a piece of knowledge is redundant in the context of certain
other knowledge or, equivalently, an entire corpus of knowledge
exhibits redundancy.

Harmful redundancy is clearly undesirable. Unfortunately,
identifying and eliminating it is an inherently hard problem.
Suppose we have some set, K, of pieces of knowledge from which
we wish to eliminate the harmful redundancy. The elements of K
may be rules, propositions, or whatever else is the basic module of
the representation system. Let us define Cost(x) as being the
expectation value of the cost of solving a problem from a task
domain using the knowledge set x. Then eliminating all harmful
redundancy can be viewed as finding the subset of K with minimal
cost. That is of finding Kpin & K such that

Vs C K[ Cost(Kmin) € Cost(s)]
In general this minimization will be of exponential complexity
because finding the minimum will involve evaluating the cost
function for all subsets of K.

It might appear that the complexity of the problem can be
reduced by considering only the effect of adding a new piece of
knowledge k to a knowledge base K to make a new knowledge base
K'. Assuming Cost(K) is known it is then only necessary to
evaluate Cost(K') in order to determine whether adding k will be
beneficial. Unfortunately this approach suffers from two

disadvantages. First, there may be some subset of K' other than K



which has a lower cost than K' so this method does not guarantee
that the knowledge base is optimal (in the sense that it could not be
improved by removing some of the knowledge). Second the method
is one of hill-climbing and requires that each piece of knowledge
added should reduce the cost. Hence there may be global minima
which are inaccessible from the current knowledge state of the
system.

It should also be noted that the computational effort required
to identify redundancies depends also on what is involved in
evaluating the cost function. This is required to return the
expectation value for the cost of solving a problem drawn from the
task domain. Typically it will involve solving a representative
sample of problems and thus the effort required will depend on
both the effort needed to solve a single problem and the number of
examples needed to form a representative sample of the task
domain.

Hence we can conclude that the problem of eliminating
harmful redundancies is inherently difficult. This conclusion is
in no way confined to the particular problem space in which
FUNES operates. Redundancy can occur in all but the most trivial
representations and in many cases it is beneficial. Since
eliminating harmful redundancy algorithmically is too expensive
a procedure to be of practical value, heuristics must be sought
which eliminate significant amounts with much less effort.
Minton's (1985) studies with MORRIS show that the heuristics he
proposed led to improved performance but our own experiments
with FUNES raise the question of whether Minton's heuristics are
significantly better than random forgetting which is itself very
successful. (We have also investigated the effects of alternatives to

random forgetting. An account of these studies together with a



more detailed account of the program form the subject of
Markovitch & Scott (1988)).

Both our experience with FUNES and our discussion of the
inherent complexity of finding optimal subsets of knowledge
suggest that better performance may be achieved by acquiring a
large body of knowledge and then discarding part of it than by
attempting to retain only worthwhile knowledge as it is acquired.
In view of the current interest in incremental learning
(Schlimmer & Fisher, 1986) this is an interesting conclusion since
it suggests there may be limits to the quality of representation that

can be achieved in this way.

3. Knowledge That Leads To Poor Solutions

The examples considered in the preceding section all involve
poorer performance in the sense that more resources are required
to find a solution. In some circumstances additional correct
knowledge may lead to poorer performance in the sense that the
quality of solutions produced is lower.

Wilkins (Wilkins & Buchanan, 1986; Wilkins, 1987) has
described the occurrence of this phenomenon in rule based
systems which use the certainty factor representation of
uncertainty originally introduced in MYCIN (Buchanan &
Shortliffe, 1984). In such a system correct uncertain rules will
sometimes contribute evidence towards incorrect conclusions.
The frequency with which incorrect conclusions are drawn will
depend upon both the other rules present in the system and the
distribution of problems in the task domain. Hence in some
circumstances the addition of a correct new rule to the system will
result in an increase in the number of mistakes the system makes.
Wilkins describes such knowledge bases as sociopathic.

Sociopathic knowledge has much in common with the

problem of harmful redundancy. The detrimental effects of a piece
9



of knowledge depend upon what other knowledge is present in the
system. Hence it makes more sense to speak of a knowledge base
exhibiting sociopathy than to say a'particular piece of knowledge is
sociopathic. As with harmful redundancy, the fact that sociopathy
arises from the interactions between various pieces of knowledge
means that the problem of identifying and eliminating it is
computationally hard. Wilkins has shown that the general
problem of finding that subset of a sociopathic MYCIN type rule
base which gives optimal performance is NP-Complete. As with
harmful redundancy, the elimination of sociopathy must be
accomplished by heuristic methods.

Wilkins also argues that the problem of sociopathy implies
that traditional incremental methods of improving a knowledge
base are inadequate. This is the counterpart of our conclusion that
the problem of reducing harmful redundancy may place limits on
the quality of representation which can be achieved incrementally.

It is difficult to assess the generality of Wilkin's findings.

In Wilkins (1987) it is claimed without proof that the same
problems occur in all representations of uncertainty such as fuzzy
sets and Dempster-Shafer belief functions. No mention is made of
Bayesian inference. In fact the problem would not occur in a
Bayesian representation because in that system it is not possible to
draw invalid conclusions from correct premises. More generally
the problem of sociopathy can only arise in representation systems
whose rules of inference allow the deduction of incorrect
conclusions.

This might suggest that the solution to this problem is to use
a representation in which sociopathy was impossible.
Unfortunately this is not a practical conclusion. Such
representation schemes (of which the Bayesian representation of

uncertainty is a good example) require far more knowledge than is

10



generally available. Systems like MYCIN's certainty factor
representation are essentially schemes to permit useful inferences
to be made without the need for very large quantities of knowledge.
The price paid is the potential for error.

It seems plausible to conjecture the phenomenon of
sociopathy is inherent in any representation scheme which allows
incorrect inference to be drawn and hence will arise in any
practical representation scheme which allows useful inferences to

be made about non-trivial real world problems.

4, Conclusions

In this paper we have shown that in some circumstances
correct knowledge can be harmful. We have identified three types
of knowledge which impair either problem solving performance or
the quality of solutions. Irrelevant knowledge and harmfully
redundant knowledge have a deleterious effect on performance
while sociopathic knowledge leads to poorer solutions.

Harmful redundancy and sociopathy have some important
features in common. Each is a property of an entire knowledge
base rather than of a particular piece of knowledge. Consequently
procedures to minimize them are inherently complex since any
such algorithm must consider all possible subsets of the
knowledge base. Both of them impose limits on the quality of a
knowledge base that may be acquired or learned by purely

incremental methods.

4.1. Implications for machine learning

These conclusions have a number of implications for the
development of machine learning systems. Perhaps the most
important is that the fact that knowledge can be harmful means
that those developing learning systems must consider whether

their systems actually do acquire harmful knowledge. Suppose for

1



example that the results displayed in the initial phase of the
learning curve in Figure 1 had been obtained from a new learning
system. The designer would doubtless have been pleased with a
learning curve showing monotonic improvement leading to a
performance about three times as good as that obtained without
learning. However, as the rest of Figure 1 shows it is possible to
achieve a significantly better performance using only a quarter as
much knowledge. Hence it is well worthwhile for those developing
learning systems to investigate whether their systems carry a
significant burden of harmfullredundancy.

There are two basic strategies which a learning system
might use in order to avoid an accumulation of harmful
~ knowledge: selective acquisition (ie avoiding acquiring knowledge
which is harmful), and forgetting (ie detecting harmful knowledge
and eliminating it). Unfortunately the conclusion that
minimizing harmful knowledge is computationally hard presents
serious problems for both these strategies. Selective acquisition
suffers from the further disadvantage that it is basically a hill
climbing method. Hence it is unlikely to be feasible to build
systems which never acquire harmful knowledge and heuristic
methods must be used to reduce it to acceptable levels. It seems
likely that a combination of both selective acquisition and
forgetting will be the most efficient method of achieving this goal.
(For further discussion of forgetting strategies see Markovitch &
Scott (1988)).

12



5. References

Buchanan,B.G. & Feigenbaum,E.A. , 1982, Foreward to
Knowledge Based Systems in Artificial Intelligence
R.Davis & D.B.Lenat, McGraw-Hill

Buchanan,B.G. & Shortliffe,E.H. , 1984, Rule-Based Expert
Systems , Addison-Wesley

Dejong,G. & Mooney,R. , 1986 , Explanation-based Learning: An
Alternative View , Machine Learning 1 pp 145-176

Fikes,R.E., Hart,P.E. & Nilsson,N.J. , 1972 , Learning and
Executing Generalized Robot Plans , Artificial Intelligence
3 pp 251-288

Korf,R.E., 1983, Learning to Solve Problems by Searching for
Macro-Operators, Pitman, Marshfield, Mass.

Laird,J.E., Rosenbloom,P.S. & Newell,A. , 1986 , Chunking in
Soar: The Anatomy of a General Learning Mechanism ,
Machine Learning 1 pp 11-46

Markovitch,S. & Scott,P.D., 1988 The Role of Forgetting in
Learning, To appear in Proceedings of Fifth International
Conference on Machine Learning, June 1988

Minton,S. , 1985 , Selectively Generalizing Plans for Problem
Solving , Proceedings Ninth International Joint Conference
on Artificial Intelligence, Los Angeles, CA. pp 596-599

Mitchell, T.M., Keller,R.M. & Kedar-Cabelli,S.T. , 1986 ,
Explanation-based Generalization: A Unifying View ,
Machine Learning 1 pp 47-80

Schlimmer,J.C. & Fisher,D. , 1986 , A Case Study of Incremental
Concept Learning , Proc. AAAI-86, Philadelphia, August
1986

Wilkins,D.C. & Buchanan,B.G. , 1986, On Debugging Rule Sets
When Reasoning Under Uncertainty, Proceedings AAAI-86
Fifth National Conference on Artificial Intelligence,
Philadelphia, pp 448-454.

Wilkins,D.C. , 1987, Apprenticeship Learning Techniques for
Knowledge Based Systems, University of Michigan doctoral
dissertation, November 1987.

13



