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Abstract

Most classification algorithms receive as input a set of attributes of the classified objects. In many

cases, however, the supplied set of attributes is not sufficient for creating an accurate, succinct and com-

prehensible representation of the target concept. To overcome this problem, researchers have proposed

algorithms for automatic construction of features. The majority of these algorithms use a limited pre-

defined set of operators for building new features. In this paper we propose a generalized and flexible

framework that is capable of generating features from any given set of constructor functions. These can

be domain-independent functions such as arithmetic and logic operators, or domain-dependent operators

that rely on partial knowledge on the part of the user. The paper describes an algorithm which receives

as input a set of classified objects, a set of attributes, and a specification for a set of constructor functions

that contains their domains, ranges and properties. The algorithm produces as output a set of generated

features that can be used by standard concept learners to create improved classifiers. The algorithm

maintains a set of its best generated features and improves this set iteratively. During each iteration,

the algorithm performs a beam search over its defined feature space and constructs new features by

applying constructor functions to the members of its current feature set. The search is guided by general

heuristic measures that are not confined to a specific feature representation. The algorithm was applied

to a variety of classification problems and was able to generate features that were strongly related to the

underlying target concepts. These features also significantly improved the accuracy achieved by standard

concept learners, for a variety of classification problems.

Keywords: Constructive Induction, Feature Generation, Decision Tree learning

1



1 Introduction

Research and practice have shown that the performance of standard concept learning algorithms, such as c4.5

(Quinlan, 1989), cn2 (Clark & Niblett, 1989) and ibl (Aha, Kibler, & Albert, 1991), degrades when supplied

with data attributes that are not directly and independently relevant to the learned concept (John, Kohavi, &

Pfleger, 1994; Ragavan & Rendell, 1993). Two related problems have been discerned: feature irrelevance and

feature interaction. The problem of feature irrelevance was addressed by designing algorithms that perform

feature selection (Kira & Rendell, 1992; John et al., 1994; Kohavi & Dan, 1995; Sangiovanni-Vincentelli,

1992; Caruana & Freitag, 1994; Salzberg, 1993). The problem of feature interaction was addressed by

constructing new features from the basic feature set. This technique is called feature construction. The

new generated features may lead to the creation of more concise and accurate classifiers. In addition, the

discovery of meaningful features contributes to better comprehensibility of the produced classifier, and better

understanding of the learned concept.

The conclusive majority of feature construction algorithms have been specifically designed to generate

features of a rigidly predefined representation. Among the popular representations are simple Boolean

expressions, M-of-N expressions, hyperplanes, logical rules and bit strings. Most construction algorithms

employ special-purpose construction methods and heuristics that are especially suited to their underlying

representation. Each of these representations was shown to be beneficial in specific classes of problems. For

example, it was shown that M-of-N expressions are particularly useful for medical classification problems

where expert systems make use of “criteria tables” that are essentially M-of-N concepts (Murphy & Pazzani,

1991).

There are, however, several problems with the above scheme:

1. Given a new classification problem, it is not obvious which of the various representations and associated

algorithms should be selected.

2. It is possible that none of the existing schemes is the right one for the problem at hand. In many

real-world classification problems, the target concept is best expressed by features constructed using

domain-specific knowledge. The above algorithms, with their strict constructor set, cannot exploit

such knowledge.

3. The rigidity of the existing algorithms does not allow for easy altering of the representation. For

example, even when we decide to use logical constructors, there is no easy way to alter the existing

constructor set.

4. Some classification problems may require a combination of several representation schemes. This is

difficult to do with existing feature construction algorithms.

In this paper we propose a methodology for feature generation which is general enough to address the

above problems. The framework consists of two main elements:
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• A grammar which describes a language for feature construction specifications. Such specifications are

written by the user, based on its partial knowledge of the domain. The specification is then used to

define the space of constructed features.

• A feature construction algorithm that performs a heuristic search over the space of constructed features

defined by the user-supplied specification.

The formulation and use of existing background knowledge often plays a prominent role in successful

concept learning. Classification algorithms are frequently employed by people who may not know the problem

concept, but do have some knowledge of the problem domain. Using our framework, background knowledge

about potentially significant relations and functions, as well as their properties, can be exploited to construct

structured features.

The framework was designed for a flexible and general form of feature generation, where the representation

language can be supplied as part of the problem definition. Our framework treats feature generation as a

search over the dynamic space of constructed features. We start by defining this space, and continue with

the definition of the general search operators that allow us to traverse it. We then describe our general

ficus algorithm for feature generation. ficus is based on an iterative activation of a decision-tree concept

learner which is used to define the local context of feature generation. For each node in the tree, a search

in the feature space is performed, using the defined search operators to combine highly evaluated features

into new ones. The search is guided by general heuristic functions that are uniformly applied to features,

regardless of their representational form. The search heuristics employ data-driven as well as hypothesis-

driven construction strategies.

Our framework was experimentally evaluated in a variety of problem domains. The generated features

were evaluated by comparing classifiers that were produced using the new features to classifiers that were

produced using only basic features. The generated features significantly improved the comprehensibility of

the produced classifiers by capturing important elements of the underlying target concept. The new features

also significantly improved the accuracy of the resulting classifiers, as well as reduced their complexity.

Section 2 describes related work. Section 3 describes the framework for function-based feature generation.

Section 4 defines a language for formulating specifications of feature representation. Section 5 defines the

search space of constructed features derived from a given fss. Section 6 presents the ficus algorithm.

Section 7 describes the experimental evaluation of the algorithm. Section 8 compares ficus with related

algorithms and concludes.

2 Related work

The problem of automatic feature generation has received significant attention during the last decade. A

variety of algorithms have been developed to improve concept learning by using different methods of feature

construction. These algorithms differ in their form of feature representation, construction techniques and

output format.
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Several special-purpose algorithms were designed for specific problem domains (Hirsh & Japkowicz, 1994;

Sutton & Matheus, 1991). These algorithms construct special-purpose features using domain-specific back-

ground knowledge. Such an example is the bootstrapping algorithm (Hirsh & Japkowicz, 1994), designed

especially for the domain of molecular biology. The algorithm represents features as nucleotides sequences

whose legal syntax structure is determined by existing background knowledge. The algorithm starts with an

initial set of feature sequences, produced by human experts, and uses a special set of operators to alter them

into new sequence features. Such special-purpose algorithms may be effectively tailored for a given domain,

but may be hard to generalize to other domains and problems.

More general construction algorithms use a form of feature representation that can be employed for

different domains and problems using a fixed set of construction operators. Many algorithms, such as

fringe (Pagallo & Haussler, 1990), citre (Matheus & Rendell, 1989), ib3-ci (Aha, 1991), lfc (Ragavan,

Rendell, Shaw, & Tessmer, 1993) and gala (Hu & Kibler, 1996), use a minimal set of logical operators

(such as {¬,∧}) to express existing Boolean relations between data attributes. fringe, lfc and gala (Hu

& Kibler, 1996) operate in the framework of decision tree learning, which is used to define their context of

feature construction. Although these algorithms use an identical representational language and rely on the

same learning technique, their construction approaches differ.

The lfc algorithm performs feature construction throughout the course of building a decision tree clas-

sifier. New features are constructed at each created tree node by performing a branch and bound search in

feature space. The search is performed by iteratively combining the feature having the highest InfoGain

value with an original basic feature that meets a certain filter criterion. The constructed features may be

used in the generated tree classifier, which is returned as the final output of the algorithm.

The gala (Hu & Kibler, 1996) construction algorithm resembles lfc in its Boolean operator set. How-

ever, its produced output is a feature set rather than a classifier.

The fringe (Pagallo & Haussler, 1990) algorithm and its descendants (Yang, Rendell, & Blix, 1991)

perform feature construction by combining sibling leaves of a generated decision tree. fringe operates

iteratively. At each iteration, the generated features are used to build the tree of the next iteration. As

opposed to gala and lfc, where construction is guided by data-driven measures such as InfoGain, fringe

follows a hypothesis-driven construction approach where new features are constructed based on the previously

generated hypothesis decision tree.

Another algorithm that creates Boolean features using decision-tree concept learning is citre, which

was presented in an inspiring paper on constructive induction (Matheus & Rendell, 1989). The citre

construction algorithm (Matheus & Rendell, 1989) was presented as part of a framework which did not

confine itself to a specific feature representation. The citre algorithm itself, however, was designed to

employ an operator set containing only one member – {And}. citre employs an additional meta operator

for feature generalization. This operator, however, is suited only for nominal type attributes, and for concept

problems of an appropriate bias. Like the fringe (Pagallo & Haussler, 1990) algorithm, citre also performs

hypothesis-driven construction. The citre algorithm iteratively builds a decision tree, and performs feature

construction using patterns that appear in the generated tree. Unlike fringe, citre searches for patterns in
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the entire tree, and not just in its leaves. The citre algorithm was tested mainly on the tic-tac-toe problem.

It employed background knowledge of the tic-tac-toe domain and measured its utility. This knowledge,

however, was not added as part of the feature representation; rather it was inserted into the algorithm itself.

Another drawback in the employed background knowledge was that it required a deep understanding of the

tic-tac-toe problem rather than limited partial knowledge.

Aha’s ib3-ci (1991) algorithm, inspired by citre, is another construction algorithm that generates

Boolean features based on the conjunction operator. ib3-ci integrates instance-based learning performed

by the ib3 (Aha et al., 1991) algorithm with incremental feature construction performed by the stagger

(Schlimner, 1987) algorithm. In the course of its activation, ib3-ci generates conjuncts of existing features

which match positive instances and mismatch negative ones. ib3-ci exercised some of the ideas presented

in citre, such as feature generalization and background knowledge, and performed experiments on the

tic-tac-toe endgame domain analogous to those performed by citre.

The minimal operator sets used by the previously presented algorithms are sufficient but not always

adequate and efficient for the induction and representation of complex Boolean functions.

Several algorithms have been developed to use a predefined set of complex Boolean relations. The

id2-of-3 (Murphy & Pazzani, 1991) and x-of-n (Zheng, 1996) algorithms employ a more versatile form

of representation for expressing Boolean relations by constructing M-of-N and X-of-N concept features re-

spectively. An M-of-N feature is specified by a set of N features and a number M ≤ N . The feature is

satisfied for a particular example if at least M features of the set are true. The motivation for the construc-

tion of M-of-N concepts is the belief in their relevance for the acquisition of naturally occurring concepts,

particularly in medical domains, where expert systems make use of “criteria tables” that are essentially

M-of-N concepts (Murphy & Pazzani, 1991). The id2-of-3 and x-of-n algorithms perform a greedy search

in their constructed feature space, guided by operators that generalize or specialize existing features mainly

by addition or removal of a single attribute-value pair. The mrp algorithm (Perez & Rendell, 1995) uses

relational projection features that are able to describe complex Boolean concepts.

In spite of their relevance to a variety of classification problems, Boolean relations cover only a part of

the potential interaction between data attributes. In addition, Boolean relations, at least simple ones like

AND and OR, are often inherently represented in the decision tree structure.

A different form of feature representation, especially suited for continuous attributes, is hyperplanes. A

hyperplane is a linear plane that splits the domain space into two separate subspaces. Hyperplanes can

be axis parallel, as in c4.5 (Quinlan, 1989), or multivariate as in lmdt (Utgoff & Brodley, 1991), sadt

(Heath, Kasif, & Salzberg, 1993) and cart (Breiman, Friedman, Olshen, & Stone, 1984). Such multivariate

hyperplanes are induced by methods of linear regression and weights adjustment. An extension to the

hyperplane representation was performed in the ndt (Ittner & Schlosser, 1996) algorithm, which generates

non-linear splits in the form of curved hypersurfaces.

As in the previously described algorithms, lmdt (Utgoff & Brodley, 1991) performs feature construction

in the course of building a decision-tree classifier. At each created tree node, the algorithm constructs a
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hyperplane feature by training a thermal linear machine. The construction procedure is aimed at generating

concise hyperplanes that are based on relevant data attributes. When lmdt detects that a linear machine is

near its final set of boundaries, it eliminates the variable which least contributes to discriminating between

elements of the two classes in the current set of instances. Afterwards, it continues training the linear

machine. Finally, the most accurate linear machine with the minimum number of variables is chosen.

The sadt (Heath et al., 1993) algorithm uses the same framework as lmdt, but employs a random

construction technique that is based on simulated annealing. The idea underlying this method is that the

locally best split of a tree node might not be the globally optimal one, and thus it may be preferable to

generate a set of alternative trees which may produce good approximate solutions.

A related study was conducted by Sutton & Matheus (1991), who designed an algorithm for learning

high-order polynomial functions. The algorithm works by iteratively performing linear regression, combined

with feature construction. The algorithm constructs a new feature by forming a product of the two existing

features that most effectively predict the square error of its current hypothesis function.

Hyperplane representation may be suitable for problems of an appropriate bias; however, it is a fixed

representation that can not be adapted to include background knowledge of the problem domain. In addition,

it may suffer from poor comprehensibility.

Although not directly related to the work presented in this paper, some of the rule-based systems that

perform feature construction in the context of supervised learning deserve mention. Algorithms such as

struct (Watanabe & Rendell, 1991), aq17-hci (Wenk & Michalski, 1994) and prax (Bala, Michalski,

& Wenk, 1992) employ rules as their feature representation. New rules are created from existing rules by

using an operator set to alter them. Rules can be specialized by adding terms to the rule’s conditions, or

generalized by deleting terms or replacing them with variables. The rule’s representation is usually limited

to clause form. Michalski’s aq17-hci (Wenk & Michalski, 1994) construction algorithm bases its operation

on the aq15 learning system. The algorithm iteratively applies aq15 to induce a rule set which best covers

its positive examples. The induced rule set is analyzed, modified accordingly, and then used for the next

iteration of the algorithm. Feature construction is also performed in genetic algorithms, such as gabil (De

Jong, Spears, & Gordon, 1992) and ga-smart (Kira & Rendell, 1992). Such algorithms employ a bit-string

representation of features and generate new features as a result of genetic operations such as crossover and

mutation. However the bit-string representation does not express feature structure, a drawback which may

lead to the generation of meaningless and illegal features.

Regarding the use of grammars as part of concept learning systems, the work of Todorovski and Dzeroski

(1997) in the context of equation discovery should be mentioned. The discovery system lagramge attempts

to find an equation that describes a given set of measured data. lagramge uses a context-free grammar to

define and restrict its equation hypothesis space. The grammar enables the use of mathematical operators

as well as functions representing domain-specific knowledge. The discovery system was successfully applied

to a number of problems of equation discovery that relate to the behavior of dynamic systems.

To conclude, there are numerous algorithms and representation schemes for feature construction, each
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Figure 1: The generation framework

having its strengths and weaknesses, and each is appropriate for different types of problems. The work

presented in this paper offers a framework that was designed to support a general and flexible representational

form. The specification language offered by our framework is strong enough to allow the definition of many

of the representational forms employed by the previously described algorithms, such as recursive Boolean

features, M-of-N concepts, and simple hyperplanes. In addition, it enables the definition of any other logical,

mathematical, or domain-specific function that can be formulated by the user based on domain background

knowledge.

3 A Framework for function-based feature generation

In this section we present a general framework for describing feature generation algorithms. A supervised

concept learner receives as input a set of basic features and a set of examples for which it produces a classifier.

In our framework, a feature construction algorithm receives, in addition, a set of constructor functions. The

feature generation algorithm produces a set of constructed features which are added to the set of features

supplied to the concept learner. Our generation framework broadens the classic framework of supervised

concept learning by introducing new basic elements called constructor functions. These functions, which can

be mathematical, logical or domain-specific, are used as the basis for feature generation. The framework is

illustrated in Figure 1. In Section 6 we describe the architecture for the ficus algorithm, which is based on

this framework.

The set of constructor functions define the space of constructed features. Before we define this space, we

define a supervised concept learner as follows:

Definition 1 Let E be a finite instance set. Let C be a finite set of categories. A classified example is a

pair 〈e, c〉, where e ∈ E and c ∈ C. A feature is defined as a function over E. A classifier is a function
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s : E → C. Let S be the set of all possible classifiers from E to C. A supervised concept learner is defined

as an algorithm that given a set of classified instances EC, and a set of initial basic features Fb, produces a

classifier s ∈ S.

A set of constructor functions U defines the space of possible constructed features FC , over the set of

basic features Fb, and the set of constants. Note that constants are not features since they are not functions

over E.

Definition 2 Let E be the instance space. Let Fb be a set of basic features. Let U be a set of constructor

functions. Let Cf be the set of constant features in the union of ranges of Fb and U . The space of constructed

features, FC , is then defined as follows:

1. Fb ⊆ FC

2. Let u : d1 × . . . × dk → range(u) be a function of arity k in U . Let f1, . . . fk be a finite sequence

of features in {FC ∪ Cf}, such that for 1 ≤ i ≤ k : range(fi) ⊆ di. Let f be a feature defined as

∀e ∈ E, f(e) = u(f1(e), . . . , fk(e)). Then f ∈ FC .

The above definition allows us to define a feature construction algorithm:

Definition 3 A feature construction algorithm is an algorithm that receives as input a set of basic features

Fb, a set of classified examples EC and a set of constructor functions U , and produces a set of constructed

features Fout ⊆ FC .

The utility of a feature construction algorithm is measured by the utility of its produced feature set, which in

turn is measured by comparing a classifier that was produced using it to a classifier that was produced using

the original basic feature set. The classifiers are compared by criteria such as accuracy, comprehensibility

and complexity.

Definition 4 Let EC, Fb, S and U be defined as above. An evaluation criterion is a real-valued function

v : S → < that is used to evaluate classifiers. Let l be a concept learner. The utility of a feature set F with

respect to Fb, EC, l, and v can be defined as:

Util(F ) = v(l(EC , F ))− v(l(EC , Fb)).

The utility of a construction algorithm ϕ, with respect to Fb, U, EC, l, and v, is measured by the utility of

its produced feature set:

Util(ϕ) = v(l(EC , ϕ(EC, Fb, U)))− v(l(EC , Fb)).

The purpose of this work is to design a general feature construction algorithm that generates high utility

feature sets for a variety of classification problems.
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FSS = 〈 {type*}, {basic-feature*}, {constructor-func*} 〉

constructor-func = 〈 id, type, 〈arg-spec*〉 〉
arg-spec = 〈 arg-type, {constraint*} 〉
arg-type = 〈 type | set of type | sequence of type 〉
constraint = 〈id 〉

basic-feature = 〈 id, type 〉

type = 〈 basic-type 〉 | 〈 id, type | basic-type, [range] 〉
basic-type = 〈continuous〉 | 〈nominal〉 |

〈ordered-nominal〉

range = 〈 nominal-range | continuous-range 〉
nominal-range = 〈 {nominal-member*} 〉
nominal-member = 〈 id, int 〉
continuous-range = 〈 float, float 〉

id = A unique identification name.

Figure 2: The fss grammar defines a language for writing feature space specifications. Sets of elements are denoted

by {. . .}, while sequences are denoted by 〈. . .〉.

4 A specification language for defining feature representation

In the introduction we set a goal of developing a methodology for feature generation, where the representation

is not predefined as part of the generation algorithm, but is rather supplied as input by the user. In this

section we define a language for formulating specifications of representation schemes. Such a specification

defines the space of the constructed features which will be searched by the generation algorithm.

More specifically, we define a language that allows us to specify the following:

1. The set of basic features.

2. The set of constructor functions.

3. The domain and range of each constructor function.

4. A set of constraints over the application of the constructor functions.

The description of these items written in the specification language is called feature space specification

(fss). Figure 2 presents a grammar that defines a language for writing fss. The definition of an fss is based

on a set of types for the domains and ranges of the constructor functions and basic features.
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An fss specifies a hierarchy of types used to define the domains and ranges of basic features and con-

structor functions. The leaves of the hierarchy are atomic types, and the types at the intermediate nodes are

supersets of their children. The types in the hierarchy are either nominal, ordered-nominal, or continuous.

Ordered-nominal types are specified by enumerating the type elements together with associated ordinals.

Continuous types are specified by their boundaries. Basic features are defined by their ID and type. Con-

structor functions are defined by their ID, return type and the specification of their input arguments. An

argument specification denoted as arg-spec is composed of an argument type and a constraint set.

This scheme allows us to specify how to compose new constructed features with a predefined finite set of

arguments. Many functions, however, such as Min, Max,
∑

,
∏

, etc., may be applied to a variable number

of arguments. Due to their associative nature, it is possible to represent such functions as binary functions,

which can effectively operate on an unlimited number of arguments by means of recursive activation. This

solution, however, is not adequate for nonassociative functions, such as Average, which calculates its argu-

ments’ average, > which tests whether its arguments are sorted, = which tests whether its arguments are

equal, or Count which returns the number of its positive arguments. Such nonassociative functions, which

may operate on an unlimited number of arguments, could only be represented by an infinite series of finite

arity functions. To overcome this difficulty, we have defined our constructor functions to be able to also

receive sets and sequences of features, as individual arguments. In this way a function such as Average could

be defined as receiving a single argument of type set, rather than being defined by an infinite series of finite

arity functions. Sequences are used for constructors that are order-dependent, such as >. An argument type,

denoted as arg-type, is therefore defined either as a type, a set of type, or a sequence of type.

An argument constraint set is a set of Boolean constraint functions that receive an argument and test

whether it complies to a given constraint. The ficus system, described in Section 6, supplies a built-in set

of constraint functions that enable the user to forbid or enforce the use of constants, to restrict the size of

sets and sequences, and to forbid duplications in sequences. In addition to the built-in constraint functions,

the user may supply constraint functions which represent domain background knowledge.

Figure 3 shows an example fss for feature generation in the domain of tic-tac-toe end games. The type

set of the fss consists of three types: Boolean, Float and Slot. The Slot type represents the value of a board

slot and is inherited from the ordered-nominal type. Its range consists of the ordered nominal values ”O”,

”B” (for blank) and ”X”. The basic feature set of the fss consists of 9 features of type “Slot”, representing

the 9 board positions {S11, . . . ,S33}. To represent a larger-problem game board such as 4x4, it is only

required to change the basic feature set of the current fss to the 16 features {s11, . . . ,S44}.

The fss defines five constructor functions, each consisting of a return type and arguments specification.

The definition makes use of three argument constraint functions: NoConst, forbidding constant features,

Const, enforcing constant features, and Unique, forbidding identical elements.
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∗∗ Types ∗∗

Bool := nominal, {{”false”,0}, {”true”,1}}
Slot := ordered-nominal, {{”O”,-1}, {”B”,0}, {”X”,1}}
Float := continuous, {-MAXFLOAT,+MAXFLOAT}

∗∗ Basic-Features ∗∗

S11:= Slot

S12:= Slot

:

:

S33 := Slot

∗∗ Constructor-Functions ∗∗

Max := Slot, 〈set of Slot,{NoConst}〉
Avg := Float, 〈set of Slot,{NoConst,Unique}〉
Is := Bool, 〈Slot,{NoConst}〉, 〈Slot,{Const}〉
> := Bool, 〈seq of Slot,{NoConst,Unique}〉
And := Bool, 〈Bool,{NoConst}〉, 〈Bool,{NoConst}〉
Or := Bool, 〈Bool,{NoConst}〉, 〈Bool,{NoConst}〉

Figure 3: An fss for the tic-tac-toe domain

5 Feature generation as search

In general, feature generation can be viewed as a search conducted in a defined feature space. In this section

we define the search space of constructed features derived from a given fss.

5.1 The search space

In order to formulate the definition of the searched feature space, as well as the operators that are used to

traverse it, we first define when an argument placement is legal. This definition is based on type compatibility.

Definition 5 Let T1 and T2 be types of constructor function arguments. T1 is compatible with T2 (denoted

by CmpType(T1, T2)) if and only if

CmpType(T1, T2) = ((T1 = t1, T2 = t2 | t1, t2 ∈ types(FSS)) ∧
(t1 identical to or inherited from t2 )) ∨

((T1 = set of t1, T2 = set of t2) ∧
CmpType(t1, t2)) ∨
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((T1 = sequence of t1, T2 = sequence of t2) ∧
CmpType(t1, t2)).

We can now define the legality of argument placements.

Definition 6 Let u be a constructor function and i an argument index. Let A be a constructor function

argument (a feature, a set of features or a sequence of features). The placement of A as the i’th argument

of u is defined to be legal (denoted by LegalArg(u, i, A)) if and only if

LegalArg(u, i, A) = ( CmpType(type(A), type(argsi(u))) ∧
∀fc ∈ constraints(argsi(u)), (fc(A)) ).

Given an input fss, the space of legal constructed features is defined as the set of all legal compositions

that combine basic features into constructed features.

Definition 7 Let E be the instance space. Let T be the type set of the fss. Let Cf be the set of all constant

features in the union of ranges of types in T . Let Fb be the basic feature set of the fss. Let U be the

constructor function set of the fss. The space of legal constructed features, F , is defined as follows:

1. Fb ⊆ F .

2. Let u be a constructor function of arity k in U . Let A1 . . .Ak be a set in which each element is either

a feature, a finite set of features or a finite sequence of features, in the range {F ∪ Cf}, such that

∀i, 1 ≤ i ≤ k : LegalArg(u, i, Ai). Let f be a feature defined as ∀e ∈ E, f(e) = u(A1(e), . . . , Ak(e)).

Then f ∈ F .

The structure of features in F is a tree structure whose intermediate nodes contain constructor functions

and whose leaves contain basic features and constants. A set is represented by a node, labeled {}, with a

subtree for each of its members. Sequences are similarly represented by a node labeled 〈〉.

Figure 4 illustrates a tree representation of the constructed feature > (〈Max({Slot11, Slot12}), Avg({Slot23, Slot33})〉),
defined over the fss describing the tic-tac-toe domain shown in Figure 3.

5.2 The search operators

In order to traverse a space F , derived from a given fss, we have defined four types of general search

operators. These operators receive either one or two existing features, from which they produce a set of

newly constructed features. Although the presented operators do not express every possible method for

combining existing features, it is easy to show that, given an fss, they are sufficient for generating its

defined legal feature space, F .

We briefly outline the four types of operators, and then define each of them more precisely. We also give

an example for each operator, using the fss describing the tic-tac-toe domain, shown in Figure 3.
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>

<  >

Max Avg

{  }

Slot11 slot12

{  }

Slot23 slot33

Figure 4: A tree representation of the constructed feature > (〈Max({Slot11, Slot12}), Avg({Slot23, Slot33})〉)

1. Compose receives one or two features from which it composes new features using all the suitable

constructor functions of the fss.

2. Insert receives two features and creates new ones by inserting one feature into the other.

3. Replace receives two features and creates new features by replacing components of one feature with

the other feature itself.

4. Interval receives a feature and creates new features that test whether it lies within a specified range.

Note that we have introduced a seemingly strong assumption – that the constructor functions are either

binary or unary. This is not as restrictive as it sounds, since each of the arguments can be a set or a sequence.

It is also possible to extend the definition to k-ary constructor functions. Such an extension, however, will

increase the branching factor of the search graph.

We now give the precise definitions of the four operators.

5.2.1 The Compose operator

Let f1, f2 ∈ F then

Compose(f1, f2) = {u(A1, A2) | (u ∈ U) ∧ (|args(u)| = 2) ∧
(A1 ∈ {f1, {f1}, 〈f1〉}) ∧
(A2 ∈ {f2, {f2}, 〈f2〉}) ∧
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LegalArg(u, 1, A1) ∧ LegalArg(u, 2, A2)}1 ∪
{u(A1) | (u ∈ U) ∧ (|args(u)| = 1) ∧

(A1 ∈ {{f1, f2}, 〈f1, f2〉, 〈f2, f1〉}) ∧
LegalArg(u, 1, A1) }.

For example, given the features f1 = Slot11 and f2 = Slot12, Compose will return the following 4

constructed features:

Compose(f1, f2) = {Max ({Slot11, Slot12}) , Avg ({Slot11, Slot12}) , > (〈Slot11, Slot12〉) , > (〈Slot12, Slot11〉)} .

The following example uses constructed features as arguments. Given the Boolean features f1 = Is(Slot11 , ”X”)

and f2 = Is(Slot12, ”X”), Compose will return two new constructed features that use constructors with

Boolean arguments:

Compose(f1, f2) = {And (Is (Slot11, ”X”) , Is(Slot12, ”X”)) ,

Or (Is (Slot11, ”X”), Is (Slot12, ”X”))}

The unary version of Compose is defined as follows:

Compose(f1) = {u(A1) | (u ∈ U) ∧ (|args(u)| = 1) ∧
(A1 ∈ {f1, {f1}, 〈f1〉}) ∧
LegalArg(u, 1, A1) }.

5.2.2 The Insert operator

Let f1, f2 ∈ F . Let f2 be denoted as u(A1, . . .Ak), where u is an fss constructor function, and A1 . . .Ak,

its input arguments. Then

Insert(f1, f2) = {u(A′1 . . .A′k) | (1 ≤ i ≤ k) ∧
(∀j 6= iA′j = Aj) ∧
(A′i ∈ Ins(f1, Ai)) ∧ LegalArg(u, i, A′i) },

where

Ins(f, A) =



{} A is of simple type

{{f1 . . . fn, f}} A = {f1, . . . , fn}
{〈f ′1 . . . f ′n+1〉 | A = 〈f1, . . . , fn〉
(1 ≤ i ≤ n + 1) ∧ (f ′i = f) ∧
(∀j < i, f ′j = fj) ∧ (∀j > i, f ′j = fj−1) }

.
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For example, given the features f1 = Avg({Slot11, Slot12} and f2 = Slot13, Insert will return only one

new constructed feature, since there is only one way of adding a member to a set.

Insert(f1 , f2) = {Avg ({Slot11, Slot12, slot13})} .

Should it be an operator that receives a sequence, Insert would have returned 3 constructed features.

5.2.3 The Replace operator

Let f1, f2 ∈ F . Let f2 be denoted as u(A1, . . .Ak), where u is an fss constructor function, and A1 . . .Ak,

its input arguments. Then

Replace(f1, f2) = {u(A′1 . . .A′k) | (1 ≤ i ≤ k) ∧
(∀j 6= iA′j = Aj) ∧
(A′i ∈ Rep(f1, Ai)) ∧ LegalArg(u, i, A′i) },

where

Rep(f, A) =



{f} A is of simple type

{{f ′1 . . . f ′i . . . f ′n} | A = {f1, . . . , fn}
(1 ≤ i ≤ n + 1) ∧
(f ′i = f) ∧ (∀j 6= i, f ′j = fj) }
{〈f ′1 . . . f ′i . . . f ′n〉 | A = 〈f1, . . . , fn〉
(1 ≤ i ≤ n + 1) ∧
(f ′i = f) ∧ (∀j 6= i, f ′j = fj)}.

For example, given the features f1 = And(Is(Slot11, ”X”), Is(Slot12, ”X”)) and f2 = Is(Slot13 , ”O”),

Replace will return the following two constructed features:

Replace(f1, f2) = {And(Is(Slot13, ”O”), Is(Slot12, ”X”)),

And(Is(Slot11, ”X”), Is(Slot13, ”O”))}.

In the following example, members of the single set argument are replaced. Given the features f1 =

Avg ({Slot11, Slot12, slot33}) and f2 = Slot13, Replace will return the following 3 constructed features:

Replace(f1, f2) = {Avg ({Slot13, Slot12, slot33}) ,

Avg ({Slot11, Slot13, slot33}) ,

Avg ({Slot11, Slot12, slot13})}.

5.2.4 The Interval operator

Let f1 ∈ F . We distinguish between two cases:
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Figure 5: General scheme of ficus

• f1 is nominal or ordered-nominal. Interval(f1) = {Is(f1, {Ci}) | Ci ∈ Range(f1)} where the builtin

constructor Is is defined as Is(f1, Ci) = TRUE ⇔ f1 = Ci.

• f1 is continuous. Let {C1, C2 . . .Cn} be a discretization of Range(f1). (We use the dynamic discretiza-

tion algorithm by Fayyad and Irani (1993).) Then Interval(f1) = {InRange(f1, {Ci, Ci+1}) | 1 ≤ i <

n}, where the builtin constructor function InRange is defined as InRange(f1, {Ci, Ci+1}) = TRUE ⇔
Ci ≤ f1 ≤ Ci+1.

For example, given the nominal feature f1 = Slot11, Interval will return the following 3 constructed

features:

Interval(f1) = {Is(Slot11, ”X”), Is(Slot11, ”O”), Is(Slot11, ”B”)}.

Should f1 have been a continuous feature, Interval would have returned InRange constructed features

according to the second definition.
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6 The FICUS algorithm

In this section we present a feature construction algorithm, named ficus
2. ficus receives as input an fss

defined by the grammar presented in Figure 2 and a set of classified instances. ficus searches the feature

space, F , defined by its input fss, using the presented search operators. It then returns a utile set of

generated features.

6.1 Architecture

The general framework of ficus is described in Figure 5. ficus receives as input a set of basic features, a

set of classified objects, and an fss which defines a set of constructor functions. The output of ficus is a

set of constructed features that can be used by any supervised concept learner to produce a corresponding

classifier. The algorithm consists of three major modules. The feature generator generates new features.

The feature selector selects a utile subset of generated features. The concept learner defines the local context

for feature generation. Our current framework employs a decision tree learner (DT), which uses information

gain to split nodes and does not prune, for this purpose. Note that the concept learner is used as an internal

module of the ficus algorithm and is independent of the external concept learners that will eventually use

the constructed feature set.

The algorithm maintains a set of constructed features initialized to the basic feature set. The algorithm

iterates as long as computation resources are available. During each iteration, it builds a classification tree

using its input examples and its current set of constructed features. In the course of building the tree, the

feature generator is activated for each new node using its local instance set. Based on the current constructed

feature set, and on the global fss definition, the generator generates new features that can successfully

discriminate between the members of the two classes in its input instance set. The new generated features

are then used as additional candidates for splitting the node according to the splitting criterion of the tree

concept learner. After the tree is built, the feature selection procedure selects a subset of the newly generated

features that appear in the tree. The selected feature subset, together with the basic features, constitutes

the new constructed feature set that is used in the next iteration. The algorithm terminates after a specified

number of iterations, or as a result of an interactive user request, and returns its current feature set as

output. Therefore, ficus can be regarded as an anytime algorithm(Boddy, 1991; Boddy & Dean, 1994) that

is able to return its updated result at any point in time.

The generation strategy of ficus is based on an evolutionary approach by which new features are contin-

uously composed from highly-evaluated existing ones. This strategy is implemented at two levels: first, at

the local level of each tree node by the activated feature generator, and second, at a global level, by gathering

different features of the tree into one integrated set, (the constructed feature set), which is used to generate

new features in the next iteration.

In the following subsections we present the components of the ficus algorithm. The entire algorithm is

2Feature Incremental ConstrUction System
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ficus (basic featureset, instanceset, fss, Niterations)
constructed featureset ← basic featureset
for ( i = 0 . . . Niterations )

T ← Generate Tree (featureset, instanceset, fss)
constructed featureset ← Select Features (T, basic featureset,Nselected)

return(constructed featureset)

Generate Tree (Fset, Eset, fss)
if ( All members of Eset are of same class )

return a new created tree leaf.
else if (|Eset| < MinNodeSize)

fbest = f ∈ Fset | f has max split measure
else

generatedset ← Generator(Fset, Eset, fss, InfoGain, Nphase, Nnew)
fbest = f ∈ (generatedset ∪ Fset) | f has max split measure

Create a new decision-tree node corresponding to fbest
For each partition subset Esubset received from splitting Eset using fbest:

recursively call Generate Tree(Fset, Esubset, fss)
return (decision-subtree)

Select Features (T, basic featureset,Nselected)
selectedset← {}
evaluatedset ← The features composing the decision tree T.
Evaluate the direct utility of each member of evaluatedset in T.
selectedset← The Nselected highest evaluated members of evaluatedset
selectedset← selectedset ∪ basic featureset
return(selectedset)

Figure 6: ficus - pseudo-code (1)

listed in pseudo-code in Figures 6 and 7.

6.2 The feature generator

The feature generator is activated during the construction of each node of the decision-tree concept learner.

The generator receives as input the currently employed constructed feature set, the tree node instances, and

the fss. The generator produces a set of features that are then used by the concept learner as candidates

for splitting its current tree node. The generator searches the constructed feature space, F , looking for

features which best discriminate between members of the two classes in its input set of data instances. The

architecture of the feature generator is illustrated in Figure 8.

6.2.1 The search procedure

In general, feature generation can be viewed as a search that is conducted in a defined feature space. For

ficus, this space is defined by its supplied fss. Since constructor functions may be activated in a hierarchical

and recursive fashion, the defined feature space F can be very large or even infinite, making exhaustive search

impractical. To efficiently search F , a suitable search strategy is required, as well as an appropriate heuristic

to guide it. The feature generator of ficus employs a search strategy that is a variant of beam search.
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Generator (Fset, Eset, fss, Targetfunc , Nphase, Nnew)
targetset ← Fset
blockset ← Fset ∪ {The building block features of Fset members}
feat rec← Fset; pair rec← {}
For ( phase = 1 . . . Nphase )

Calculate the evaluation criterion values of Targetset, Blockset
members, and trim the sets accordingly.

newset← {}
While ( |newset| ≤ Nnew )

pair ← highest evaluated pair of building block features, which
is not already in pair rec.

pair rec← pair rec ∪ {pair}.
newset← newset ∪ Filter(Expand(fpair, Eset, fss))
Merge newset into targetset, blocksset.

return(targetset)

Expand ( 〈f1, f2〉, Eset, fss)
constructedset← {}
if ( f1 = f2 ) constructedset← Compose(f1) ∪ Interval(f1)
else constructedset← Compose(f1, f2) ∪ Insert(f1, f2) ∪

Insert(f2, f1) ∪ Replace(f1, f2) ∪ Replace(f2, f1)
return (constructedset)

Filter (Fset)
filteredset ← {}
For each feature f ∈ Fset:

If (f 6∈ feat rec)
If (Targetfunc(f)/max(Target(parents of f)) > threshold)

filteredset← filteredset ∪ {f}
return (filteredset)

Figure 7: ficus - pseudo-code (2)

The generator maintains two fixed-size sets of features: A set of building blocks for the construction of

new features, and a target set of generated features which is the eventual output of the search procedure.

The target set is initialized to include the members of the input constructed feature set (the output of the

previous iteration of the ficus algorithm). The set of building features is initialized to the union of

• the input constructed feature set;

• the features from which the input constructed features are composed. These features were added to

introduce a form of one-level backtracking.

The search algorithm uses two different evaluation criteria to order the two feature sets and trim them to

their fixed sizes.

The search operates iteratively, where at each iteration new features are generated and added to the two

maintained sets. The new features are generated by iteratively applying the search operators, defined in

Section 5.2, to selected pairs of building blocks. The same feature may be selected for both pair elements,

allowing for the application of the unary operators. The selection of building blocks from within the building

block set is performed according to their associated evaluation criterion value.
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Given a selected pair of features, f1 and f2, the algorithm uses the search operators to get a new set of

constructed features, called Expand(f1, f2):

Expand(f1, f2) =


Compose(f1, f2) ∪ Insert(f1, f2) ∪ Insert(f2, f1) f1 6= f2

∪ Replace(f1, f2) ∪Replace(f2, f1)

Compose(f1) ∪ Interval(f1) f1 = f2

At each search iteration, the search procedure iteratively expands selected building block pairs, until a fixed

number of new features has been generated, or until all the existing pairs have been expanded. The new

features are merged into the maintained target and building block sets, and a new iteration begins. The

search algorithm maintains a record of previously generated features, to avoid their regeneration, as well

as a record of previously expanded building block pairs, to avoid their recurrent expansion. In addition, a

filter is used to remove features whose target evaluation criterion is not sufficiently higher than that of their

parents. The pseudo code of the generator is presented in Figure 7.

6.2.2 Feature evaluation criteria

The generator employs two different evaluation criteria: one for the target set and another for the building

block set (as defined in the previous section). The evaluation criterion used for ordering the target feature

set, denoted by hEf , is supplied by the concept learner and is dependent on its current local instance set. In

the current version of ficus, which uses a decision-tree concept learner, hEf is the splitting criterion (e.g.

information gain) used to split tree nodes.
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The evaluation function applied to the set of building blocks, denoted by hb, tries to predict their potential

constructive utility, i.e., their utility as building blocks of new features. We propose two alternative functions

for evaluating constructive utility: a data driven utility function, hdb , and a hypothesis driven utility function,

hhb .

The data driven function considers three criteria for evaluating a feature: its target evaluation function,

hEf , its complexity, Comp, computed by the size of its representative tree structure, and its relative improve-

ment compared to its parent building blocks. The function directs the search process to prefer features with

low complexity, following the Occam’s razor principle. This function is defined as

hdb (f) = α

[
hEf (f)

Comp(f)

]
norm

+ (1− α)


hEf (f)

Comp(f)

max
p∈parents(f)

(
hE
f

(p)

Comp(p)
)


norm

,

where the left term represents the target value of f normalized by its complexity. The right term measures

the improvement of this normalized value of f with respect to that of its parents. [X]norm denotes a

normalization of X to [0, 1]. α controls the weights given to the two components.

A possible problem with the data-driven approach is its disregard of feature interaction. It is quite

possible that a feature poorly estimated by hdb will produce a highly valued feature due to its interaction

with another feature. We therefore propose an alternative hypothesis-driven evaluation criterion which can

detect existing feature interactions.

The hypothesis-driven function evaluates the constructive utility of features from the building block set,

by using them to build a decision-tree hypothesis, and then evaluating each feature by its contribution to it.

A feature contributes to a tree by serving as a splitting feature of a node or by participating in an argument

of another splitting feature. let Eni be the set of examples at node ni. Let fni be the splitting feature of

node ni. The node-utility of feature f is defined as

u(f, ni) =



|Eni |
|E| InfoGain(fni , Eni) fni = f

|Eni |
|E|

InfoGain(fni ,Eni)∑k

j=1
|Aj|

γ fni = f ′(A1 . . . , Ak) ∧

f ∈ Aj | 1 ≤ j ≤ k

0 otherwise.

When f serves as a splitting feature, it is credited with its weighted information gain in that node. When it

serves as part of an argument of a splitting feature, it is credited with the weighted Info-gain of the splitting

feature, divided by the total number of features in its arguments and discounted by γ. γ expresses the fact

that the utility of a constructed feature should not be credited entirely to its building blocks. The utility of

f with respect to the whole tree is measured by the sum of its node utilities:

hhb (f, T ) =
∑
ni∈T

u(f, ni).

One drawback of hypothesis-driven evaluation is that it may lead to a narrow search in the feature

space. Out of an entire feature set, only a small number of features are used extensively in the generated
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classifier. These features tend to overshadow other relevant features that were not included or rarely used

in the classifier. This problem intensifies as the number of features increases, especially when the classifier

is induced by a greedy algorithm. In our experiments, we found that a hybrid strategy which employs an

hypothesis-driven evaluation in the first search phase, (in which the building block feature set is relatively

small) and a data-driven evaluation in the following phases, combines the advantages of both approaches.

6.3 Feature selection

ficus maintains a fixed-size feature set, which is the basis for its decision-tree learning and feature generation.

The feature set consists of a fixed part, which contains the basic feature set, and of constructed features,

which are updated at each iteration of the algorithm. At each iteration, ficus induces a decision tree

containing generated features, and then applies feature selection to choose a subset of them to replace the

constructed features of its current feature set. The updated feature set is then used in the next iteration of

the algorithm.

To perform feature selection, it is possible to use algorithms such as those proposed by Kohavi (1994,

1995), Salzberg (1993) and Rich (1994), which conduct a search in the space of feature subsets. However, to

reduce the computational effort of the algorithm, we perform a selection that is based on an analysis of the

generated decision tree. The criterion, by which generated features are selected, is their direct contribution

to the generated decision tree ∑
ni∈T,fni=f

|Eni|
|E| InfoGain(fni , Eni).

All the basic features are included in the feature set regardless of their utility in the tree. This guarantees

the completeness of the searched feature space.

6.4 The complexity of FICUS

During each iteration of the ficus algorithm, a classification tree is built, and the feature generator is called

for each of its nodes. Therefore, the complexity of the algorithm is the number of iterations times the

complexity of building a tree. This complexity is dominated by the number of nodes times the complexity of

feature generation per node. The feature generator performs several phases. During each phase it generates

and evaluates new features, whose number is limited by a given parameter. The cost of evaluation depends

on the evaluation methods used. The following analysis assumes a data-driven evaluation of building blocks.

Let Nphase be the fixed number of generation phases (the internal loop of the generator). Let Nnew be

the fixed number of features generated and evaluated at each search phase. The evaluation of each feature

involves the calculation of its Info-Gain value, which, in the worst case of a continuous feature, is equal to

the complexity of sorting the instance set of the generator. Let n be a node of a decision tree being built

and let En be its local instance set. The complexity of the feature generator when activated for node n is

OG(En) = |En| log2 |En|NnewNphase, (1)
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where |En| log2 |En| is a bound on the complexity of calculating the Info-Gain value of a single feature, and

Nnew ·Nphase is the total number of evaluated features.

The complexity of one iteration of the algorithm is measured by summing the value of Equation 1 over

all the nodes of the produced tree. Let E be the set of examples given to the ficus algorithm. The total

size of the local instance sets of nodes at each level of the decision tree is bounded by E. Therefore, the

complexity of generating features in each complete level i of the decision tree T can be bounded as follows:

Oi
T (E) =

∑
n∈T,level(n)=i

OG(En)

= NphaseNnew

∑
n∈T,level(n)=i

|En| log2 |En|

≤ NphaseNnew|E| log2 |E|. (2)

The above bound should be multiplied by the tree depth, which is bounded by |E|, and by the number of

iterations of the main loop. Therefore, the complexity of ficus is bounded by

NiterationsNphaseNnew|E|2 log2 |E|. (3)

The bound |E| on the tree depth is for an extreme case. In practice we have received much shallower trees.

When using the hybrid evaluation strategy, we must add to the cost of generation the cost of producing

the hypothesis tree. This cost is

OG(En) ≤ |En| log2 |En|NnewNphase + |En|2 log2 |En||F |,

where F is the set of building block features. The complexity of the ficus algorithm is then bounded by

NiterationsNphaseNnew|E|2 log2 |E|+ Niterations|F ||E|3 log2 |E|, (4)

where the second additional item represents the operational complexity of producing the hypothesis deci-

sion tree in the first generation phase. In practice we found that using the hybrid strategy increases the

computation time by at most factor of 2.

7 Experiments

A variety of experiments were conducted to test the performance and behavior of the ficus algorithm. We

start with a description of the methodology used for the experimentation and continue with the description

of the experiment results.

7.1 Experimental methodology

The performance of ficus was evaluated by the utility of its returned set of generated features. The utility

was measured by comparing the performance of classifiers produced by a standard concept learner that used
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the set of generated features to the performance of classifiers produced by the same learner, using only the

original basic features. In our basic experiments we chose the basic dt concept learner. We decided to avoid

pruning in order to better isolate the effects of feature generation and reduce the effects of additional factors

that do not have a direct bearing on this research. In addition, we tested the features with perceptron, back

propagation, nearest neighbor, and k-nearest neighbor algorithms.

Each experiment was conducted by averaging the results of 10-fold cross-validation, except for 3 domains

with a small number of examples where we performed 2× 5-fold cross-validation.

7.1.1 Dependent variables

The following dependent variables measure various aspects of the feature generation process.

• General feature set quality. The quality of the features generated by ficus is measured by the quality

of the resulting classifiers:

– Classification accuracy. The portion of the test set that was correctly classified. For each of the

accuracy results we report confidence intervals with p = 0.95.

– Accuracy difference. To test the significance of adding the features generated by ficus, we report

the difference between the accuracy with and without the constructed features and the confidence

intervals. This is equivalent to the paired t test.

• Feature set quality for decision trees. When used for dt, the following features of the decision tree are

used as additional quality measurements:

– Tree size. One of the motivations for using feature generation is to produce more succinct hy-

potheses. We measure the complexity of the produced tree by the number of its nodes.

– Weighted tree size. Since the produced tree classifiers contain generated features with higher

complexity than the basic features, we also compute the weighted tree size, which takes into

account the feature size. In Section 5.1 we define the tree representation of a constructed feature.

Each internal node stands for a constructor symbol, sequence symbol or set symbol. Each leaf

stands for a basic feature or a constant. We define the complexity of a constructed feature to be

the total number of nodes (internal nodes and leaves) of its representative tree. The weighted size

of a decision tree is the sum of the feature complexity of its nodes.

– Comprehensibility. Another motivation for using generated features is to make the produced

classifier more comprehensible to a human by introducing features that are related to the tar-

get concept. It is difficult to devise a computational method for measuring comprehensibility.

Nonetheless we believe that it is important to evaluate this aspect of the produced classifiers.

Therefore, we show for each domain its prominent features – features that appear in most pro-

duced classifiers. Note that this is an informal and intuitive method for testing another aspect of

the algorithm.
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• Feature generation resources. ficus is a quite complex algorithm that performs search over the space

of constructed features. It is therefore interesting to measure the resources consumed during the

generation process.

– Evaluated features. The number of times the feature evaluation function is called during genera-

tion.

– Estimated complexity. The estimated complexity of ficus based on Equation 4.

– CPU seconds. For completeness we also report the CPU time of the whole generation process.

Note that CPU time is not a good measurement due to a large variance in hardware and software

quality. The CPU times reported here were achieved with an old generation PC. A modern

machine should have yielded results that are faster by a factor of 5-10.

7.1.2 Independent variables

The performance of ficus is influenced by the following independent variables:

• Niterations, the number of of iterations performed by the main loop of the algorithm;

• Nphase, the number of search phases performed by the feature generator;

• Nnew, the number of new features evaluated at each search phase of the generator;

• Evaluation strategy, the evaluation strategy used by the feature generator to evaluate its building

blocks. We tested the data-driven strategy and the hybrid strategy.

ficus was tested on various artificial and real-world classification problems. The majority of the problem

domains were taken from the Irvine Repository. The Attacking Queens, Soccer Offside, and Isosceles Triangle

problems are novel problems, the first two of which were designed to test complex target concepts. Below

we describe each of the domains used:

• Promoter. This problem, taken from the Irvine Repository, deals with the classification of DNA

sequences as promoters or non promoters. Each example is represented by 57 nominal attributes,

which represent the values of its sequential nucleotides, in the range {A,G,T,C}.

• Wine. This problem, taken from the Irvine Repository, deals with the classification of wines into 3

class types. Each example is represented by 13 continuous attributes, which represent measures of

chemical elements in the wine.

• Tic-Tac-Toe. The problem, taken from the Irvine Repository, deals with the classification of legal

tic-tac-toe end games, as wins or non-wins for the x player. Each example is represented by 9 nominal

attributes, which represent the slot values in the range {x,o,b}.
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Figure 9: The left picture describes the Attacking Queens problem while the right-hand side represents the

Soccer Offside problem.

• Monks problems. This set of problems, taken from the Irvine Repository, contains the three known

monk problems. Each example is represented by 5 nominal attributes in the range {1,2,3,4}. The

problems are

– (a1 = a2)or(a5 = 1);

– exactly two of (a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1);

– ((a5 = 3)and(a4 = 1))or((a5 6= 4)and(a2 6= 3)), with an added 5% class noise.

• Attacking Queens. The target concept of this problem, illustrated in Figure 9, is the existence of a

mutual threat between any pair of queens placed on a chess board. In the Queen2 domain, examples

are pairs of queens specified by their row and column positions. Similarly, Queen3 deals with triplets

of queens.

• Soccer Offside. This problem, illustrated in Figure 9, deals with the classification of soccer field

situations as offside or not offside. (An offside situation occurs when a player of one team is placed

in front of all the second team’s players, at the moment the ball is being passed ). Each player is

represented by two attributes, which describe its X and Y coordinates on the field. We experimented

with problems of two 5-player and 11-player teams, expressed by 20 and 44 attributes correspondingly.

• Isosceles Triangle. This problem, deals with the classification of triangles as isosceles or nonisosceles.

Each example triangle is represented by its 3 continuous arc lengths. Although the target concept is

quite simple, concept learning algorithms like c4.5 are unable to produce an effective decision tree for

its description.
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• Balance. This problem, taken from the Irvine Repository, was generated to model psychological ex-

perimental results. Each example is classified as having a balance scale tipped to the right, tipped to

the left, or balanced. Each example is represented by 4 continuous attributes.

• Iris. This problem, taken from the Irvine Repository, deals with the classification of iris plants into 3

classes. Each example is represented by 4 continuous attributes.

• Heart. This problem, taken from the Irvine Repository, deals with the classification of patients diag-

nosed to have suffered a heart attack or not. Each example is represented by 14 attributes, mostly

continuous, and few nominal attributes.

For each problem, ficus was supplied with constructor functions relevant to the target concept, as well

as irrelevant functions to test the resilience of the algorithm. Table 1 contains the space of all constructor

functions used for the experiments described here 3. It is easy to add additional mathematical functions such

as √ and aX , logic functions such as XOR and domain-specific functions. These constructor functions are

able to express some of the representations that have been discussed, such as recursive Boolean expressions,

M-of-N expressions (using the Count function), and simple hyperplanes. Table 2 presents the problem

domains together with their associated constructor functions.

Standard Mathematical functions +,−,÷, ∗,=, AbsDiff , Average, Max, Min.
Standard Logic functions And, Or
Special Logic functions Count denoted as Count(b1, . . . bn) returns the num-

ber its Boolean arguments which hold a TRUE value.
Interval functions Is(f, c) = TRUE ⇔ f = c

InRange(f, c1, c2) = TRUE ⇔ f ∈ [c1, c2].

Table 1: The set of all the constructor functions used for the experiments

Domain Constructors Domain Constructors
Promoter {Is, Count} Wine {÷, ∗,−,+}
Tic-Tac-Toe {Is, Count} Chess Queens {÷, ∗,−,+, AbsDiff}
Soccer Offside {÷, ∗,−,+,Max, Min} Balance {÷, ∗,−,+, AbsDiff}
Heart Disease {InRange, Count,And} Iris {÷, ∗, Avarage}
Monk Problems {Is, Count, =, Or} Isosceles Triangle {÷, ∗, Count, +,−,=}

Table 2: Problems and their supplied constructor functions

7.2 The performance of ficus

Our basic experiment tests the performance of ficus with dt for all the domains. Table 3 compares the

performance of dt with the basic features to its performance with the features constructed by ficus.

The table presents the results achieved by employing a default configuration where Niterations = 2,

Nphase = 2, Nnew = 100 and Evaluation Strategy = Hybrid. It is clear that ficus significantly improved the

3The AbsDiff function measures the absolute difference between two numeric values.
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dt dt+ficus ficus Resources

Weighted ficus Time Evaluated Est.

Domain Accuracy Size Accuracy Size Size Advantage (Seconds) Features Comp.

Promoter 73.55 (±5.88) 31.6 83.48 (±4.61) 9.0 14.7 9.94 (±6.69) 9.0 4301 397726

Wine 92.67 (±3.81) 13.9 95.25 (±2.65) 7.4 13.0 2.57 (±4.03) 6.9 1576 964325

TicTacToe 85.38 (±2.18) 247.0 96.45 (±1.68) 64.5 113.7 11.0 (±2.24) 90.9 21625 12562211

Queens2 66.94 (±4.03) 337.1 100.00 (±0.00) 5.0 15.0 33.06 (±4.03) 7.8 1625 2246981

Queens3 66.37 (±2.58) 262.1 98.06 (±1.64) 23.2 40.1 31.69 (±2.65) 40.1 14074 7889049

Offside5 78.71 (±3.47) 86.7 98.55 (±0.85) 11.6 42.1 19.84 (±3.77) 39.2 9755 7747704

Offside11 66.94 (±2.65) 99.5 81.94 (±3.04) 62.2 123.5 15.00 (±4.03) 108.8 36931 22626038

Isosceles 62.10 (±2.75) 205.1 100.00 (±0.00) 3.0 11.0 37.90 (±2.75) 5.5 395 950957

Balance 78.08 (±2.26) 222.8 99.84 (±0.36) 5.0 15.0 21.76 (±2.17) 18.3 5485 4231528

Heart 75.76 (±2.89) 76.8 77.27 (±1.55) 67.2 75.7 1.51 (±3.29) 10.7 6770 1056581

Iris 94.67 (±2.80) 14.6 93.67 (±4.27) 8.4 12.9 -1.00 (±3.90) 3.8 496 180782

Monk1 99.27 (±0.63) 116.1 100.00 (±0.00) 3.0 6.0 0.73 (±0.63) 1.6 276 99538

Monks2 82.74 (±2.42) 283.8 100.00 (±0.00) 27.4 58.8 17.26 (±2.42) 44.0 13418 5880228

Monks3 100.00 (±0.00) 143.6 100.00 (±0.00) 5.0 7.0 0.00 (±0.00) 3.8 353 406748

Table 3: The results obtained for the basic experiment set performed with ficus. Each number represents the

average of 10-fold cross-validation. The numbers in parentheses are confidence intervals for p = 0.95. The table

presents both feature quality results expressed by accuracy and tree size, and generation resources represented by

CPU seconds, number of evaluated features and estimated complexity.

classification accuracy for most domains. ficus also achieved better values of standard deviation. This re-

flects higher stability. ficus dramatically reduced the size of the produced tree classifiers. It also significantly

reduced the weighted tree size for all the problems containing only nominal attributes. For problems con-

taining continuous attributes, the reduction was sometimes less significant, and in a few cases the weighted

tree size increased, regardless of the improvement in classification accuracy.

Table 4 compares the results achieved by ficus to those reported for other feature construction algorithms

for several UCI problems. Only UCI problems found suitable for these algorithms’ representations were used.

The results for ID2-of-3 are taken from (Zheng, 1996). In spite of its generality, the performance of ficus was

found to be comparable, and in most cases superior to that of special-purpose construction algorithms, with

respect to their favorable domains. In addition, ficus was successfully applied to other complex problems

such as Attacking Queens and Soccer Offside, for which the algorithms mentioned could not be effectively

applied due to their restricted representational power. Algorithms whose feature representation is believed

to be unsuitable for a problem domain were denoted in the table as N/S (not suitable) with respect to the

given problem.

Table 5 presents some of the prominent features that were generated by ficus when applied to the tested

classification problems. The presented features appear in the majority of the classifiers that were generated

for the tested problem, mostly in those whose accuracy is high in comparison to the accuracy of classifiers

that used the basic features. As can be seen from the table, for the cases where the target concept is known,

the prominent features partially (or fully) express the underlying problem concept. Such features enable the

concept learner to increase the accuracy, compactness and comprehensibility of the classifiers produced by
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Problem dt ficus + GALA + LFC ID2-of-3

dt dt (M-of-N)

Promoter 73.55 (±7.8) 83.48 (±6.1) 79.5 (±7.8) 75.1 (±7.0) 87.6

Wine 92.67 (±5.0) 95.25 (±3.5) 93.8 (±3.0) - -

TicTacToe 85.38 (±2.9) 96.45 (±2.2) - - 94.9

Queens2 66.94 (±5.3) 100.00 (±0.0) N/S N/S N/S

Queens3 66.37 (±3.4) 98.06 (±2.1) N/S N/S N/S

Offside5 78.71 (±4.6) 98.55 (±1.1) N/S N/S N/S

Offside11 66.94 (±3.5) 81.94 (±4.0) N/S N/S N/S

Isosceles 62.10 (±3.6) 100.00 (±0.0) N/S N/S N/S

Balance 78.08 (±3.0) 99.84 (±0.5) - - -

Heart 75.76 (±3.8) 77.27 (±2.0) 76.4 (±2.5) 75.2 (±2.7) 76.8

Iris 94.67 (±3.7) 93.67 (±5.6) - - -

Monk1 99.27 (±0.8) 100.00 (±0.0) - - 100

Monks2 82.74 (±3.2) 100.00 (±0.0) - - 98

Monks3 100.00 (±0.0) 100.00 (±0.0) - - 97.2

Table 4: A comparison between the performance of ficus and other feature construction algorithms. Algorithms

whose feature representation is believed to be unsuitable for a problem domain were denoted in the table as N/S (not

suitable) with respect to the given problem. The numbers in parentheses are standard deviations.

the concept learner. For example, in the tic-tac-toe domain, almost all the features that were output by

ficus are those using the count constructor to identify full rows, columns and diagonals of the same color.

In the promoter domain, ficus identified the minus 35 contact region, which is considered to be a good

promoter indicator by the existing theory.

7.3 The effect of the number of constructors on the performance of ficus

Any concept learning task involves a knowledge engineering stage where the expert decides what features

will be used for the induction task. Robust learners are able to overcome the existence of redundant and

irrelevant features. In the ficus framework, we face a similar situation with the constructors. The expert

supplies constructors that are estimated to be relevant to the problem. We tested the robustness of ficus

by giving it the merged set of 5 domains.

Table 6 shows the results obtained. We can see that except for one domain, the penalty in performance

is negligible. This indicates that ficus indeed is able to select the right constructors for the generation of

good features.

7.4 The effect of local evaluation on the ficus

One of the important elements of ficus is the use of decision trees in order to evaluate features in a local

context. We decided to test the utility of this element by turning it off and test the algorithm’s performance.

Table 6 shows the results obtained by evaluating features only at the root level of the tree (which is equivalent

to not using the tree at all). We can see that in 4 out of the 5 domains the performance of ficus indeed

deteriorated as expected.
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Domain Prominent Generated Feature(s)

Promoter Count(Is(p-34,G),Is(p-36,T),Is(p-35,T))

This prominently produced feature describes the minus 35 contact region, which

has been identified in many recognized promoters.

Offside-11 /(Max(w8y, w9y, Max(w1y, w2y, w11y), Max(w5y, w6y, w11y,

Max(w3y, w4y, w10y))), Max(b4y , b6y, b9y , Max(b1y, b2y ,

b8y), Max(b5y, b7y , b9y, Max(b3y , b10y , b11y))))

This complex feature, which appeared in similar versions throughout the pro-

duced classifiers, almost fully describes the entire target concept. w6y is the Y

coordinate of player no. 6 of the white team.

Queens-3 ∗(AbsDiff(Q1x, Q2x), AbsDiff(Q1y, Q2y)),

AbsDiff(AbsDiff(Q1x, Q2x), AbsDiff(Q1y, Q2y))

The first feature identifies whether Queens 1 and 2 are placed on the same row

or column, while the second feature identifies whether they are placed on any

common diagonal. Similar symmetric features identified threats between other

queen pairs.

Isosceles Count(= (A1, A2),= (A2, A3),= (A3, A1))

This feature completely represents the concept of an isosceles triangle, which

requires at least one pair of equal arcs.

Tic-Tac-Toe Count(Is(s1, x), Is(s2, x), Is(s3, x)) Count(Is(s1, x), Is(s5, x), Is(s9, x))

Count(Is(s3, o), Is(s5, o), Is(s7, o))

These representative features describe rows, columns, and diagonals of consecu-

tive x or o signs. Although ficus was able to produce features of much higher

complexity, it almost exclusively produced rows, columns and diagonals of slot

triplets.

Monk2 Count(Is(A1, 1), Is(A2, 1), Is(A3, 1), Is(A4, 1), Is(A5, 1))

Fully describes the target concept of the Monk2 problem

Wine ∗(Attrib11 , /(Attrib7, Attrib10))

This feature and its mathematical equivalents appeared in the majority of classi-

fiers which achieved 100% accuracy. We do not know the meaning of this feature

since the wine domain theory was not available to us.

Heart Count(In Range(cp,−∞, 3.5), In Range(ca,−∞, 0.5)

In Range(cp,−∞, 3.5) was a component of most prominent features.

Balance /(/(Distanceright, Distanceleft), /(Weightleft, Weightright))

∗(Distanceright, /(Weightright, ∗(Weightleft, Distanceleft)))

These features fully describe the target concept.

Table 5: A list of prominent features produced by the ficus algorithm. These examples demonstrate the
ability of ficus to discover features that are strongly related to the target concept.

7.5 The effect of the numeric parameters on the performance of ficus

We have performed several experiments to test the effect of the independent variables described above on the

performance of ficus. We used four problem domains for these experiments: promoter, offside11, 3queens

and tic-tac-toe, which represent a variety of domains and learned concepts. The graphs in Figure 10 show

the mutual effect of the number of iterations (Niterations) and number of generation-phases (Nphase) on the

accuracy of the produced classifier. As expected, the utility of the generated features increases with the

increase in the number of iterations and the number of phases. We found, however, that further increasing
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Domain dt dt + Ficus All Constructors Root Only

Promoter 73.55 (±5.88) 83.48 (±4.61) 82.03 (±6.00) 83.44 (±6.11)

TicTacToe 85.38 (±2.18) 96.45 (±1.68) 95.36 (±1.34) 88.36 (±2.13)

Queens3 66.37 (±2.58) 98.06 (±1.64) 88.23 (±4.88) 70.32 (±3.66)

Offside5 78.71 (±3.47) 98.55 (±0.85) 97.10 (±2.45) 82.42 (±3.28)

Monks2 82.74 (±2.42) 100.00 (±0.00) 99.92 (±0.18) 92.98 (±3.20)

Table 6: The results of testing ficus under two conditions. The third column shows the performance of ficus when

selecting from the union of all the constructor functions of the different domains. The fourth column shows the

performance of ficus with generated features evaluated at the root of the tree only. The numbers in parentheses are

confidence intervals for p = 0.95.
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Figure 10: The mutual effect of the number of iterations & phases on the classification accuracy

the number of generation phases caused an abrupt increase of the feature complexity.

The reason for this phenomenon is data overfitting that occurs in tree nodes that contain relatively

few cases. In such nodes there is a better chance for generating overly complex features that successfully

discriminate between members of the two classes in the (relatively small) local instance set. We have indeed

witnessed this in several experiments. A possible solution may be to alter the existing evaluation criteria
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Figure 11: The effect of the number of evaluated features and evaluation strategy on the achieved classification

accuracy

such that the importance of low complexity increases with reverse proportion to the size of the local instance

set. For example, in the data-driven evaluation function, hdb(f), the constant α could be replaced with a

function that depends on the size of the local instance set E. Another possible solution for the described

phenomenon is pruning.

The graphs in Figure 11 show the performance of ficus as a function of its number of evaluated

features at each generation phase (Nnew). These figures also show the effect of the evaluation strategy of

building blocks employed by the generator on the achieved performance. Each figure contains two graphs,

corresponding to the employed selection strategy. For the offside11 and queens3 problems, which represent

complex target concepts, the graphs indicate a noticeable improvement in accuracy as a result of increasing

the number of evaluated features. The tic-tac-toe problem demonstrated minimal sensitivity to the number

of evaluated features, especially when employing a hybrid selection strategy. For the promoter problem,

the optimal number of evaluated features was interestingly discovered to be approximately 12, regardless of

the selection strategy. This may result from its large number of irrelevant basic features. This, combined

with a small data set, might lead to the construction and selection of superfluous features. The graphs
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do not indicate a conclusive advantage to either one of the selection strategies, excluding the complex

offside11 problem, in which the hybrid strategy significantly outperformed the data-driven. In addition, the

hybrid selection strategy outperformed the data-driven when employing a small number (Nnew = 1 . . .10)

of evaluated features.

7.6 The performance of ficus with other concept learners

While ficus uses dt as an internal procedure for determining local context, the resulting features can be

used with other concept learning algorithms. We tested the effect of adding the generated features to the

perceptron, back propagation, nearest neighbor and k-nearest neighbor algorithms. Tables 7, 8, 9, 10, 11,

and 12 show the results obtained.

Domain Perceptron Perceptron + Ficus Difference

Promoter 76.34(±6.71) 83.96(±6.22) 7.62(±8.21)

Wine 30.87(±5.99) 52.25(±9.08) 21.39(±9.52)

TicTacToe 34.66(±1.84) 37.69(±3.98) 3.03(±2.35)

Queens2 58.55(±4.86) 65.48(±3.03) 6.94(±5.00)

Offside5 57.66(±4.03) 66.13(±6.77) 8.47(±6.83)

Offside11 55.48(±4.14) 60.32(±7.36) 4.84(±8.85)

Isosceles 48.70(±4.73) 98.70(±1.69) 50.00(±5.69)

Balance 35.44(±7.03) 38.80(±5.09) 3.36(±6.06)

Heart 62.95(±7.09) 60.10(±4.64) -2.86(±4.53)

Iris 63.33(±8.63) 66.67(±5.84) 3.33(±4.50)

Monk1 49.35(±2.65) 100.00(±0.00) 50.65(±2.65)

Monk2 48.79(±6.55) 55.97(±8.30) 7.18(±9.66)

Monk3 75.97(±2.85) 98.79(±1.34) 22.82(±3.61)

Table 7: The performance of the perceptron algorithm with the basic features compared to its performance with the

features generated by ficus. The numbers in parentheses are confidence intervals with p = 0.95.

We can see from the results that for several domains the performance of the tested algorithm improves

significantly when using the features generated by ficus. For two domains (Isosceles and Monk1), the

accuracy obtained by the perceptron algorithm was doubled. For two additional domains (Wine and Monk3)

the accuracy improved by more than 20%.

The performance of the back propagation algorithm was also improved by the features generated by

ficus, but to a lesser extent. This is not surprising, since we can view the nodes in the hidden layer as

intermediate features generated by the back propagation algorithm. Still, for two domains, the difference in

accuracy was over 30% in favor of the ficus enhanced version. For two other domains the difference was

around 20%.

The performance of all the nearest neighbor classifiers was also significantly improved when using the

ficus generated features. This was achieved despite the sensitivity of nearest neighbor classifiers to redun-

dant features.
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Domain Backprop Backprop + Ficus Difference

Promoter 82.49(±6.45) 83.42(±7.73) 0.93(±3.86)

Wine 89.63(±6.61) 90.79(±7.31) 1.16(±2.73)

TicTacToe 62.90(±3.88) 81.66(±14.46) 18.76(±16.08)

Queens2 72.98(±5.05) 96.13(±3.38) 23.15(±6.00)

Offside5 68.23(±3.51) 75.73(±4.97) 7.50(±3.63)

Offside11 59.52(±3.76) 65.00(±5.30) 5.48(±4.79)

Isosceles 61.50(±3.17) 92.60(±11.16) 31.10(±11.78)

Balance 86.40(±2.27) 89.44(±3.61) 3.04(±2.88)

Heart 76.93(±1.93) 77.10(±3.25) 0.17(±4.17)

Iris 85.00(±4.93) 84.67(±5.05) -0.33(±1.35)

Monk1 93.87(±6.65) 100.00(±0.00) 6.13(±6.65)

Monk2 65.16(±4.48) 99.27(±0.84) 34.11(±4.63)

Monk3 97.74(±1.08) 97.58(±1.02) -0.16(±0.76)

Table 8: The performance of the back propagation algorithm with the basic features compared to its performance

with the features generated by ficus. The numbers in parentheses are confidence intervals with p = 0.95.

Domain Nearest Nearest + Ficus Difference

Promoter 77.73(±6.91) 82.01(±4.84) 4.29(±4.67)

Wine 96.63(±1.59) 97.47(±1.49) 0.84(±1.89)

TicTacToe 67.43(±1.69) 94.73(±2.11) 27.30(±1.75)

Queens2 70.81(±2.77) 86.21(±1.97) 15.40(±2.11)

Offside5 59.35(±1.54) 67.58(±4.14) 8.23(±4.39)

Offside11 54.19(±2.90) 58.55(±4.36) 4.35(±4.96)

Isosceles 69.20(±1.25) 100.00(±0.00) 30.80(±1.25)

Balance 56.56(±2.98) 79.52(±3.99) 22.96(±4.55)

Heart 76.43(±2.28) 77.10(±3.11) 0.68(±4.07)

Iris 94.00(±4.32) 94.00(±4.18) 0.00(±1.59)

Monk1 88.31(±1.77) 100.00(±0.00) 11.69(±1.77)

Monk2 87.98(±2.01) 100.00(±0.00) 12.02(±2.01)

Monk3 91.94(±2.12) 100.00(±0.00) 8.06(±2.12)

Table 9: The performance of the nearest neighbor algorithm with the basic features, compared to its performance

with the features generated by ficus. The numbers in parentheses are confidence intervals with p = 0.95.

8 Discussion

We presented the ficus construction algorithm, which receives the standard input of supervised learning,

as well as a feature representation specification (fss), and uses them to produce a set of generated features.

ficus searches its defined feature space, continuously attempting to improve its generated feature set as

long as resources are available. The algorithm bases its operation on the framework of decision tree learning,

which defines its feature construction context. The algorithm uses general construction operators whose

actual action is determined by the input fss. It also uses general feature evaluation functions that can

be uniformly applied to different forms of constructed features. Both data-driven and hypothesis-driven

strategies are employed by the algorithm to guide its conducted search.

While ficus is similar in some aspects to some of the existing feature construction algorithms (such as
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Domain 3-Nearest 3-Nearest + Ficus Difference

Promoter 79.18(±6.32) 86.30(±4.96) 7.12(±3.69)

Wine 96.35(±1.67) 97.47(±1.49) 1.12(±1.39)

TicTacToe 67.95(±1.82) 96.14(±2.03) 28.19(±1.82)

Queens2 70.81(±2.09) 82.98(±2.27) 12.18(±2.64)

Offside5 63.79(±2.61) 72.58(±4.19) 8.79(±3.29)

Offside11 52.66(±2.67) 60.89(±3.94) 8.23(±4.16)

Isosceles 66.70(±2.52) 100.00(±0.00) 33.30(±2.52)

Balance 68.00(±2.53) 80.96(±2.70) 12.96(±2.45)

Heart 80.15(±3.01) 78.46(±1.61) -1.69(±2.60)

Iris 94.67(±3.59) 94.33(±3.56) -0.33(±0.75)

Monk1 81.85(±2.67) 99.35(±0.65) 17.50(±2.73)

Monk2 76.13(±2.96) 99.92(±0.18) 23.79(±2.97)

Monk3 92.02(±2.08) 99.92(±0.18) 7.90(±1.96)

Table 10: The performance of the 3-nearest neighbor algorithm with the basic features, compared to its performance

with the features generated by ficus. The numbers in parentheses are confidence intervals with p = 0.95.

Domain 5-Nearest 5-Nearest + Ficus Difference

Promoter 76.84(±8.26) 85.89(±6.34) 9.05(±5.17)

Wine 96.35(±0.97) 97.18(±1.89) 0.83(±2.12)

TicTacToe 70.41(±1.82) 95.35(±1.91) 24.95(±2.02)

Queens2 71.94(±1.86) 84.84(±1.94) 12.90(±1.92)

Offside5 66.94(±2.26) 75.81(±3.73) 8.87(±2.94)

Offside11 55.16(±4.14) 62.74(±4.85) 7.58(±3.55)

Isosceles 64.50(±2.27) 100.00(±0.00) 35.50(±2.27)

Balance 74.16(±2.06) 82.56(±4.22) 8.40(±3.39)

Heart 81.16(±3.26) 81.49(±2.10) 0.32(±2.26)

Iris 95.00(±3.03) 94.67(±3.02) -0.33(±0.75)

Monk1 78.63(±2.21) 98.63(±0.72) 20.00(±1.80)

Monk2 71.29(±4.43) 99.52(±0.49) 28.23(±4.44)

Monk3 93.31(±2.09) 99.35(±0.65) 6.05(±2.06)

Table 11: The performance of the 5-nearest neighbor algorithm with the basic features, compared to its performance

with the features generated by ficus. The numbers in parentheses are confidence intervals with p = 0.95.

lfc,citre,gala, and fringe), its main strength and contribution are its generality and flexibility. ficus

was designed to perform feature generation given any feature representation specification complying to its

general purpose grammar (presented in Figure 2).

The large majority of previous related work presented algorithms for searching some known feature space

(such as Boolean expressions, M of N expressions, hyper planes, or bit strings). The novelty of this work is in

building an algorithm that searches any member of an infinite family of feature spaces defined by a general

purpose grammar. The flexibility of ficus makes it suitable for a wide variety of feature representations and

problem domains. It also enables the use of ficus to evaluate and discover good feature representations for

a given domain. By accepting feature representation as dynamic input, ficus enables easy incorporation of

human domain knowledge.

The choice of feature representation (mainly the set of constructor functions) is up to the deployer of
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Domain 7-Nearest 7-Nearest + Ficus Difference

Promoter 75.43(±6.20) 85.43(±5.54) 10.00(±5.87)

Wine 96.90(±2.02) 97.46(±1.99) 0.56(±2.28)

TicTacToe 76.36(±1.87) 94.99(±1.69) 18.63(±2.15)

Queens2 71.53(±3.41) 86.13(±1.65) 14.60(±2.86)

Offside5 66.29(±2.96) 75.89(±4.30) 9.60(±3.54)

Offside11 56.05(±3.66) 63.87(±6.18) 7.82(±4.41)

Isosceles 61.90(±2.56) 100.00(±0.00) 38.10(±2.56)

Balance 77.68(±1.33) 83.84(±4.07) 6.16(±3.62)

Heart 80.99(±2.20) 83.68(±2.92) 2.69(±2.20)

Iris 94.67(±3.02) 95.00(±2.81) 0.33(±0.75)

Monk1 78.55(±2.04) 98.31(±0.69) 19.76(±1.91)

Monk2 67.58(±2.14) 99.84(±0.36) 32.26(±2.21)

Monk3 93.55(±1.90) 99.11(±0.63) 5.56(±1.73)

Table 12: The performance of the 7-nearest neighbor algorithm with the basic features, compared to its performance

with the features generated by ficus. The numbers in parenthesis are confidence intervals with p = 0.95.

ficus. As in the general case of concept learning, poor representation leads to poor results. In our experi-

ments, ficus performed very well with relatively simple sets of constructor functions that seemed potentially

relevant to the given domain. In a lesion study, we supplied ficus with the union of constructor sets of

the individual domains. The results showed only minor deterioration in ficus’s performance, indicating

its robustness to irrelevant constructors. The deterioration that did occur as a result of using irrelevant

constructor functions is analogous to the existing findings (Kira & Rendell, 1992; John et al., 1994; Kohavi

& Dan, 1995; Sangiovanni-Vincentelli, 1992; Caruana & Freitag, 1994; Salzberg, 1993) regarding the use of

irrelevant attributes in classical concept learning . In both cases, deterioration in accuracy is caused by the

data overfitting that results from increasing the feature space.

An interesting direction for overcoming this problem could be to exploit the fact that ficus receives

its representation language as dynamic input for conducting a search in the representation space. Methods

similar to those employed for feature selection (John et al., 1994; Kohavi & Dan, 1995; Salzberg, 1993) could

be adopted to find a utile subset of constructor functions.

ficus employs the decision tree algorithm dt as an internal mechanism for directing feature construction.

The decision tree splits the instance space into exclusive subspaces for which feature construction is locally

applied. Performing local feature construction for different subspaces of the instance space has proved

effective especially for complex and disjunctive concepts. A lesion study in which feature construction was

performed only for the entire instance space (only at the root of the tree) showed significant deterioration

in performance. The internal decision tree algorithm is a straightforward implementation of ID3 without

pruning or other advanced improvements. We would like to explore the effect of adding pruning to the dt

internal concept learner. It is quite possible that pruning would remove subtrees with irrelevant constructed

features, thus improving the quality of the set of constructed features passed to the next iteration. Regardless

of the fact that the dt algorithm is used internally, the output of ficus is a feature set, and not the final

decision tree built in the last iteration. Therefore, ficus can be used in conjunction with concept learners
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other than dt. Our experiments showed significant improvement for all tested concept learners, including

perceptron, back propagation, and nearest neighbor.

It is interesting to view the ficus algorithm as an evolutionary process. The population is the set of

constructed features. New members of the population are constructed by combining existing feature pairs of

high fitness. The fitness is assigned by the building block evaluation functions, which look at properties such

as information gain, complexity and relative gain with respect to the parents. The pairs are combined by

applying a set of predefined combination operators (Compose, Insert, Replace and Interval). The population

is kept at a fixed size by removing members with low fitness. The particular tree-based representation used

by ficus resembles the tree-structured elements manipulated by genetic programming algorithms (Koza,

1992; Koza, Bennett, Andre, & Kean, 1996).

The merit of our approach was demonstrated by applying the algorithm to various classification prob-

lems. ficus was able to significantly improve the accuracy of the resulting classifiers for several types of

concept learners. In addition, it generated features that often expressed important aspects of the underlying

target concept. ficus’s general and flexible form of feature representation turns it into an effective tool for

discovering useful representations with respect to a given classification problem. It also enables utilization

of partial domain-specific human knowledge for this purpose.

One limitation of the ficus framework is that its search algorithm depends on the assumption that

building blocks of complex features of high utility will also be found to be utile. While this was the case

in most of the problems upon which ficus was tested, it is quite possible that in certain domains this

assumption does not hold and a gradual generation of structured features will not be effective. This problem

may be addressed by increasing the beam size of the search algorithm. Such an increase, however, is quite

restricted due to its high computational demands.

ficus runs as a preprocessing stage, prior to to concept learning. Therefore, its nontrivial resource

requirement is added to the overall execution time. This might seem to limit our approach. Nevertheless,

the user can control the amount of resources invested in feature generation. Therefore, the combined system

can be viewed as an anytime concept learning algorithm. That means that the user can specify the required

tradeoff between learning resources and expected classification accuracy. As can be seen in our experiments,

investing an additional several seconds can yield a very significant improvement in accuracy.

To conclude, many researchers have shown the benefit of feature generation for solving classification

problems. Many alternative feature generation algorithms based on a variety of representation schemes

have been proposed. The methodology presented here offers a general framework for feature generation

and has several advantages over existing algorithms. While other algorithms are tailored to a predefined

feature representation that may not be inappropriate for the problem at hand, the ficus algorithm allows

a flexible representation which may appropriate for a variety of domains. The most important advantage of

our framework is that it allows expressing and exploiting partial background knowledge for constructing utile

features. Such knowledge is commonly available for real-world problems, but can not be easily exploited by

other feature generation algorithms due to their representational rigidity.

37



References

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37–66.

Aha, D. W. (1991). Incremental constructive induction: An instance-based approach. In Proc. 8th International

Conference on Machine Learning, pp. 117–121. Morgan Kaufmann.

Bala, J. W., Michalski, R., & Wenk, J. (1992). The principal axes method for constructive induction. In Proc. 9th

International Conference on Machine Learning, pp. 20–29. Morgan Kaufmann.

Boddy, M. (1991). Anytime problem solving using dynamic programming. In Proceedings of the Ninth National

Conference on Artificial Intelligence, Vol. II, pp. 738–743 Menlo Park. AAAI Press/MIT Press.

Boddy, M., & Dean, T. (1994). Decision-theoretic deliberation scheduling for problem solving in time-constrained

environments. Artificial Intelligence, 67 (2), 245–286.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: CA

Wadsworth International Group.

Caruana, R., & Freitag, D. (1994). Greedy attribute selection. In Proc. 11th International Conference on Machine

Learning, pp. 28–36. Morgan Kaufmann.

Clark, P., & Niblett, T. (1989). The cn2 induction algorithm. Machine Learning, 3, 261–283.

De Jong, K. A., Spears, W. M., & Gordon, D. F. (1992). Using genetic algorithms for concept learning. Machine

Learning, 8, 5–32.

Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning.

In Proc. 13th International Conference on Artificial Intelligence., pp. 1022–1027.

Heath, D., Kasif, S., & Salzberg, S. (1993). Learning oblique decision trees. In Proc. 13th International Conference

on Artificial Intelligence., pp. 1003–1007.

Hirsh, H., & Japkowicz, N. (1994). Bootstrapping training-data representations for inductive learning: A case study

in molecular biology. In Proc. 11th International Conference on Machine Learning, pp. 639–644. Morgan

Kaufmann.

Hu, Y.-J., & Kibler, D. (1996). Generation of attributes for learning algorithms. In Proc. 13th InternationalConference

on Machine Learning. Morgan Kaufmann.

Ittner, A., & Schlosser, M. (1996). Discovery of relevant new features by generating non-linear decision trees. In

Proc. 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96).

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and subset selection problem. In Proc. 11th

International Conference on Machine Learning, pp. 121–129. Morgan Kaufmann.

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Proc. 9th International Conference

on Machine Learning, pp. 249–256. Morgan Kaufmann.

Kohavi, R., & Dan, S. (1995). Feature subset selection using the wrapper model: Overfitting and dynamic search

space topology. In First International Conference on Knowledge Discovery and Data Mining (KDD-95). U. M.

Fayyad and R. Uthurusamy.

Koza, J. (1992). Genetic programming: On the programming of computers by means of natural selection. Master’s

thesis, Cambirdge, MA: MIT Press.

38



Koza, J. R., Bennett, F. H., Andre, D., & Kean, M. A. (1996). Four problems for which a computer program

evolved by genetic programming is competitive with human performance.. In Proceedings of the 1996 IEEE

International Conference on Evolutionary Computation, pp. 1–10. IEEE Press.

Matheus, C. J., & Rendell, L. A. (1989). Constructive induction on decision trees. In Proc. 11th International

Conference on Artificial Intelligence., pp. 645–650.

Murphy, P. M., & Pazzani, M. J. (1991). Id2-of-3: Constructive induction of m-of-n concepts for discriminators in

decision trees. In Proc. 8th International Conference on Machine Learning, pp. 183–188. Morgan Kaufmann.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. In Proc. 7th International

Conference on Machine Learning, pp. 71–99. Morgan Kaufmann.

Perez, E., & Rendell, L. A. (1995). Using multidimensional projection to find relations. In Proc. 14th International

Conference on Artificial Intelligence., pp. 447–455.

Quinlan, J. R. (1989). Documentation and user’s guide to C4.5.

Ragavan, H., & Rendell, L. A. (1993). Improving the design of induction methods by analyzing algorithm functionality

and data-based concept complexity. In Proc. 13th International Conference on Artificial Intelligence., pp. 952–

958.

Ragavan, H., Rendell, L. A., Shaw, M., & Tessmer, A. (1993). Complex concept acquisition through directed search

and feature caching. In Proc. 13th International Conference on Artificial Intelligence., pp. 946–951.

Salzberg, S. (1993). Improving classification methods via feature selection. Machine Learning, 99.

Sangiovanni-Vincentelli, A. L. O. A. (1992). Constructive induction using a non-greedy strategy for feature selection.

In Proc. 9th International Conference on Machine Learning, pp. 355–360. Morgan Kaufmann.

Schlimner, J. (1987). Concept acquisition through representational adjustment. Ph.D. thesis, Department of informa-

tion and Computer Science , University of California, Irvine, CA.

Sutton, R. S., & Matheus, C. J. (1991). Learning polynomial functions by feature construction. In Proc. 8th

International Conference on Machine Learning, pp. 208–212. Morgan Kaufmann.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation discovery. In Proc. 14th International Conference

on Machine Learning. Morgan Kaufmann.

Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees. Tech. rep., COINS Technical Report 91-10.

Watanabe, L., & Rendell, L. A. (1991). Feature construction in structural decision trees. In Proc. 8th International

Conference on Machine Learning, pp. 218–222. Morgan Kaufmann.

Wenk, J., & Michalski, R. S. (1994). Hypothesis-driven constructive induction in aq17-hci: A method and experiments.

Machine Learning, 14, 139–168.

Yang, D.-S., Rendell, L. A., & Blix, G. (1991). Fringe-like feature construction: A comparative study and a unifying

scheme. In Proc. 8th International Conference on Machine Learning, pp. 223–227. Morgan Kaufmann.

Zheng, Z. (1996). Constructing nominal x-of-n attributes. In Proc. 13th International Conference on Machine

Learning, pp. 1064–1070. Morgan Kaufmann.

39


