
Technion
 Israel Institute of Technology
Computer Science Department

The M� Algorithm� Incorporating Opponent Models
into Adversary Search

by

David Carmel and Shaul Markovitch

CIS Report �����
March ����

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

The M� Algorithm� Incorporating Opponent Models into Adversary

Search

David Carmel and Shaul Markovitch �

Computer Science Department

Technion� Haifa �����

Israel

carmel�cs�technion�ac�il shaulm�cs�technion�ac�il

Abstract

While human players adjust their playing strategy according to their opponent� computer
programs� which are based on the minimax algorithm� use tha same playing strategy against a
novice as against an expert� This is due to the assumption of minimax that the opponent uses
the same strategy as the player� This work studies the problem of opponent modelling in game
playing� We recursively de
ne a player as a pair of a strategy and an opponent model� which is
also a player� A strategy can be determined by the static evaluation function and the depth of
search� M�� an algorithm for searching game�trees using an n�level modelling player that uses
such a strategy� is described and analyzed� We demonstrate experimentally the bene
t of using
an opponent model and show the potential harm caused by the use of an inaccurate model� We
then describe an algorithm�M�

� � for using uncertain models when a bound on the model error
is known� Pruning in M� is impossible in the general case� We prove a su�cient condition for
pruning and present a pruning algorithm� ���� that returns the M� value of a tree� searching
only necessary subtrees� Finally� we present a method for acquiring a model for an unknown
player� First� we describe a learning algorithm that acquires a model of the opponent�s depth
of search by using its past moves as examples� Then� an algorithm for acquiring a model of the
player�s strategy� both depth and function� is described and evaluated� Experiments with this
algorithm show that when a superset of the set of features used by a
xed opponent is available
to the learner� few examples are su�cient for learning a model that agrees almost perfectly with
the opponent�

� Introduction

����At the press conference� it quickly became clear that Kasparov had done his home

work� He admitted that he had reviewed about �fty of DEEP THOUGHT�s games and
felt con�dent he understood the machine���� ����

One of the most notable challenges that the Arti�cial Intelligence research community has been
trying to face during the last �ve decades is the creation of a computer program that can beat
the world chess champion� Most activity in the area of game
playing programs has been concerned
with e�cient ways of searching large game trees� However� good playing performance involves

�This research was partially supported by the Fund for the Promotion of Research at the Technion

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

additional types of intelligent processes� The quote above highlights one type of such a process
that is performed by expert human players� acquiring a model of their opponent�s strategy�

While human players adjust their playing strategy according to their opponent� computer pro

grams play the same against a novice as against an expert� Most playing programs use the minimax
algorithm for search ����� The main assumption of this algorithm is that the opponent uses the
same strategy as the player�

There are several situations where the modelling approach has advantage over the non
modelling
approach of the standard minimax procedure� Jansen ���� describes two situations in which it is
important to consider the opponent�s playing ability� One is a swindle position� where the player
has reason to believe that the opponent will underestimate a good move� and will therefore play a
poorer move instead� Another situation is a trap position� where the player expects the opponent
to overestimate and therefore play a bad move� Choosing trap or swindle positions is good strategy
when the player has reason to believe that its opponent searches to shallower depth than itself�
Another situation� where an opponent model can be bene�cial� is a losing position ���� If all possible
moves lead to a loss� minimax chooses one of them arbitrarily� in contrast to human players that
can utilize their opponent model in order to select a swindle move�

Several researchers have pointed out the importance of opponent modelling ���� ��
� �� �� �
��
but the acquisition and utilization of an opponent model have not received much attention in the
computational game research community� Korf ��� outlined a method of generalizing the minimax
algorithm for utilizing multiple
level models of evaluation functions� The work described in this
paper builds on Korf�s research and expands it in several ways�

The goal of this research is to study the utilization and acquisition of opponent models in game

playing� In order to do so� we will make an attempt to �nd answers to the following questions�

�� What is a model of opponent�s strategy�

�� Assuming that we possess such a model� how can we utilize it�

�� What are the potential bene�ts of using opponent models�

�� How does the accuracy of the model e�ect its bene�t�

�� How can we use an uncertain model�

�� How can a program acquire a model of its opponent�

Section � of this paper deals with the �rst two questions� De�ning an opponent model and de

veloping algorithms for using such a model� Section � deals with the third and the fourth questions�
Measuring the potential bene�ts of modelling and testing the e�ects of modelling accuracy on its
bene�ts� In section �� we describe an algorithm for using uncertain models� Section � describes a
method for incorporating pruning into the algorithms� Section � describes algorithms for acquiring
opponent models� Finally� section � concludes�

 Using opponent models

Every human player has either an explicit or an implicit model of the way that its opponent plays�
In this section we give a precise de�nition of an opponent model and develop an algorithm for using
such a model�

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

De�nition � A player is de�ned by the strategy that it uses and by the model of its opponent� The
opponent model is also a player�

�� Given a strategy S� P � �S�NIL� is a player�

�� Given a strategy S and a player O� P � �S�O� is a player�

The �rst element of a player is called the player�s strategy and the second element is called the
opponent model�

De�nition � Given a player P � �S�O�� The modelling level of a player is de�ned by the recur�
rence�

ML�P � �

�
� if O � NIL

ML�O� � � otherwise
���

Thus� a zero
level modelling player� �S�� NIL�� is one that does not model its opponent� A one

level modelling player� �S�� �S�� NIL��� is one that has a model of its opponent� but assumes that
its opponent is a zero
level modelling player� A two
level modelling player� �S�� �S�� �S�� NIL����
is one that uses a strategy S�� and has a model of its opponent� �S�� �S�� NIL��� The opponent�s
model uses a strategy S� and has a model� �S�� NIL�� of the player� The recursive de�nition of a
player is in the spirit of the Recursive Modelling Method �RMM� by Gmytrasiewicz� Durfee and
Wehe �����

��� The M� algorithm

Most of the game
playing programs use a minimax search procedure in which the player evaluates
boards by a function f � and believes that the opponent evaluates boards by the function �f �
Assume that the player uses a function f�� but believes that the opponent uses a di�erent function
f�� What is a good search strategy that incorporates this belief� What is a good search strategy
when the player uses a function f�� believes that the opponent uses function f�� and also believes
that the opponent believes that the player evaluates boards using a third function f��

We have developed an algorithm� M�� shown in �gure �� that can handle such modelling to
any level�� Let us assume that a playing strategy is determined by a static evaluation function
f � A player is then� according to de�nition �� a pair �f�MODEL� where MODEL is also a player�
The input for the algorithm is a position� a depth limit� and a player� and the output is the move
selected by the player and its value�

The algorithm generates the successor boards and simulates the opponent�s search from each of
them in order to anticipate its choice� This simulation is done by applying the algorithm recursively
with the opponent model as the player� The player then evaluates each of its optional moves by
evaluating the outcome of its opponent�s reaction by applying the algorithm recursively using its
own strategy�

Figure � shows an example for a search tree spanned by M��a� �� f��f�� f���� The numbers at
the bottom are the static values of the leaves� The recursive calls applied to each node are listed
next to the node� The dashed lines indicate what move is selected by each recursive call�

�We have presented an earlier version of the M� algorithm in a previous publication ��	� However� the earlier
version was limited to one�level modelling players�

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Procedure M� �pos� depth� �fpl�OPP MODEL��
if depth � �
return hNIL� fpl�pos�i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
player value� fpl�succ�

else

hopp board� opp valuei �M� �succ� depth� ��OPP MODEL�
hplayer board� player valuei �M� �opp board� depth� �� �fpl�OPP MODEL��

if player value � max value

max value� player value

max board� succ

return hmax board�max valuei

Figure �� The M� algorithm

The player simulates its opponent�s search from nodes b and c� The opponent simulates the
player by using its own model of the player from nodes d and e� At node d the model of the player
used by the opponent �f�� selects node h� The opponent then applies its f� function to node h and
concludes that node h� and therefore node d� are worth ��� The opponent then applies the player�s
model �f�� to node e� concludes that the player will select node j� applies its own function �f��
to node j� and decides that node j� and therefore node e� are worth �
� Therefore� the opponent
model� when applied to node b� selects the move that leads to node d� The player then tests how
much node d is worth according to its criterion �f��� It applies M

� to node d and concludes that
node d� and therefore node b� are worth
� Using a similar search from node c yields ��� Therefore�
the player selects the move that leads to c with a value of ��� Note that using a regular minimax
search with f� would have resulted in selecting the move leads to node b with a value of ��

How does minimax �t into our new algorithm� It turns out that a minimax search to depth
d with evaluation function f is in fact equivalent to the M� algorithm called with the d
level

modelling player

dz
� �
�f� ��f� �f� � � �����

There is one potential complication that deserves special handling� Each simulation of the
opponent�s search involves a call toM� with a lower level modelling player� What will the procedure
do if the modelling level of the original player n is smaller than the depth of the search tree d�
In such a case� we assume that the �
level modelling player f� is playing minimax� and therefore

replace it by

d�nz
� �
�f�� ��f�� �f�� � � �����

It is obvious that the M� algorithm does multiple expansions of parts of the search tree� For
analyzing the complexity of M�� let us assume that the search tree has a uniform branching factor
b� The number of leaves spanned by M� for such a tree with depth d can be measured by the

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

f2= 8
f1=-6
f0= 4

f2=-4
f1= 6
f0=-8

f2= 4
f1=-8
f0=10

f2= 7
f1=-7
f0= 3

f2=-6
f1= 7
f0=-4

f2= 1
f1=-2
f0= 4

f2=10
f1=-4
f0= 4

f2= 2
f1= 0
f0= 6

a

b c

d e f g

h i j k l m n o

M*(f1,f0)=-6

M*(f0)=4
M*(f2,(f1,f0))=8

M*(f0)=10

M*(f1,f0)=-6 M*(f1,f0)=-8

M*(f1,f0)=0

M*(f0)=4 M*(f0)=6

M*(f1,f0)=-2 M*(f1,f0)=0

M*(f2,(f1,f0))=10

M*(f2,(f1,f0))=10

Figure �� The set of recursive calls generated by calling M�
a� ��
f�
f�� f����� For sake of clarity we have
included only the player in the parameter list of the calls� Each call is written next to the node it is called
from� The dashed lines show what move is selected by each call�

following recurrence �

Tb�d� �

���
��

� if d � �
b if d � �
b �Tb�d� �� � Tb�d� ��� otherwise

���

Lemma � �� The number of leaves spanned by M� for a tree with uniform branching factor b
and depth d is

Tb�d� �
�d	�
b � �b

d	�

p
b� � �b

���

where �b �
b	
p
b�	�b
�

� and �b �
b�

p
b�	�b
�

�

�� Tb�d� � �db � �b� ��d

Proof�

By induction on d� It is easy to verify equation � for d � � and d � �� Assume it�s correctness
for depths less than d�

Tb�d� � b �Tb�d� �� � Tb�d� ��� � b

�
� �db � �b

d

p
b� � �b

�
�d��
b � �b

d��

p
b� � �b

�
	 ����

� bp
b�	�b

h
��b � ���d��

b � ��b � ���b
d��

i

It is also easy to verify that b��b � �� � ��b and b��b � �� � �b
�
� Placing the two equalities in

equation � completes the proof of the �rst statement� For the second statement� the �rst inequality
will be proved by induction on d� It is easy to verify the inequality for d � � and d � �� Assume
its correctness for depth � d�

Tb�d� � b �Tb�d� �� � Tb�d� ��� � b
h
�d��
b � �d��

b

i
� b

h
��b � ���d��

b

i
� �db���

�For b � � we get the Binet formula for Fibonacci sequence�

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

The second inequality follows from the inequality �b��b � b� ��� �

Therefore� the number of leaves spanned byM� is bounded by �b���d� while minimax spans bd

leaves� For games with large branching factors� the overhead of using M� �compared to minimax�
is therefore neglectable� while for games with small branching factors it is quite signi�cant�

��� A one�pass version of M�

We have developed another version of the M� algorithm� called M�
��pass� that expands the tree one

time only� just as minimax does� The algorithm expands the search tree in the same manner as
minimax� However� node values are propagated di�erently� Whereas minimax propagates only one
value� M� propagates n � � values� �Vn� � � � � V��� The value Vi represents the merit of the current
node according to the i
level model� fi� M� passes values to V di�erently for values associated
with the player and values associated with the opponent� In a player�s node �a node where it is the
player�s turn to play�
� for values associated with the player �Vn� Vn��� � � ��� Vi gets the maximal
Vi value among its children� For values associated with the opponent �Vn��� Vn�
� � � �� � Vi gets
the Vi value of the child that gave the maximal value to Vi��� For example� the opponent believes
�according to the model� that the player evaluates nodes by Vn��� At a player�s node� the opponent
assumes that the player will select the child with maximal Vn�� value� Therefore� the value of the
current node for the opponent is the Vn�� value of the selected child with the maximal Vn�� value�
At an opponent�s node� we do the same but the roles of the opponent and the player are switched�
Figure � lists the M�

��pass algorithm�

Procedure M�
��pass �pos� depth� �fn� �fn��� �� � � � f�� � � ����

if depth � �
return hfn�pos�� � � � � f��pos�i

else SUCC �MoveGen�pos�
for each succ � SUCC

succ V �M�
��pass �succ� depth� �� �fn� �fn��� � � � � f�� � � ���

for each i associated with current player
if succ V�i� � V �i�
V �i�� succ V�i�
if i � n

V �i� ��� succ V�i� ��
return hV �n�� � � � � V �depth�i

Figure �� M�
��pass� A version of the M� algorithm that performs only one pass over the search tree

The maxn algorithm ���� also propagates vectors of values up the game tree� However�M�
��pass

and maxn are targeted at di�erent goals� Maxn is an extension of minimax that can handle n

players while M�
��pass is an extension of minimax that can handle n
level modelling� While all the

values of a vector in maxn come from the same leaf� the values of a vector in M�
��pass come from

di�erent leaves� It should be relatively easy to combine the two algorithms� Figure � shows an
example for a tree spanned by M�� Note that the values in the vectors correspond to the results
of the recursive calls in �gure ��

�Traditionally such a node is called a MAX node� However� we assume that both players are maximizers

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

f2= 8
f1=-6
f0= 4

f2=-4
f1= 6
f0=-8

f2= 4
f1=-8
f0=10

f2= 7
f1=-7
f0= 3

f2=-6
f1= 7
f0=-4

f2= 1
f1=-2
f0= 4

f2=10
f1=-4
f0= 4

f2= 2
f1= 0
f0= 6

a

b c

d e f g

h i j k l m n o

V[2]= 8
V[1]=-6
V[0]= 4

V[2]= 7
V[1]=-8
V[0]=10

V[2]= 1
V[1]=-2
V[0]= 4

V[2]=10
V[1]= 0
V[0]= 6

V[2]=10
V[1]= 0

V[2]= 8
V[1]=-6

V[2]=10

Figure �� The value vectors propagated by M�
��pass�

Lemma � Assume that PLAYER is a n�level modelling player� Let hv� bi�M��pos� depth�PLAYER��
and let hV �n�i �M�

��pass�pos� depth�PLAYER�� Then v � V �n��

Proof�

For d � � and d � � the proof is immediate�

Assume that M� and M�
��pass return the same value for a tree of depth d � depth� �� We will

prove that they return the same value for d � depth�

�� For each successor at level ��M� �rst determines the board at level � selected by its opponent�
By the induction hypothesis�

M��succ� d� ��OPP MODEL� �M�
��pass�succ� d� ��OPP MODEL� � V �n� ��

and therefore these will be the boards with the maximal V �n� ���

�� M� determines the value of each successor by calling itself on the board selected by the
opponent� By the induction hypothesis

M��b� d� �� PLAY ER� �M�
��pass�b� d� �� PLAY ER� � V �n�

and therefore these M� values will be equal to the V �n� values of these nodes�

�� M� associates with each successor the player�s value of the board selected by the opponent�
M�

��pass assigns to each successor the V �n� value associated with the board with maximal
V �n� �� value� Thus� the value assigned to each successor by M� is equal to its V �n� value�

�� M� returns the maximal value for its successors� while M�
��pass returns the maximal V �n� of

its successors� These are the same values�

�

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

��� The relationship between M� and minimax

An interesting property of M� is that it always selects a move with a value greater or equal to the
value of the move selected by minimax that searches the same tree with the same strategy�

Lemma � Assume that M� and Minimax use the same fplayer� Then

Minimax�pos� depth� fplayer� �M��pos� depth� �fplayer�OPP MODEL�����

for any OPP MODEL�

Proof�

We will prove that this property exists for every node in the tree spanned by the two algorithms
by induction on the depth of search� For convenience we will prove it for the version of M�

��pass�

For depth � �� for any OPP MODEL

Minimax�pos� depth� � fplayer�pos� �M�
��pass�pos� depth� �fplayer�OPP MODEL����

Let us assume correctness for d � depth and prove it for d � depth � �
If pos is a player�s node�

Minimax�pos� depth� �� � max fMinimax�succ� depth� j succ � SUCC�pos�g�
�

According to the inductive assumption�

� max
n
M�

��pass�succ� depth� �fplayer�OPP MODEL�� j succ � SUCC�pos�
o

�M�
��pass�pos� depth� �� �fplayer�OPP MODEL��

If pos is an opponent�s node�
let s be the successor with the maximal value according to the opponent�s model�

Minimax�pos� depth� �� � min fMinimax�succ� depth� j succ � SUCC�pos�g���

�Minimax�s� depth�

According to the inductive assumption�

�M�
��pass�s� depth� �fplayer�OPP MODEL��

�M�
��pass�pos� depth� �� �fplayer�OPP MODEL�� �

The intuition behind the above lemma is that minimax assumes an adversary model of the
opponent� It assumes that the opponent knows the player�s strategy� and its only interest is to
select moves that are worst according to the player�s strategy� The lemma says� that if you have a
good reason to believe that your opponent�s model is di�erent than that� you could only bene�t by
using M� instead of minimax� The reader should note that the above lemma does not mean that
M� selects a move that is better according to some objective criterion� but rather a subjectively
better move �from the player�s point of view� according to its strategy�� If the player does not have
a reliable model of its opponent� then playing minimax is a good cautious strategy�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

��� Incorporating depth of search into the model

The M� algorithm as well as minimax �which is a special case of M��� incorporates an implicit
assumption about the depth to which the opponent searches� M� that searches a tree of depth
d� assumes that its opponent searches to level d � �� and then assumes that its opponent assumes
that the player searches to level d � �� etc� This is a potentially wrong assumption� but it is a
good defensive mechanism� The player assumes that its opponent searches as deep as the player
can simulate the opponent�s search� It is meaningless for the player to assume that its opponent
searches to a deeper level since it can not simulate a search to such depth� However� as was discussed
in the introduction� if the player has reason to believe that its opponent searches to a lesser depth�
then it can utilize this belief against the opponent �to set traps� for example��

But why does the player have to search to level d� if it knows that its opponent searches to level
d� � d�� In order to predict the opponent�s selection� it is indeed enough to simulate its search
to level d�� However� in order to evaluate the merit of the opponent�s selection for the player� it
searches as deep as it can�

We have extended M� to handle models of depth of search� We de�ne a strategy to be a pair
�fplayer � dplayer�� A player is then a pair ��fplayer � dplayer� �MODEL� where MODEL is also a player�
Figure � lists the extended M� algorithm�

Procedure M� �pos� depth� ��fpl � dpl� �OPP MODEL��
if depth � �
return hNIL� fpl�pos�i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
player value� fpl�succ�

else

hopp board� opp valuei �M� �succ�min�depth� �� dopp��OPP MODEL�
hplayer board� player valuei �M� �opp board� depth� �� ��fpl� dpl� �OPP MODEL��

if player value � max value

max value� player value

max board� succ

return hmax board�max valuei

Figure �� An extended version of the M� algorithm that can handle a model of depth

The extended algorithm is di�erent from its simpler version on one point� Whereas the simple
algorithm allocates as many resources as possible to the call that simulates the opponent�s search
�which is the current depth allocation minus one�� the extended algorithm allocates the simulation
as maby resources as it believes that the opponent would have used� Of course� regardless of
the model of its opponent�s depth of search� the player should never exceed the total depth limit
allocated for the procedure �hence the min in the recursive call�� Figure � shows an example of
applying M� with a player that searches to depth � and an opponent model that searches to depth
��

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

f1=-8 f1=-7 f1=-4 f1= 0

a

b c

d e f g

hh ii j k ll mm n o

M*((f0,1))= 6

f0=4

M*((f1,3),(f0,1))= 0

f0=6 M*((f1,1))=-7 f0=-2 f0=-1
M*((f1,1))=0

M*((f0,1))=-1

Figure �� The set of recursive calls generated by calling M�
a� ��

f�� ���
f�� ����� For sake of clarity we
have included only the player in the parameter list of the calls� Each call is written next to the node it is
called from� The dashed lines show what move is selected by each call�

As in the former case� this algorithm can also be written in a one
pass form so that the game
tree will be expanded one time only� The extended one
pass version is shown in �gure ��

Procedure M�
��pass �pos� depth� ��fn� dn� � ��fn��� dn��� � �� � � � �f�� d��� � � ����

loop for i � n downto �
V �i����� fi�pos�

if depth � �
return hV �n�� � � � � V ���i

else SUCC �MoveGen�pos�
for each succ � SUCC

succ V �M�
��pass �succ� depth� �� ��fn� dn� � ��fn��� dn��� � �� � � � �f�� d��� � � ����

for each i associated with current player
d � min�di� depth�
for j � � to d

if succ V �i��j � �� � V �i��j�
V �i��j�� succ V �i��j � ��
if j � d and i � n

for k � � to min�di	�� depth�
V �i� ���k�� succ V �i� ���k� ��

return hV �n�� � � � � V �depth�i

Figure �� An extended non�recursive version of the M� algorithm that can handle a model of depth

The algorithm propagates vectors of values where each entry is associated with one of the
models as before� But while the simpli�ed non
recursive algorithm carries one value per model� the
extended algorithm carries a list of values for each model� The j�th element of the i�th list is the
value associated with a search to depth j by the i�th model� In the original M�� there was only one
search frontier� Therefore� the non
recursive version propagated only one value for every model�
However� the extended M� can call itself recursively from any node to any depth� Hence� every
level in the search tree is potentially a search frontier of one of those recursive calls� That is the
reason why the extended non
recursive algorithm carries a list of values for each model� Figure

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

shows the value matrices propagated up the tree when calling M�
��pass on the same tree as in �gure

��

a

b c

d e f g

h i j k l m n of1=-6
f0= 4

V0
V1

4
-6

10

f1= 6
f0=-8

V0
V1

-8
 6

10

f1=-8
f0=10

V0
V1

10
-8

10

f1=-7
f0= 3

V0
V1

3
-7

10

f1= 7
f0=-4

V0
V1

-4
7

10

f1=-2
f0= 4

V0
V1

4
-2

10
V0
V1

4
-4

10

f1= 0
f0= 6

V0
V1

6
0

10

f1=7
f0= 4V0

V1
4
7

10

6 f1=2
f0= 6V0

V1
6
2

10

-7 f1=9
f0=-2V0

V1
-2
9

10

7 f1=-4
f0=-1V0

V1
-1
-4

10

0

f1=-5
f0= 9

1
V0
V1

9
-5

0
6
2 f1=7

f0= 4

f1=-4
f0= 4

-7
V0
V1

4
7

10
-1
-4 0

f1=1
f0= 5V0

V1
5
1

10

7 2 0

Figure
� The value matrices propagated by M�
��pass�

The original M� algorithm� called with �fn� �fn��� �� � � � f�� � � ���� is equivalent to calling the
extended M� with ��fn� d� � ��fn��� d� �� � � � � �f�� �� � � ��� �recall that if n� the level of modelling is
less than the depth of search� we replace the zero
level player by a minimax player to make the
top
level player a d
level modeller�� In particular� we can get the minimax algorithm by calling the
extended algorithm with ��f� d� � ���f� d� �� � ��f� d� �� � � � �� � � ���� There is one di�erence in the
way that we extend the zero
level player for the case where n � d� In the case of the extended
algorithm� we replace the zero
level model by ��f�� d�� � ���f�� d�� �� � � � � �f�� �� � � ����

� Experimental study� The potential bene	t of using opponent

models

Now that we have developed an algorithm for using opponent models� we would like to evaluate the
potential bene�t of using this algorithm� We conducted a set of experiments with theM� algorithm
in order to test the e�ect of various parameters on the bene�t of using an opponent model�

In order to make the experimentation more feasible� we limited the experiments to one
level
modelling players� such that the player possesses a model of its opponent�s strategy �an evaluation
function and a depth of search�� and assumes that its opponent is a standard minimax player�
Furthermore� the actual opponent used for our experimentation was indeed a minimax player� In
order to evaluate the algorithms� we also allowed a regular minimax player to play against the same
opponent�

Therefore� the experiments described in this section involve three players��

MSTAR � ��fplayer � dplayer� � �fmodel � dmodel��
MINIMAX � ��fplayer � dplayer� � NIL�
OPPONENT � ��fopponent� dopponent� � NIL�

�Remember thatM� expands these players to d�level modelling players using the opposite function and a decreasing
series of depth�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

��� Experimentation methodology

In the experiments described in this section� we studied the e�ect of the following independent
variables�

depth�di�erence The di�erence between the depth of search used by the player and that used
by OPPONENT�

function�di�erence The di�erence in quality between the evaluation function used by the player
and that used by OPPONENT�

depth�error The di�erence between the depth of search used by MSTAR for the model of its
opponent� and that actually used by OPPONENT�

function�error The di�erence between the function used byMSTAR for the model of its opponent�
and that actually used by OPPONENT�

In order to be able to measure the function quality and the function error� we de�ned the
following functions�

Ff�a�x� �

�
f�x� if j�f�x�j � a

� otherwise
����

For a given evaluation function f � we can create a sequence of functions by varying a� As
a increases� the quality of the function increases� Therefore� we measure the distance in quality
between Ff�a� and Ff�a� by a� � a��

An experiment was conducted by varying the value of one of the independent variables and
�xing the values of the rest� For each value of the tested variable� we measured the performance of
the player by letting it play a set of ��� games against OPPONENT� The dependent variable used
for performance evaluation was the mean number of points earned during the tournament� where
a player gets two points for a win and one point for a draw� The experiments were conducted for
two di�erent games�

Tic�tac�toe on a �
 � board� There is a simple winning strategy for this game� However� for the
experiments described here� we ignored this strategy and used the well known �open lines
advantage� evaluation function� This strategy is considered to be reasonable if used with a
deep enough search ����

Checkers Was chosen because it is complicated enough to conduct more realistic experiments�
We used evaluation functions based on that used for Samuel�s checkers player�����

��� The e	ect of the di	erence in playing ability on the bene
t of modelling

The purpose of this experiment is to test the e�ect of the di�erence between the players� ability on
the bene�t of modelling� The basic hypothesis tested is that as the ability di�erence increases �in
favor of the player�� the potential merit of using the minimax assumption decreases� A stronger
player� who knows that its opponent is weak� can bene�t from this knowledge�

We conducted two experiments� In the �rst one we kept the evaluation function �xed and varied
the depth di�erence� In the second we kept the depth di�erence �xed and varied the di�erence

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Depth difference

Po
in

ts
 p

er
 g

am
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7

MSTAR

MINIMAX

Depth Difference

B
en

ef
it

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7

Figure �� Tic�tac�toe� The bene
t of knowing the opponent�s strategy as a function of the search depth
di�erence� The left graph shows the performance of MSTAR and MINIMAX against OPPONENT measured
by mean points per game� The right graph shows the bene
t of using M� over using minimax against three
di�erent opponents�

between the quality of the evaluation functions� MSTAR knew the strategy of OPPONENT and
used M� while MINIMAX used its own strategy as a model for OPPONENT�

Figure � shows the results obtained for depth di�erence in the domain of tic
tac
toe while �gure
�� shows the results obtained for depth di�erence and function di�erence in the domain of checkers�
The bene�t of using MSTAR over MINIMAX� when they both use the same player�s strategy� was
measured by the di�erence in their performance against OPPONENT�

Both experiments exhibited similar behavior � The advantage of MSTAR over MINIMAX
increased with the di�erence in playing ability between their strategy and OPPONENT�s strategy
up to a certain point where the advantage started to decline� The increase in the bene�t can be
explained by the observation that MINIMAX was too careful in predicting its opponent�s moves�
while MSTAR utilized its model and exploited the weaknesses of its opponent to its advantage�
The decline in higher di�erences can be explained by the observation that when the di�erence in
playing ability becomes larger� MINIMAX� as well as MSTAR� win in almost all games� In such a
case there is little place for improvement by modelling�

��� The e	ect of the modelling error on the player�s performance

The previous experiments demonstrated the bene�t of using opponent model� In the following
experiments we tested the risk of using a wrong model� We conducted two experiments in the
domain of checkers� For the �rst experiment� we �xed fplayer � fmodel and fopponent and varied the
values of dplayer� dmodel and dopponent� For the second experiment� we �xed the depth parameters
of the strategies and varied the functions fplayer � fmodel and fopponent by setting the a parameter of
the Ff�a �see eq� ��� functions�

A tournament of ��� games was conducted for each combination of values� Figure �� shows
the results obtained� Both experiments show similar behavior� The bene�t of using an opponent
model is maximal for the case of no error� When the error increases� the bene�t of using the model
decreases� Overestimation �negative error� is less harmful than underestimation�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Checkers

f1 - f1
f1 - f2

benefit (points/game diff.) x 10-3

depth diff.
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0.00 2.00 4.00 6.00

Checkers
benefit(points/game diff.) x 10-3

functions diff.
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 10.00 20.00

Figure ��� Checkers� The bene
t of knowing the opponent strategy as a function of the playing ability
di�erence� Measured by di�erence in mean points per game� The left graph shows the bene
t of usingM�

over minimax as a function of the di�erence in depth search between the player and the opponent� The right
graph shows the bene
t as a function of the di�erence in the quality of the evaluation function�

��� Summary

The experiments described in this section con�rmed the hypothesis that it is bene�cial to use an
opponent model� and that the bene�t is greater against weaker opponents� It also demonstrates
the harmfulness of using wrong model�

Our experiments failed to test the situation where the two opponents have similar playing
ability but use di�erent evaluation functions� Such a situation is quite common in game playing�
We predict that in such a case� M� with an appropriate model would have a signi�cant advantage
over minimax�

� Using uncertain models

In the previous sections� we assumed that the player is certain about its opponent model� However�
it is quite possible that a player is uncertain about its opponent model� especially when the model
is learned by the player� In this section� we generalize M� to a new algorithm� M�

� that can handle
uncertain models�

The algorithm assumes that the player possesses� in addition to a model of its opponent�s
function� an upper bound� �� on the distance between the model function and the actual opponent�s
function� Therefore� a player is now de�ned as ��f� ���MODEL�� where MODEL is also a player�
This means that each evaluation function that appears in a player �the player�s function� its model�s
function� its model�s model function etc��� has an associated bound on its error� Such a player will
be called an uncertain player� while a player with no error bound� such as the one used by M�� will
be called a certain player� Since the highest level player is certain about its own function� the error
bound associated with the top level function will be zero�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Performance vs. error in depth model

 0
 1
 2
 3
 4
 5

performance(points/game.)

error(d_op - d_model)
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0.00 5.00

Performance vs. error in function model

 0.8
 0.7
 0.4
 0.2

performance(points/game.)

-3error(f_op - f_model) x 101.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

0.00

Figure ��� The performance of M� as a function of the modelling error� The left graph shows the per�
formance of M� as a function of the error in depth model for various values of dplayer � dopponent� The
right graph shows the performance of M� as a function of the error in function model for various values of
fplayer � fopponent�

The error bounds associated with the model�s functions represent the player�s uncertainty about
its opponent� It is possible that the opponent is also an uncertain player� In such a case� its
functions will have associated error bounds� We assume that the error bounds associated with the
model�s functions dominate the error bounds associated with the opponent�s functions� Thus� for
example� a player ��f�� ��� ��f�� ���� �f�� ������ assumes that its opponent is �� �f�� ��� � �f�� ����� where
f� � �� � �f� � f� � �� and � �f� � ���� �f� � ���� 	 �f� � ��� f� � ����

The input for the M�
� algorithm is the same as for the M� algorithm� but with a player that

�ts our extended de�nition� The output is di�erent� Instead of returning a board and a value� the
new algorithm returns a set of boards and a range of values� The meaning of the range is� that if
we would have run M� with any set of functions that satisfy the error constraints� we would have
received a value that falls within the returned range� For every board in the set of returned boards�
there is a set of functions satisfying the error constraints� for which M� would have returned that
board as the selected move�

Figure �� shows the M�
� algorithm� The algorithm generates all the successors and calls itself

recursively with the opponent model to determine which set of moves �boards� the opponent can
choose from for each of the successors� For each board in such a set of boards� the player calls
itself recursively to determine the range of values that the board is worth for the player� Since the
player does not know which board of the set will actually be selected by the opponent� it takes the
union of these ranges as the range of values that the successor is worth for the player� In this stage�
the player has an associated range of values for each of its alternative moves� The lower bound
of the range returned by the algorithm is the maximal minimums of all these ranges� The reason
is that even with the worst possible set of functions satisfying the error constraints� the player is
guaranteed to have at least the maximal minimums� The upper bound is the maximal maximums
of all ranges since none of the boards can have a value which exceeds this maximum� The set of
boards returned is the set of all boards that can have a maximal value� If the highest value of a
range associated with a board is less than one of the minimums� there is no possibility that this

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

board will be selected �the other board is guaranteed to have a higher value��

The algorithm returns a set of boards with a range of values� In order to select a move� a
player can employ various selection strategies� A natural candidate is maximin ���� page ���
�����
a strategy that selects the board with maximal minimum�

Procedure M�
� �pos� depth� ��fpl� �pl� �OPP MODEL��

if depth � �
return hNIL� �fpl�pos�� �pl� fpl�pos� � �pl �i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
succ range� �fpl�succ�� �pl � fpl�succ� � �pl�

else

hopp boards� opp rangei �M�
� �succ� depth� ��OPP MODEL�

for each board � op boards

hpl boards� pl rangei �
M�
� �board� depth� �� ��fpl� �pl��OPP MODEL��

succ ranges� succ ranges � fpl rangeg
succ range� �min�i��max�j���i�j��succ ranges

root ranges� root ranges � fsucc rangeg
�rootmin� rootmax�� �max�i��max�j���i�j��root ranges

root boards� fb � SUCC j bmax � rootming
return hroot boards� �rootmin� rootmax�i

Figure ��� The M�
� algorithm

There are other adversary search algorithms ��� ��� that return a range of values� as does M�
� �

However� these algorithms were designed for di�erent purposes� The B� algorithm ��� returns a
range of values due to uncertainty associated with the player�s evaluation function� Nevertheless�
unlike the M�

� algorithm� B� adapts the basic zero
sum assumption and propagates values in the
same manner as does minimax� The conspiracy numbers algorithm ���� also manipulates ranges
of values� However� these ranges provide a heuristic measure of the accuracy of the minimax root
values of incomplete subtrees�

It is easy to see thatM�
� is a generalization of M�� To get M� we only need to call M�

� with all
error bounds equal to zero�� Furthermore� we can prove a stronger relationship between the two
algorithms�

Theorem � Let P be an uncertain player� Let hB� �i� j�i�M�
� �pos� depth� P �� Let Pc be a certain

player consisting of arbitrary functions that satisfy the error constraints of P � Let hb� valuei �
M��pos� depth� Pc�� Then value � �i� j� and b � B

�In fact� M� obtained by a specialization of M�

� has advantage over the original M�� In the original M�� we did
not handle the case where a node has successors with equal values� M�

� called with zero error bound will correctly
assume the worst case for opponent nodes with more than one possible outcome� while M� would have un�justi�ably
returned the �rst�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Proof�

By induction on d� the depth of the search tree� For d � � and d � � the proof follows
immediately�

Assume that the theorem is true for d � k� We will show that it is true for d � k� According
to the �rst inductive assumption� for any succ � SUCC�pos��M��succ� k��� OP MODEL�Pc�� re

turns a board b that belongs toB� the group of boards returned byM�

� �succ� k��� OP MODEL�P ���
According to the second inductive assumption� for any b � B� M��b� k � �� Pc� returns v� a value
in �i� j�� the range returned by M�

� �b� k � �� P �� For any succ � SUCC�pos�� M�
� returns a range

�a�� a�� such that a� is the minimal value of all the ranges of boards in B� and a� is the maximal
value of all these ranges� Therefore� value� the M� value of b that is associated with succ� belongs
to the range thatM�

� associates with succ� Finally� M� returns the maximal value among the succ
values� and in the same manner as for depth � �� this value belongs to the range returned by M�

� �
and all boards with this M� value� will belong to the group of boards returned by M�

� � �

It is interesting to note that if we call M�
� with a model that has an arbitrary opponent function

and in�nite error bounds� and with the maximin selection strategy� we actually get a minimax
player� Thus� while in section � we interpreted minimax as a player who assumes that its opponent
uses its own function �with opposite sign�� here we interpret minimax as a player who has no model
of its opponent and is therefore totally uncertain about its reactions� Whenever M�

� simulates the
opponent� all successor�ss boards will be returned since none of them can be excluded� The player
will then compute its values for these boards and will select the one with maximal minimum value�
which is exactly what minimax does�

f1= 0
f0= 8±1

f1= 5
f0= 10±1

f1= 1
f0= 4±1

f1= 2
f0= 8±1

a

b c

e f g h

M*(f1,f0)=[2,5]

M*(f0)=[8,11]

M*(f1,f0)= [0,0] M*(f1,f0)=[5,5]

[0,5]

M*(f1,f0)=[2,2]

M*(f0)=[7,9] [2,2]

d

f1= 10
f0= 0±1

f1= 0
f0= 8±0.5

f1= 5
f0= 10±0.5

f1= 1
f0= 4±0.5

f1= 2
f0= 8±0.5

a

b c

e f g h

M*(f1,f0)=[5,5]

M*(f0)=[9.5,10.5]

M*(f1,f0)= [0,0] M*(f1,f0)=[5,5]

[5,5]

M*(f1,f0)=[2,2]

M*(f0)=[7.5,8.5] [2,2]

d

f1= 10
f0= 0±0.5

Figure ��� An example for the sequence of calls produced by M�
� � The topleft
gure shows the calls for the

case of � � � while the right one is for the case of � � ��	�

Figure �� shows an example of two calls for M�
� on the same search tree� once with � � � and

once with � � ���� In the case of � � �� M�
� selects the same move as minimax does� In the case of

� � ���� M�
� selects the same move as M� does�

� Adding pruning to M�

One of the most signi�cant extensions of the minimax algorithm is the �� pruning technique which
can reduce the average branching factor� b� of the tree searched by the algorithm to about

p
b �
��

This algorithm avoids searching subtrees that cannot e�ect the minimax value of the parent node�

Is it possible to add such an extension to M� as well� Unfortunately� if we assume a total
independence between fplayer and fopp model � it is easy to show that such a procedure cannot exist�
Figure �� illustrates a situation where using minimax with evaluation function f� �or M�with the
player �f�� ��f�� NIL��� can avoid searching node g� whereasM� that uses f� instead of�f�� cannot

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

a

b c

d e f g

f1=8
f0=-6

f1=9
f0=-9

f1=4
f0=-5

f1=9
f0=6

V1=8
V0=-6

V1= 9
V0= 6

V1=9

?

Figure ��� An example for a search tree where the standard �� would have pruned the branch leading to
node g� However� such pruning would change the M� value of the tree�

perform this pruning� Knowing that the opponent will have at least �� for node c does not have
any implications on the value of node c for the player�

A similar situation arises in multi
player game trees� Luckhardt and Irani ���� describe a search
algorithm� Maxn� for multi
player games and conclude that pruning is impossible without further
restrictions about the players� evaluation functions� Korf ���� showed that a shallow pruning for
Maxn is possible if we assume an upper bound on the sum of the players� functions� and a lower
bound on every player�s function�

The basic assumption used for the original �� algorithm is that fplayer�fopponent � � �the zero

sum assumption�� This assumption is used to infer a bound on a value of a node for a player based
directly on the opponent�s value� A natural relaxation to this assumption is jfplayer � fopponentj � b�
This assumption means that while fplayer and �fopponent may evaluate a board di�erently� this
di�erence is bounded� For example� the player may prefer a rook over a knight while the opponent
prefers the opposite� In such a case� although the player�s value is not a direct opposite of the
opponent�s value� we can infer a bound on the player�s value based on the opponent�s value and b�

The above assumption can be used in the context of the M�
��pass algorithm to determine a

bound on Vi � Vi�� at the leaves level� But in order to be able to prune using this assumption� we
�rst need to determine how these bounds are propagated up the search tree�

Lemma � Assume that A is a node in the search tree spanned by M�
��pass� Assume that S�� � � � � Sk

are its successors� If there exist non�negative bounds B�� � � � � Bn� such that for each successor Sj�
and for each model i�

��VSj �i� � VSj �i� ��
�� � Bi� Then� for each model � � i � n�

jVA�i� � VA�i� ��j � Bi � � �Bi�������

Proof�

Assume VA�i� � VSj �i� and VA�i� �� � VSk �i�� If j � k� VA�i� and VA�i� �� were propagated from
the same successor� therefore�

jVA�i� � VA�i� ��j � Bi � Bi � � �Bi�������

If j �� k� A is an i�th player node and therefore VA�i� �� and VA�i� �� were propagated from the
same successor Sk� It follows that

Bi�� � VSk �i� �� � VSk �i� �� � VSk �i� �� � VSj �i� �������

It is easy to show that for any successor S�

jVS�i�� VS�i� ��j � Bi � Bi�������

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Summing up the two inequalities for the Sj successor� we get

Bi � � �Bi�� � VSj �i� � VSk �i� �� � VA�i� � VA�i� �������

For the second side of the inequality�

VA�i� � VA�i� �� � VSj �i� � VSk �i� �� � VSk �i� � VSk �i� �� � �Bi � �Bi � � �Bi��� �����

��� The ��� pruning algorithm

Based on lemma �� we have developed an algorithm� ��� � that can perform a shallow and deep
pruning assuming bounds on the absolute sum of functions of the player and its opponent model�
The algorithm takes as input a position� a depth limit� and for each model i� a strategy fi� an
upper bound bi on jfi � fi��j� and a cuto� value �i� It returns the M

� value of the root by only
searching nodes that might a�ect this value�

Procedure ����pos� depth�
��fn� bn���fn��� bn���� �� � � � �f�� b��� � � �����n� � � � � ����

if depth � �
return �hfn�pos�� � � � � f��pos�i� hbn� � � � � b�i�

else SUCC �MoveGen�pos�
for each succ � SUCC

�succ V�succ B � � ����succ� depth� ��
��fn� bn���fn��� bn���� �� � � � �f�� b��� � � �����n� � � � � ����

loop for each i associated with current player
B�i�� succ B�i� � � � succ B�i� ��
if succ V�i� � V �i�
V �i�� succ V�i�
if i � n

V �i� ��� succ V�i� ��
if V �i� � �i

�i � V �i�
if for every i not associated with current player ��i � B�i�� V �i� ���
return �hV �n�� � � � � V �depth�i� hB�n�� � � � � B�depth�i�

return �hV �n�� � � � � V �depth�i� hB�n�� � � � � B�depth�i�

Figure ��� The ��� algorithm

The ��� algorithm is listed in �gure ��� The algorithm works similarly to the original ��
algorithm� but is much more restricted in what subtrees can be pruned� The ��� algorithm only
prunes branches that all models agree to prune� In regular ��� the player can use the opponent�s
value of a node to determine whether it has a chance to get a value that is better than the current
cuto� value� This is based on the opponent�s value being exactly the same as the player�s value
�except for the sign�� In ��� � the player�s function and the opponent�s function are not identical�
but their di�erence is bounded� The bound on Vi � Vi�� depends on the distance from the leaves

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

level� At the leaves level� it can be directly computed using the input bi� At distance d� the bound
can be computed from the bounds for level d� � as stated by lemma ���

A cuto� value �i for a node v is the highest current value of all the ancestors of v from the
point of view of player i� �i is modi�ed at nodes where it is player i�s turn to play� and is used for
pruning where it is player i� ��s turn to play� At each node� for each i associated with the player
whose turn it is to play� �i is maximized any time Vi is modi�ed� For each i such that i � � is
associated with the current player� the algorithm checks whether the i player wants its model �the
i� � player� to continue its search�

a

b c

d e f g

f1=8
f0=-6

f1= 9
f0=-9

f1=4
f0=-5

V1= 8
V0=-6

V1=4
V0=-5

V1=8

| f1 + f0 | ≤ 2

α1=8
8≥2-(-5)

Figure ��� An example to pruning performed by ����

Figure �� shows a search tree similar to the one in �gure �� with one di�erence� every leaf l
satis�es the bound constraint jf��l� � f��l�j � �� This bound allows the player to perform a cuto�
of branch g� knowing that the value of node c for the opponent will be at least ��� Therefore� its
value will be at most � for the player�

Lemma � Let hV�Bi � ����pos� d�PLAYER� ���� � � � ������ Let V � �M�
��pass�pos� d�PLAYER��

where PLAYER� is PLAYER without the bounds� Assume that for any leaf l of the game tree
spanned from position pos to depth d� jfi�l� � fi���l�j � bi� Then� V � V ��

Proof�

For proving that M�
��pass�pos� � ����pos�� it is su�cient to show that any node pruned by

��� can have no e�ect on M�
��pass�pos�� Assume that u is an opponent�s node� and after searching

one of its successors� all the models associated with the player agree to prune� This means that
for every model i associated with the player� �i � Bi � V �i � ��� From lemma �� it follows that
V �i��V �i��� � Bi and therefore �i � V �i�� Since �i is the current best value for V �i� of the parent
node� there is no way that the current V �i� will a�ect its father�s value� The same argument holds
if u is a player�s node� �

As the player function becomes more similar to its opponent model �but with anopposite sign��
the level of pruning increases up to the point where they use the same function� in which case ���

prunes as much as ���

Finding an upper bound on the sum of the evaluation functions is an easy task for most practical
evaluation functions ���� Unfortunately� the bound on the sum of values increases with the distance

�For sake of clarity� the algorithm computes the bound B for each node using the bounds returned from its
successors� However� for e�cient implementation� a table of the B values can be computed once at the beginning of
the search� since they depend only on the bi and the depth�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Bound

P
or

tio
n

P
ru

ne
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Figure ��� The portion of leaves pruned by ��� as a function of the bound on jf� � f�j�

from the leaves and therefore reduces the amount of pruning� Therefore� using loose bounds will
probably prohibit pruning�

In order to get some idea of how much ��� prunes� we have run a simulation applying ���

on uniform trees of depth d� and �xed branching factor b� whose leaves were assigned two random
values with a sum bounded by B �we mark such a tree by TREE�b� d�B��� The experiment was run
with one
level modelling player� �f�� f�� such that jf� � f�j � B� The experiments were conducted
for TREE��� ���B�� For each bound B we created ���� trees and ran ��� on them� Graph ��
shows the portion of leaves pruned as a function of the bound B� As expected� the amount of
pruning decreases as the di�erence between the functions increases� The maximum level of pruning
is achieved for B � �� where ��� is reduced to standard ���

� Learning a model of the opponent�s strategy

In the �rst part of this work we have presented methods for using opponent models� In this section
we describe a methodology for acquiring such a model from examples� A set of boards with the
opponent�s decisions is given as input� and the learning procedure produces a model as output�
This framework is similar to the scenario used by Kasparov as described in the opening quote�

To make the learning task more feasible� we assume that the opponent is a minimax player
and its model therefore consists of two components� a depth of search and an evaluation function�
Since the space of possible depth values is much smaller than the space of possible function� we
start by describing a method for learning the opponent�s depth
of
search� and proceed with the
more complicated task of learning its function�

��� Learning the depth of search

Given a set of examples� each consisting of a board together with the move selected by the opponent�
it is relatively easy to learn its depth of search �dopponent� under the assumption that the opponent
searches to a �xed depth and that its evaluation function is known to the learner� Since there

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

is only a small set of plausible values for dopponent� we can test which of them agrees best with
the opponent�s decisions� One possibility is to test for strict agreement� i�e�� for any example
�board�move� we can reward any depth d for which minimax�board� d� returns move�board��

When fmodel � fopponent� such a method needs only a few examples to infer dopponent� However�
in the case where fmodel di�ers from fopponent� such an algorithm is prone to error� In order to
improve the learning ability in the presence of a wrong function model� we have developed an
improved algorithm that considers the relative ordering between possible moves� The algorithm
rewards every depth with the number of moves that have lower minimax values� and penalizes it
with the number of alternative moves with higher minimax values� The algorithm is shown in �gure
�
�

Procedure LearnDepth�EXAMPLES�
for each hboard�movei � EXAMPLES

boards� successors�board�
for d from � to MaxDepth

M � minimax�move�board�� d� ��
count�d�� count�d�

� j fb � boards jminimax�b� d� �� �Mg j
� j fb � boards jminimax�b� d� �� � Mg j

return d with maximal count�d�

Figure �
� An algorithm for learning a model of the opponent�s depth
dmodel�

In order to study the e�ect of the distance between the model function and the actual function
on the learning ability of the algorithm� we have performed the following experiment�

�� fmodel � used by the learning algorithm� was �xed�

�� fopponent was de�ned to return a value according to a parameter p� The function returns fmodel

with probability p and a random value with probability �� p�

�� A set of games between two minimax players� PLAYER and OPPONENT� was conducted�
��� boards that OPPONENT faced� together with its chosen moves� were given as examples
to the learning algorithm which updated dmodel�

�� After each move� the current dmodel was compared against dopponent� If they were in disagree

ment� the accumulative error rate was incremented�

�� The experiment was repeated for various p�

Figure �� shows the accumulative error rate of the algorithms as a function of the distance
between fmodel and fopponent� It also shows the d counters after ��� examples for the case of fmodel

with probability of error equals to �����

The accumulative error rate is the portion of the learning session where the learner has a wrong
model of its opponent�s depth� The experiment shows that indeed when the function model is
close enough to the opponent�s function� the algorithm succeeds in learning the opponent�s depth�
However� when the opponent�s function is signi�cantly di�erent from the model� the algorithm�s
error rate increases�

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Depth Learning: Accumulative error rate
error

function diff.
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.50 1.00

Learning the op. depth
No. of samples

depth
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

1.00 2.00 3.00 4.00 5.00

Figure ��� Learning the depth of search using ��� examples� where dopponent � � and fmodel di�ers from
fopponent with probability between � and �� The left graph shows the accumulative error rate as a function
of the error of the function model� The right graph shows the counters of the learning algorithm for function
model error of ���	�

Learning the opponent�s depth of search may provide very useful information� especially in a
game against a weaker opponent� When a player is aware of the limit of its opponent�s search
horizon� it can lead the opponent to trap or swindle positions ����

��� Learning the opponent�s strategy

The performance of the previous algorithm depends on the knowledge of the opponent�s evaluation
function� The natural next step is to develop an algorithm for learning evaluation functions�
However� learning the opponent�s function will probably depend on knowing the opponent�s depth
of search� In order to break this circle� we have developed an algorithm for learning the function
and depth of search simultaneously�

Since learning an arbitrary real function is hard� we have made the following simplifying as

sumptions�

�� The opponent�s function is a linear combination of features� f�b� � w � h�b� � P
i wihi�b�

where b is the evaluated board and hi�b� returns the ith feature of that board�

�� A superset of the features used by the opponent is known to the learner�

�� The opponent does not change its function while playing�

Under these assumptions� the learning task is reduced to �nding the pair �wmodel� dmodel�� The
learning procedure listed in �gure �� computes for each possible depth d a weight vector wd� such
that the strategy �wd � h� d� most agrees with the opponent�s decisions� The adapted model is the
best pair found for all depths�

For each depth� the algorithm performs a hill
climbing search� improving the weight vector until
no further signi�cant improvement can be achieved� Assume that wcurrent is the best vector found

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Procedure LearnStrategy�examples�
w� � �
for d from � to MaxDepth

wd � wd��

Repeat

wcurrent � wd

wd � FindSolution�examples� wcurrent� d�
progress� jscore�wd� d�� score�wcurrent� d�j � �

Until no progress
return �wd� d� with the maximal score�

Procedure FindSolution�EXAMPLES�wcurrent� d�
Constraints � �

for each hboard� chosen movei � EXAMPLES

SUCC �MoveGen�board�
for each succ � SUCC

dominantsucc �Minimax�succ� wcurrent� d� ��
Constraints � Constraints � fw�h�dominantchosen move�� h�dominantsucc�� � �g

return w that satisfy Constraints

Figure ��� An algorithm for learning a model of the opponent�s strategy

so far for the current depth� For each of the examples� the algorithm builds a set of constraints
that express the superiority of the selected move over its alternatives� The algorithm performs a
minimax search using �wcurrent �h� d���� starting from each of the successors of the example board�
At the end of this stage each of the alternative moves can be associated with the �dominant�
board that determines its minimax value� Assume that bchosen is the dominant board of the chosen
move� and b�� � � � � bn are the dominant boards for the alternative moves� The algorithm adds the n
constraints fw � �h�bchosen�� h�bi�� � � j i � �� � � � � ng to its accumulated set of constraints�

The next stage consists of solving the inequalities system� i�e�� �nding w that satis�es the system�
The method we used is a variation of the linear programming method used by Duda and Hart ��� for
pattern recognition� Before the algorithm starts its iterations� it sets aside a portion of its examples
for progress monitoring� This set is not available to the procedure that builds the constraints� After
solving the constraints system � the algorithm tests the solution vector by measuring its accuracy
in predicting the opponent�s moves for the test examples� The performance of the new vector is
compared with that of the current vector� If there is no signi�cant improvement� we assume that
the current vector is the best that can be found for the current depth� and the algorithm repeats
the process for the next depth using the current vector for its initial strategy�

The inner loop of the algorithm� that searches for the best function for a given depth� is similar
to the method used by DEEP THOUGHT ��� and by CHINOOK ��
� for tuning their evaluation
function from book moves� However� these programs assume a �xed small depth for their search�
Meulen ���� used a set of inequalities for book learning� but his program assumes only one level
depth of search�

The strategy learning algorithm was tested by the following experiment� Three �xed strategies
�f��
�� �f��
� and �f�� ��� were used as opponents� where f� and f� are two variations of Samuel�s

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

function� Each strategy was used to play games until ���� examples were generated and given
to the learning algorithm� The algorithm was also given a set of ten features� including the six
features actually used by the strategies�

The algorithm was run with a depth limit of ��� The examples were divided by the algorithm
into a training set and a testing set of size
��� For each of the eleven depth values� the program
performed �
� iterations before moving to the next depth� Each iteration included using the linear
programing method for a set of several thousand constraints��

The results of the experiment for the three strategies is shown in �gure ��� The algorithm
succeeded for the three cases� achieving an accuracy of ���� for two strategies and ��� for the
third� Furthermore� the highest accuracy was achieved for the actual depth used by the strategies�

Strategy learning

(f1,8)
(f2,8)
(f1,6)

success/guesses

depth
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5.00 10.00

Figure ��� Learning opponent�s strategy

��� OLSY� An Opponent Learning System

In order to test how well the M� algorithm and the learning algorithm can be integrated� we have
built a game playing program� OLSY� that is able to acquire and maintain a model of its opponent
and use it to its advantage� The system consists of two main components� a game
playing program
and a learning program� The learning program accumulates the moves performed by the opponent�
After playing a small number of moves ��� in our experiments�� the system updates its model of
opponent�

The OLSY system was tested in a realistic situation by letting it play a sequence of games
against regular minimax players� OLSY and its two opponents each used a di�erent strategy
but with a roughly equivalent playing ability� We stopped the games several times to test how
well OLSY performs against its opponents� The test was conducted by turning o� the learning
mechanism and performing a tournament of ��� games between the two�

Figure �� shows the results of this experiment� The players start with almost equivalent ability�
However� after only few examples� the learning program becomes signi�cantly stronger than its

�We have used the very e�cient lp solve program� written by M�R�C�M� Berkelaar� for solving the constraints
system

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

Learning system

Opponent 1
Opponent 2

performance(points/game)

examples
1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36

0.00 50.00 100.00 150.00 200.00

Figure ��� The performance of the learning system as a function of the number of examples� Measured by
mean points per game�

non
learning opponents� The performance of OLSY kept increasing until about �� examples were
processed� After that� the learning curve was levelled� We inspected the accuracy of the models as
determined by the learning procedure� After ��� examples� OLSY succeeded in acquiring models
for its two opponents with a quality of ��� for the �rst and �
� for the second� Learning more
examples did not cause any further modi�cation of the models�

� Conclusions

The minimax algorithm assumes that the opponent uses the same strategy as does the player� In
this paper we presented a generalized version of the minimax algorithm that can utilize di�erent
opponent models� We started by de�ning a player as a pair of a strategy and a model� where
the model is also a player� We proceeded with the M� algorithm� which simulates the opponent�s
search to determine its expected decision for the next move� and evaluates the resulted board by
searching its associated subtree using its own strategy� We then presented the M�

��pass algorithm�
which is an e�cient version M� that expands the tree only once� but propagates all the necessary
values� The M� algorithm �as well as Minimax� assumes that the opponent searches as deep as the
player�s search horizon� We extended the M� and M�

��pass algorithms to enable the utilization of
models of the opponent�s depth of search�

Experiments performed in the domains of checkers and tic
tac
toe demonstrated the advantage
of M� over minimax but also showed that an error in the model can deteriorate performance
signi�cantly� We developed an algorithm� M�

� � for the cases where the player knows a bound on
the error� The algorithm converges to M� when the error bound approaches zero� and converges
to minimax when the bound goes to in�nity�

One of the most important techniques in searching game trees is �� pruning� We explored the
possibility of applying similar pruning techniques to M�� Unfortunately� pruning is impossible in
the general case since the zero
sum assumption does not hold� However� we developed a pruning
algorithm� ���� that utilizes a relaxed version of the zero
sum assumption to allow pruning� Pruning

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

is allowed given a tight bound on the sum of the player�s and model�s functions� When the bound
approaches zero� the amount of pruning approaches that of ���

In the second part of the paper we tackled the problem of learning an opponent�s model by
using its moves as examples� We developed an algorithm for learning an opponent model� both
depth and evaluation function� The algorithm works by iteratively increasing the model depth
and learning a function that best predicts the opponent�s moves for that depth� For testing the
algorithm� we tried to learn minimax players that search to a �xed depth and use an evaluation
function based on a linear combination of features� known to the learner� The results show that
few examples are needed for learning a model that agrees almost perfectly with such a player� In
the future� we mean to investigate the algorithm�s ability to model more sophisticated players� We
tested the algorithm in a game
playing learning system� named OLSY� The system was tested in
a realistic situation� learning its opponent while playing against it� The system indeed showed an
improvement as more examples of opponent�s moves became available�

We believe that this work presents signi�cant progress in the area of using opponent models�
TheM� family of algorithms presented in this paper are all generalizations of minimax that allow us
to use n
level opponent models together with bounds on their errors� This work also presents initial
steps in the area of learning opponent models� The task of learning n
level models is extremely
di�cult and deserves further research�

� Acknowledgements

We would like to thank David Lorenz and Yaron Sella for letting us use their e�cient checker playing
code as a basis for our system� We would also like to thank Arie Ben
Ephraim for helping us in
the early stages of this work� Finally� we thank M�R�C�M� Berkelaar from Eindhoven University of
Technology� The Netherlands for making his extremely e�cient lp solver program available to the
public�

References

��� B� Abramson� Expected outcome� A general model of static evaluation� IEEE Trans� on
Pattern Analysis and Machine Intelligence ����
������ �����

��� H� Berliner� Search and knowledge� In Proceeding of the International Joint Conference on
Arti�cal Intelligence 	IJCAI ���� pages ���	���� �����

��� H� Berliner� The b� tree search algorithm� A best
�rst proof procedure� Arti�cal Intelegence
��� ������ �����

��� D� Carmel and S� Markovitch� Learning models of opponent�s strategies in game playing� In
Proceedings of the AAAI Fall Symposium on Games� Planning and Learning� pages ���	����
Raleigh� NC� Oct �����

��� R� O� Duda and P� Hart� Pattern Classi�cation and Scene Analysis� New York� Wiley and
Sons� �����

��� F�
H� Hsu� T� Ananthraman� M� Campbell� and A� Nowatzyk� Deep thought� In T� Marsland
and J� Schae�er� editors� Computers� Chess and Cognition� pages ��	�
� Springer New York�
�����

��

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

��� P� Jansen� Problematic positions and speculative play� In T� Marsland and J� Schae�er� editors�
Computers� Chess and Cognition� pages ���	�
�� Springer New York� �����

�
� D� Knuth and R� Moore� An analysis of alpha
beta pruning� Arti�cal Intelligence �� no���
�������� �����

��� R� E� Korf� Generalized game trees� In Proceeding of the International Joint Conference on
Arti�cal Intelligence 	IJCAI
��� pages ��
	���� Detroit� MI� Aug� ��
��

���� R� E� Korf� Multy
player alpha
beta pruning� Arti�cal Intelegence �
� ������� �����

���� D� Levy and M� Newborn� How Computers Play Chess� W�H� Freeman� �����

���� R� D� Luce and H� Rai�a� Games and Decisions� New York� Wiley and Sons� �����

���� C� A� Luckhardt and K� B� Irani� An algorithmic solution of n
person games� In Proceeding
of the Ninth National Conference on Arti�cal Intelligence 	AAAI�
��� pages ��
	���� August
��
��

���� D� A� McAllester� Conspiracy numbers for min
max search� Arti�cal Intelegence �
� �
������
��

�

���� E� H� D� P� J� Gmytrasiewicz and D� K� Wehe� A decision theoretic approach to coordinating
multiagent interactions� In Proceedings of the International Joint Conference on Arti�cal
Intelligence 	IJCAI ���� pages ��	�
� �����

���� A� Samuel� Some studies in machine learning using the game of checkers� IBM Journal� ��
�������� �����

���� A� Samuel� Some studies in machine learning using the game of checkers ii	recent progress�
IBM Journal� ��� �������� �����

��
� J� Schae�er� J� Culberson� N� Treloar� B� Knight� P� Lu� and D� Szafron� A world championship
caliber checkers program� Arti�cal Intelegence
�� �����
�� �����

���� C� E� Shannon� Programming a computer for playing chess� Philosophical Magazine� ���
�
����
� �����

���� M� van der Meulen� Weight assessment in evaluation functions� In D� Beal� editor� Advances
in Computer Chess
� pages
�	
�� Elsevier Science Publishers� Amsterdam� ��
��

�

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
IS

94
02

 -
 1

99
4

