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Abstract

While human players adjust their playing strategy according to their opponent� computer
programs� which are based on the minimax algorithm� use tha same playing strategy against a
novice as against an expert� This is due to the assumption of minimax that the opponent uses
the same strategy as the player� This work studies the problem of opponent modelling in game
playing� We recursively de
ne a player as a pair of a strategy and an opponent model� which is
also a player� A strategy can be determined by the static evaluation function and the depth of
search� M�� an algorithm for searching game�trees using an n�level modelling player that uses
such a strategy� is described and analyzed� We demonstrate experimentally the bene
t of using
an opponent model and show the potential harm caused by the use of an inaccurate model� We
then describe an algorithm�M�

� � for using uncertain models when a bound on the model error
is known� Pruning in M� is impossible in the general case� We prove a su�cient condition for
pruning and present a pruning algorithm� ���� that returns the M� value of a tree� searching
only necessary subtrees� Finally� we present a method for acquiring a model for an unknown
player� First� we describe a learning algorithm that acquires a model of the opponent�s depth
of search by using its past moves as examples� Then� an algorithm for acquiring a model of the
player�s strategy� both depth and function� is described and evaluated� Experiments with this
algorithm show that when a superset of the set of features used by a 
xed opponent is available
to the learner� few examples are su�cient for learning a model that agrees almost perfectly with
the opponent�

� Introduction

����At the press conference� it quickly became clear that Kasparov had done his home

work� He admitted that he had reviewed about �fty of DEEP THOUGHT�s games and
felt con�dent he understood the machine���� ����

One of the most notable challenges that the Arti�cial Intelligence research community has been
trying to face during the last �ve decades is the creation of a computer program that can beat
the world chess champion� Most activity in the area of game
playing programs has been concerned
with e�cient ways of searching large game trees� However� good playing performance involves

�This research was partially supported by the Fund for the Promotion of Research at the Technion
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additional types of intelligent processes� The quote above highlights one type of such a process
that is performed by expert human players� acquiring a model of their opponent�s strategy�

While human players adjust their playing strategy according to their opponent� computer pro

grams play the same against a novice as against an expert� Most playing programs use the minimax
algorithm for search ����� The main assumption of this algorithm is that the opponent uses the
same strategy as the player�

There are several situations where the modelling approach has advantage over the non
modelling
approach of the standard minimax procedure� Jansen ���� describes two situations in which it is
important to consider the opponent�s playing ability� One is a swindle position� where the player
has reason to believe that the opponent will underestimate a good move� and will therefore play a
poorer move instead� Another situation is a trap position� where the player expects the opponent
to overestimate and therefore play a bad move� Choosing trap or swindle positions is good strategy
when the player has reason to believe that its opponent searches to shallower depth than itself�
Another situation� where an opponent model can be bene�cial� is a losing position ���� If all possible
moves lead to a loss� minimax chooses one of them arbitrarily� in contrast to human players that
can utilize their opponent model in order to select a swindle move�

Several researchers have pointed out the importance of opponent modelling ���� �� 
� �� �� �
��
but the acquisition and utilization of an opponent model have not received much attention in the
computational game research community� Korf ��� outlined a method of generalizing the minimax
algorithm for utilizing multiple
level models of evaluation functions� The work described in this
paper builds on Korf�s research and expands it in several ways�

The goal of this research is to study the utilization and acquisition of opponent models in game

playing� In order to do so� we will make an attempt to �nd answers to the following questions�

�� What is a model of opponent�s strategy�

�� Assuming that we possess such a model� how can we utilize it�

�� What are the potential bene�ts of using opponent models�

�� How does the accuracy of the model e�ect its bene�t�

�� How can we use an uncertain model�

�� How can a program acquire a model of its opponent�

Section � of this paper deals with the �rst two questions� De�ning an opponent model and de

veloping algorithms for using such a model� Section � deals with the third and the fourth questions�
Measuring the potential bene�ts of modelling and testing the e�ects of modelling accuracy on its
bene�ts� In section �� we describe an algorithm for using uncertain models� Section � describes a
method for incorporating pruning into the algorithms� Section � describes algorithms for acquiring
opponent models� Finally� section � concludes�


 Using opponent models

Every human player has either an explicit or an implicit model of the way that its opponent plays�
In this section we give a precise de�nition of an opponent model and develop an algorithm for using
such a model�
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De�nition � A player is de�ned by the strategy that it uses and by the model of its opponent� The
opponent model is also a player�

�� Given a strategy S� P � �S�NIL� is a player�

�� Given a strategy S and a player O� P � �S�O� is a player�

The �rst element of a player is called the player�s strategy and the second element is called the
opponent model�

De�nition � Given a player P � �S�O�� The modelling level of a player is de�ned by the recur�
rence�

ML�P � �

�
� if O � NIL

ML�O� � � otherwise
���

Thus� a zero
level modelling player� �S�� NIL�� is one that does not model its opponent� A one

level modelling player� �S�� �S�� NIL��� is one that has a model of its opponent� but assumes that
its opponent is a zero
level modelling player� A two
level modelling player� �S�� �S�� �S�� NIL����
is one that uses a strategy S�� and has a model of its opponent� �S�� �S�� NIL��� The opponent�s
model uses a strategy S� and has a model� �S�� NIL�� of the player� The recursive de�nition of a
player is in the spirit of the Recursive Modelling Method �RMM� by Gmytrasiewicz� Durfee and
Wehe �����

��� The M� algorithm

Most of the game
playing programs use a minimax search procedure in which the player evaluates
boards by a function f � and believes that the opponent evaluates boards by the function �f �
Assume that the player uses a function f�� but believes that the opponent uses a di�erent function
f�� What is a good search strategy that incorporates this belief� What is a good search strategy
when the player uses a function f�� believes that the opponent uses function f�� and also believes
that the opponent believes that the player evaluates boards using a third function f��

We have developed an algorithm� M�� shown in �gure �� that can handle such modelling to
any level�� Let us assume that a playing strategy is determined by a static evaluation function
f � A player is then� according to de�nition �� a pair �f�MODEL� where MODEL is also a player�
The input for the algorithm is a position� a depth limit� and a player� and the output is the move
selected by the player and its value�

The algorithm generates the successor boards and simulates the opponent�s search from each of
them in order to anticipate its choice� This simulation is done by applying the algorithm recursively
with the opponent model as the player� The player then evaluates each of its optional moves by
evaluating the outcome of its opponent�s reaction by applying the algorithm recursively using its
own strategy�

Figure � shows an example for a search tree spanned by M��a� �� f��f�� f���� The numbers at
the bottom are the static values of the leaves� The recursive calls applied to each node are listed
next to the node� The dashed lines indicate what move is selected by each recursive call�

�We have presented an earlier version of the M� algorithm in a previous publication ��	� However� the earlier
version was limited to one�level modelling players�
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Procedure M� �pos� depth� �fpl�OPP MODEL��
if depth � �
return hNIL� fpl�pos�i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
player value� fpl�succ�

else

hopp board� opp valuei �M� �succ� depth� ��OPP MODEL�
hplayer board� player valuei �M� �opp board� depth� �� �fpl�OPP MODEL��

if player value � max value

max value� player value

max board� succ

return hmax board�max valuei

Figure �� The M� algorithm

The player simulates its opponent�s search from nodes b and c� The opponent simulates the
player by using its own model of the player from nodes d and e� At node d the model of the player
used by the opponent �f�� selects node h� The opponent then applies its f� function to node h and
concludes that node h� and therefore node d� are worth ��� The opponent then applies the player�s
model �f�� to node e� concludes that the player will select node j� applies its own function �f��
to node j� and decides that node j� and therefore node e� are worth �
� Therefore� the opponent
model� when applied to node b� selects the move that leads to node d� The player then tests how
much node d is worth according to its criterion �f��� It applies M

� to node d and concludes that
node d� and therefore node b� are worth 
� Using a similar search from node c yields ��� Therefore�
the player selects the move that leads to c with a value of ��� Note that using a regular minimax
search with f� would have resulted in selecting the move leads to node b with a value of ��

How does minimax �t into our new algorithm� It turns out that a minimax search to depth
d with evaluation function f is in fact equivalent to the M� algorithm called with the d
level

modelling player

dz 
� �
�f� ��f� �f� � � �����

There is one potential complication that deserves special handling� Each simulation of the
opponent�s search involves a call toM� with a lower level modelling player� What will the procedure
do if the modelling level of the original player n is smaller than the depth of the search tree d�
In such a case� we assume that the �
level modelling player f� is playing minimax� and therefore

replace it by

d�nz 
� �
�f�� ��f�� �f�� � � �����

It is obvious that the M� algorithm does multiple expansions of parts of the search tree� For
analyzing the complexity of M�� let us assume that the search tree has a uniform branching factor
b� The number of leaves spanned by M� for such a tree with depth d can be measured by the
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f2= 8
f1=-6
f0= 4

f2=-4
f1= 6
f0=-8

f2= 4
f1=-8
f0=10

f2= 7
f1=-7
f0= 3

f2=-6
f1= 7
f0=-4

f2= 1
f1=-2
f0= 4

f2=10
f1=-4
f0= 4

f2= 2
f1= 0
f0= 6

a

b c

d e f g

h i j k l m n o

M*(f1,f0)=-6

M*(f0)=4
M*(f2,(f1,f0))=8

M*(f0)=10

M*(f1,f0)=-6 M*(f1,f0)=-8

M*(f1,f0)=0

M*(f0)=4 M*(f0)=6

M*(f1,f0)=-2 M*(f1,f0)=0

M*(f2,(f1,f0))=10

M*(f2,(f1,f0))=10

Figure �� The set of recursive calls generated by calling M�
a� �� 
f�
f�� f����� For sake of clarity we have
included only the player in the parameter list of the calls� Each call is written next to the node it is called
from� The dashed lines show what move is selected by each call�

following recurrence �

Tb�d� �

���
��

� if d � �
b if d � �
b �Tb�d� �� � Tb�d� ��� otherwise

���

Lemma � �� The number of leaves spanned by M� for a tree with uniform branching factor b
and depth d is

Tb�d� �
�d	�
b � �b

d	�

p
b� � �b

���

where �b �
b	
p
b�	�b
�

� and �b �
b�

p
b�	�b
�

�

�� Tb�d� � �db � �b� ��d

Proof�

By induction on d� It is easy to verify equation � for d � � and d � �� Assume it�s correctness
for depths less than d�

Tb�d� � b �Tb�d� �� � Tb�d� ��� � b

�
� �db � �b

d

p
b� � �b

�
�d��
b � �b

d��

p
b� � �b

�
	 ����

� bp
b�	�b

h
��b � ���d��

b � ��b � ���b
d��

i

It is also easy to verify that b��b � �� � ��b and b��b � �� � �b
�
� Placing the two equalities in

equation � completes the proof of the �rst statement� For the second statement� the �rst inequality
will be proved by induction on d� It is easy to verify the inequality for d � � and d � �� Assume
its correctness for depth � d�

Tb�d� � b �Tb�d� �� � Tb�d� ��� � b
h
�d��
b � �d��

b

i
� b

h
��b � ���d��

b

i
� �db���

�For b � � we get the Binet formula for Fibonacci sequence�
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The second inequality follows from the inequality �b��b � b� ��� �

Therefore� the number of leaves spanned byM� is bounded by �b���d� while minimax spans bd

leaves� For games with large branching factors� the overhead of using M� �compared to minimax�
is therefore neglectable� while for games with small branching factors it is quite signi�cant�

��� A one�pass version of M�

We have developed another version of the M� algorithm� called M�
��pass� that expands the tree one

time only� just as minimax does� The algorithm expands the search tree in the same manner as
minimax� However� node values are propagated di�erently� Whereas minimax propagates only one
value� M� propagates n � � values� �Vn� � � � � V��� The value Vi represents the merit of the current
node according to the i
level model� fi� M� passes values to V di�erently for values associated
with the player and values associated with the opponent� In a player�s node �a node where it is the
player�s turn to play�
� for values associated with the player �Vn� Vn��� � � ��� Vi gets the maximal
Vi value among its children� For values associated with the opponent �Vn��� Vn�
� � � �� � Vi gets
the Vi value of the child that gave the maximal value to Vi��� For example� the opponent believes
�according to the model� that the player evaluates nodes by Vn��� At a player�s node� the opponent
assumes that the player will select the child with maximal Vn�� value� Therefore� the value of the
current node for the opponent is the Vn�� value of the selected child with the maximal Vn�� value�
At an opponent�s node� we do the same but the roles of the opponent and the player are switched�
Figure � lists the M�

��pass algorithm�

Procedure M�
��pass �pos� depth� �fn� �fn��� �� � � � f�� � � ����

if depth � �
return hfn�pos�� � � � � f��pos�i

else SUCC �MoveGen�pos�
for each succ � SUCC

succ V �M�
��pass �succ� depth� �� �fn� �fn��� � � � � f�� � � ���

for each i associated with current player
if succ V�i� � V �i�
V �i�� succ V�i�
if i � n

V �i� ��� succ V�i� ��
return hV �n�� � � � � V �depth�i

Figure �� M�
��pass� A version of the M� algorithm that performs only one pass over the search tree

The maxn algorithm ���� also propagates vectors of values up the game tree� However�M�
��pass

and maxn are targeted at di�erent goals� Maxn is an extension of minimax that can handle n

players while M�
��pass is an extension of minimax that can handle n
level modelling� While all the

values of a vector in maxn come from the same leaf� the values of a vector in M�
��pass come from

di�erent leaves� It should be relatively easy to combine the two algorithms� Figure � shows an
example for a tree spanned by M�� Note that the values in the vectors correspond to the results
of the recursive calls in �gure ��

�Traditionally such a node is called a MAX node� However� we assume that both players are maximizers
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f2= 8
f1=-6
f0= 4

f2=-4
f1= 6
f0=-8

f2= 4
f1=-8
f0=10

f2= 7
f1=-7
f0= 3

f2=-6
f1= 7
f0=-4

f2= 1
f1=-2
f0= 4

f2=10
f1=-4
f0= 4

f2= 2
f1= 0
f0= 6

a

b c

d e f g

h i j k l m n o

V[2]= 8
V[1]=-6
V[0]= 4

V[2]= 7
V[1]=-8
V[0]=10

V[2]= 1
V[1]=-2
V[0]= 4

V[2]=10
V[1]= 0
V[0]= 6

V[2]=10
V[1]= 0

V[2]= 8
V[1]=-6

V[2]=10

Figure �� The value vectors propagated by M�
��pass�

Lemma � Assume that PLAYER is a n�level modelling player� Let hv� bi�M��pos� depth�PLAYER��
and let hV �n�i �M�

��pass�pos� depth�PLAYER�� Then v � V �n��

Proof�

For d � � and d � � the proof is immediate�

Assume that M� and M�
��pass return the same value for a tree of depth d � depth� �� We will

prove that they return the same value for d � depth�

�� For each successor at level ��M� �rst determines the board at level � selected by its opponent�
By the induction hypothesis�

M��succ� d� ��OPP MODEL� �M�
��pass�succ� d� ��OPP MODEL� � V �n� ��

and therefore these will be the boards with the maximal V �n� ���

�� M� determines the value of each successor by calling itself on the board selected by the
opponent� By the induction hypothesis

M��b� d� �� PLAY ER� �M�
��pass�b� d� �� PLAY ER� � V �n�

and therefore these M� values will be equal to the V �n� values of these nodes�

�� M� associates with each successor the player�s value of the board selected by the opponent�
M�

��pass assigns to each successor the V �n� value associated with the board with maximal
V �n� �� value� Thus� the value assigned to each successor by M� is equal to its V �n� value�

�� M� returns the maximal value for its successors� while M�
��pass returns the maximal V �n� of

its successors� These are the same values�

�
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��� The relationship between M� and minimax

An interesting property of M� is that it always selects a move with a value greater or equal to the
value of the move selected by minimax that searches the same tree with the same strategy�

Lemma � Assume that M� and Minimax use the same fplayer� Then

Minimax�pos� depth� fplayer� �M��pos� depth� �fplayer�OPP MODEL�����

for any OPP MODEL�

Proof�

We will prove that this property exists for every node in the tree spanned by the two algorithms
by induction on the depth of search� For convenience we will prove it for the version of M�

��pass�

For depth � �� for any OPP MODEL

Minimax�pos� depth� � fplayer�pos� �M�
��pass�pos� depth� �fplayer�OPP MODEL����

Let us assume correctness for d � depth and prove it for d � depth � �
If pos is a player�s node�

Minimax�pos� depth� �� � max fMinimax�succ� depth� j succ � SUCC�pos�g�
�

According to the inductive assumption�

� max
n
M�

��pass�succ� depth� �fplayer�OPP MODEL�� j succ � SUCC�pos�
o

�M�
��pass�pos� depth� �� �fplayer�OPP MODEL��

If pos is an opponent�s node�
let s be the successor with the maximal value according to the opponent�s model�

Minimax�pos� depth� �� � min fMinimax�succ� depth� j succ � SUCC�pos�g���

�Minimax�s� depth�

According to the inductive assumption�

�M�
��pass�s� depth� �fplayer�OPP MODEL��

�M�
��pass�pos� depth� �� �fplayer�OPP MODEL�� �

The intuition behind the above lemma is that minimax assumes an adversary model of the
opponent� It assumes that the opponent knows the player�s strategy� and its only interest is to
select moves that are worst according to the player�s strategy� The lemma says� that if you have a
good reason to believe that your opponent�s model is di�erent than that� you could only bene�t by
using M� instead of minimax� The reader should note that the above lemma does not mean that
M� selects a move that is better according to some objective criterion� but rather a subjectively
better move �from the player�s point of view� according to its strategy�� If the player does not have
a reliable model of its opponent� then playing minimax is a good cautious strategy�
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��� Incorporating depth of search into the model

The M� algorithm as well as minimax �which is a special case of M��� incorporates an implicit
assumption about the depth to which the opponent searches� M� that searches a tree of depth
d� assumes that its opponent searches to level d � �� and then assumes that its opponent assumes
that the player searches to level d � �� etc� This is a potentially wrong assumption� but it is a
good defensive mechanism� The player assumes that its opponent searches as deep as the player
can simulate the opponent�s search� It is meaningless for the player to assume that its opponent
searches to a deeper level since it can not simulate a search to such depth� However� as was discussed
in the introduction� if the player has reason to believe that its opponent searches to a lesser depth�
then it can utilize this belief against the opponent �to set traps� for example��

But why does the player have to search to level d� if it knows that its opponent searches to level
d� � d�� In order to predict the opponent�s selection� it is indeed enough to simulate its search
to level d�� However� in order to evaluate the merit of the opponent�s selection for the player� it
searches as deep as it can�

We have extended M� to handle models of depth of search� We de�ne a strategy to be a pair
�fplayer � dplayer�� A player is then a pair ��fplayer � dplayer� �MODEL� where MODEL is also a player�
Figure � lists the extended M� algorithm�

Procedure M� �pos� depth� ��fpl � dpl� �OPP MODEL��
if depth � �
return hNIL� fpl�pos�i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
player value� fpl�succ�

else

hopp board� opp valuei �M� �succ�min�depth� �� dopp��OPP MODEL�
hplayer board� player valuei �M� �opp board� depth� �� ��fpl� dpl� �OPP MODEL��

if player value � max value

max value� player value

max board� succ

return hmax board�max valuei

Figure �� An extended version of the M� algorithm that can handle a model of depth

The extended algorithm is di�erent from its simpler version on one point� Whereas the simple
algorithm allocates as many resources as possible to the call that simulates the opponent�s search
�which is the current depth allocation minus one�� the extended algorithm allocates the simulation
as maby resources as it believes that the opponent would have used� Of course� regardless of
the model of its opponent�s depth of search� the player should never exceed the total depth limit
allocated for the procedure �hence the min in the recursive call�� Figure � shows an example of
applying M� with a player that searches to depth � and an opponent model that searches to depth
��
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f1=-8 f1=-7 f1=-4 f1= 0

a

b c

d e f g

hh ii j k ll mm n o

M*((f0,1))= 6

f0=4

M*((f1,3),(f0,1))= 0

f0=6 M*((f1,1))=-7 f0=-2 f0=-1
M*((f1,1))=0

M*((f0,1))=-1

Figure �� The set of recursive calls generated by calling M�
a� �� 

f�� ��� 
f�� ����� For sake of clarity we
have included only the player in the parameter list of the calls� Each call is written next to the node it is
called from� The dashed lines show what move is selected by each call�

As in the former case� this algorithm can also be written in a one
pass form so that the game
tree will be expanded one time only� The extended one
pass version is shown in �gure ��

Procedure M�
��pass �pos� depth� ��fn� dn� � ��fn��� dn��� � �� � � � �f�� d��� � � ����

loop for i � n downto �
V �i����� fi�pos�

if depth � �
return hV �n�� � � � � V ���i

else SUCC �MoveGen�pos�
for each succ � SUCC

succ V �M�
��pass �succ� depth� �� ��fn� dn� � ��fn��� dn��� � �� � � � �f�� d��� � � ����

for each i associated with current player
d � min�di� depth�
for j � � to d

if succ V �i��j � �� � V �i��j�
V �i��j�� succ V �i��j � ��
if j � d and i � n

for k � � to min�di	�� depth�
V �i� ���k�� succ V �i� ���k� ��

return hV �n�� � � � � V �depth�i

Figure �� An extended non�recursive version of the M� algorithm that can handle a model of depth

The algorithm propagates vectors of values where each entry is associated with one of the
models as before� But while the simpli�ed non
recursive algorithm carries one value per model� the
extended algorithm carries a list of values for each model� The j�th element of the i�th list is the
value associated with a search to depth j by the i�th model� In the original M�� there was only one
search frontier� Therefore� the non
recursive version propagated only one value for every model�
However� the extended M� can call itself recursively from any node to any depth� Hence� every
level in the search tree is potentially a search frontier of one of those recursive calls� That is the
reason why the extended non
recursive algorithm carries a list of values for each model� Figure 
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shows the value matrices propagated up the tree when calling M�
��pass on the same tree as in �gure

��

a

b c

d e f g

h i j k l m n of1=-6
f0= 4

V0
V1

4
-6

10

f1= 6
f0=-8

V0
V1

-8
 6

10

f1=-8
f0=10

V0
V1

10
-8

10

f1=-7
f0= 3

V0
V1

3
-7

10

f1= 7
f0=-4

V0
V1

-4
7

10

f1=-2
f0= 4

V0
V1

4
-2

10
V0
V1

4
-4

10

f1= 0
f0= 6

V0
V1

6
0

10

f1=7
f0= 4V0

V1
4
7

10

6 f1=2
f0= 6V0

V1
6
2

10

-7 f1=9
f0=-2V0

V1
-2
9

10

7 f1=-4
f0=-1V0

V1
-1
-4

10

0

f1=-5
f0= 9

1
V0
V1

9
-5

0
6
2 f1=7

f0= 4

f1=-4
f0= 4

-7
V0
V1

4
7

10
-1
-4 0

f1=1
f0= 5V0

V1
5
1

10

7 2 0

Figure 
� The value matrices propagated by M�
��pass�

The original M� algorithm� called with �fn� �fn��� �� � � � f�� � � ���� is equivalent to calling the
extended M� with ��fn� d� � ��fn��� d� �� � � � � �f�� �� � � ��� �recall that if n� the level of modelling is
less than the depth of search� we replace the zero
level player by a minimax player to make the
top
level player a d
level modeller�� In particular� we can get the minimax algorithm by calling the
extended algorithm with ��f� d� � ���f� d� �� � ��f� d� �� � � � �� � � ���� There is one di�erence in the
way that we extend the zero
level player for the case where n � d� In the case of the extended
algorithm� we replace the zero
level model by ��f�� d�� � ���f�� d�� �� � � � � �f�� �� � � ����

� Experimental study� The potential bene	t of using opponent

models

Now that we have developed an algorithm for using opponent models� we would like to evaluate the
potential bene�t of using this algorithm� We conducted a set of experiments with theM� algorithm
in order to test the e�ect of various parameters on the bene�t of using an opponent model�

In order to make the experimentation more feasible� we limited the experiments to one
level
modelling players� such that the player possesses a model of its opponent�s strategy �an evaluation
function and a depth of search�� and assumes that its opponent is a standard minimax player�
Furthermore� the actual opponent used for our experimentation was indeed a minimax player� In
order to evaluate the algorithms� we also allowed a regular minimax player to play against the same
opponent�

Therefore� the experiments described in this section involve three players��

MSTAR � ��fplayer � dplayer� � �fmodel � dmodel��
MINIMAX � ��fplayer � dplayer� � NIL�
OPPONENT � ��fopponent� dopponent� � NIL�

�Remember thatM� expands these players to d�level modelling players using the opposite function and a decreasing
series of depth�
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��� Experimentation methodology

In the experiments described in this section� we studied the e�ect of the following independent
variables�

depth�di�erence The di�erence between the depth of search used by the player and that used
by OPPONENT�

function�di�erence The di�erence in quality between the evaluation function used by the player
and that used by OPPONENT�

depth�error The di�erence between the depth of search used by MSTAR for the model of its
opponent� and that actually used by OPPONENT�

function�error The di�erence between the function used byMSTAR for the model of its opponent�
and that actually used by OPPONENT�

In order to be able to measure the function quality and the function error� we de�ned the
following functions�

Ff�a�x� �

�
f�x� if j�f�x�j � a

� otherwise
����

For a given evaluation function f � we can create a sequence of functions by varying a� As
a increases� the quality of the function increases� Therefore� we measure the distance in quality
between Ff�a� and Ff�a� by a� � a��

An experiment was conducted by varying the value of one of the independent variables and
�xing the values of the rest� For each value of the tested variable� we measured the performance of
the player by letting it play a set of ��� games against OPPONENT� The dependent variable used
for performance evaluation was the mean number of points earned during the tournament� where
a player gets two points for a win and one point for a draw� The experiments were conducted for
two di�erent games�

Tic�tac�toe on a �
 � board� There is a simple winning strategy for this game� However� for the
experiments described here� we ignored this strategy and used the well known �open lines
advantage� evaluation function� This strategy is considered to be reasonable if used with a
deep enough search ����

Checkers Was chosen because it is complicated enough to conduct more realistic experiments�
We used evaluation functions based on that used for Samuel�s checkers player�����

��� The e	ect of the di	erence in playing ability on the bene
t of modelling

The purpose of this experiment is to test the e�ect of the di�erence between the players� ability on
the bene�t of modelling� The basic hypothesis tested is that as the ability di�erence increases �in
favor of the player�� the potential merit of using the minimax assumption decreases� A stronger
player� who knows that its opponent is weak� can bene�t from this knowledge�

We conducted two experiments� In the �rst one we kept the evaluation function �xed and varied
the depth di�erence� In the second we kept the depth di�erence �xed and varied the di�erence
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Figure �� Tic�tac�toe� The bene
t of knowing the opponent�s strategy as a function of the search depth
di�erence� The left graph shows the performance of MSTAR and MINIMAX against OPPONENT measured
by mean points per game� The right graph shows the bene
t of using M� over using minimax against three
di�erent opponents�

between the quality of the evaluation functions� MSTAR knew the strategy of OPPONENT and
used M� while MINIMAX used its own strategy as a model for OPPONENT�

Figure � shows the results obtained for depth di�erence in the domain of tic
tac
toe while �gure
�� shows the results obtained for depth di�erence and function di�erence in the domain of checkers�
The bene�t of using MSTAR over MINIMAX� when they both use the same player�s strategy� was
measured by the di�erence in their performance against OPPONENT�

Both experiments exhibited similar behavior � The advantage of MSTAR over MINIMAX
increased with the di�erence in playing ability between their strategy and OPPONENT�s strategy
up to a certain point where the advantage started to decline� The increase in the bene�t can be
explained by the observation that MINIMAX was too careful in predicting its opponent�s moves�
while MSTAR utilized its model and exploited the weaknesses of its opponent to its advantage�
The decline in higher di�erences can be explained by the observation that when the di�erence in
playing ability becomes larger� MINIMAX� as well as MSTAR� win in almost all games� In such a
case there is little place for improvement by modelling�

��� The e	ect of the modelling error on the player�s performance

The previous experiments demonstrated the bene�t of using opponent model� In the following
experiments we tested the risk of using a wrong model� We conducted two experiments in the
domain of checkers� For the �rst experiment� we �xed fplayer � fmodel and fopponent and varied the
values of dplayer� dmodel and dopponent� For the second experiment� we �xed the depth parameters
of the strategies and varied the functions fplayer � fmodel and fopponent by setting the a parameter of
the Ff�a �see eq� ��� functions�

A tournament of ��� games was conducted for each combination of values� Figure �� shows
the results obtained� Both experiments show similar behavior� The bene�t of using an opponent
model is maximal for the case of no error� When the error increases� the bene�t of using the model
decreases� Overestimation �negative error� is less harmful than underestimation�
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Checkers

f1 - f1
f1 - f2
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depth diff.
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0.00 2.00 4.00 6.00

Checkers
benefit(points/game diff.) x 10-3

functions diff.
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500.00
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Figure ��� Checkers� The bene
t of knowing the opponent strategy as a function of the playing ability
di�erence� Measured by di�erence in mean points per game� The left graph shows the bene
t of usingM�

over minimax as a function of the di�erence in depth search between the player and the opponent� The right
graph shows the bene
t as a function of the di�erence in the quality of the evaluation function�

��� Summary

The experiments described in this section con�rmed the hypothesis that it is bene�cial to use an
opponent model� and that the bene�t is greater against weaker opponents� It also demonstrates
the harmfulness of using wrong model�

Our experiments failed to test the situation where the two opponents have similar playing
ability but use di�erent evaluation functions� Such a situation is quite common in game playing�
We predict that in such a case� M� with an appropriate model would have a signi�cant advantage
over minimax�

� Using uncertain models

In the previous sections� we assumed that the player is certain about its opponent model� However�
it is quite possible that a player is uncertain about its opponent model� especially when the model
is learned by the player� In this section� we generalize M� to a new algorithm� M�

� that can handle
uncertain models�

The algorithm assumes that the player possesses� in addition to a model of its opponent�s
function� an upper bound� �� on the distance between the model function and the actual opponent�s
function� Therefore� a player is now de�ned as ��f� ���MODEL�� where MODEL is also a player�
This means that each evaluation function that appears in a player �the player�s function� its model�s
function� its model�s model function etc��� has an associated bound on its error� Such a player will
be called an uncertain player� while a player with no error bound� such as the one used by M�� will
be called a certain player� Since the highest level player is certain about its own function� the error
bound associated with the top level function will be zero�
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Performance vs. error in depth model
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Performance vs. error in function model

 0.8
 0.7
 0.4
 0.2

performance(points/game.)

-3error(f_op - f_model)  x 101.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

0.00

Figure ��� The performance of M� as a function of the modelling error� The left graph shows the per�
formance of M� as a function of the error in depth model for various values of dplayer � dopponent� The
right graph shows the performance of M� as a function of the error in function model for various values of
fplayer � fopponent�

The error bounds associated with the model�s functions represent the player�s uncertainty about
its opponent� It is possible that the opponent is also an uncertain player� In such a case� its
functions will have associated error bounds� We assume that the error bounds associated with the
model�s functions dominate the error bounds associated with the opponent�s functions� Thus� for
example� a player ��f�� ��� ��f�� ���� �f�� ������ assumes that its opponent is �� �f�� ��� � �f�� ����� where
f� � �� � �f� � f� � �� and � �f� � ���� �f� � ���� 	 �f� � ��� f� � ����

The input for the M�
� algorithm is the same as for the M� algorithm� but with a player that

�ts our extended de�nition� The output is di�erent� Instead of returning a board and a value� the
new algorithm returns a set of boards and a range of values� The meaning of the range is� that if
we would have run M� with any set of functions that satisfy the error constraints� we would have
received a value that falls within the returned range� For every board in the set of returned boards�
there is a set of functions satisfying the error constraints� for which M� would have returned that
board as the selected move�

Figure �� shows the M�
� algorithm� The algorithm generates all the successors and calls itself

recursively with the opponent model to determine which set of moves �boards� the opponent can
choose from for each of the successors� For each board in such a set of boards� the player calls
itself recursively to determine the range of values that the board is worth for the player� Since the
player does not know which board of the set will actually be selected by the opponent� it takes the
union of these ranges as the range of values that the successor is worth for the player� In this stage�
the player has an associated range of values for each of its alternative moves� The lower bound
of the range returned by the algorithm is the maximal minimums of all these ranges� The reason
is that even with the worst possible set of functions satisfying the error constraints� the player is
guaranteed to have at least the maximal minimums� The upper bound is the maximal maximums
of all ranges since none of the boards can have a value which exceeds this maximum� The set of
boards returned is the set of all boards that can have a maximal value� If the highest value of a
range associated with a board is less than one of the minimums� there is no possibility that this
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board will be selected �the other board is guaranteed to have a higher value��

The algorithm returns a set of boards with a range of values� In order to select a move� a
player can employ various selection strategies� A natural candidate is maximin ���� page ���
�����
a strategy that selects the board with maximal minimum�

Procedure M�
� �pos� depth� ��fpl� �pl� �OPP MODEL��

if depth � �
return hNIL� �fpl�pos�� �pl� fpl�pos� � �pl �i

else

SUCC �MoveGen�pos�
for each succ � SUCC

if depth � �
succ range� �fpl�succ�� �pl � fpl�succ� � �pl�

else

hopp boards� opp rangei �M�
� �succ� depth� ��OPP MODEL�

for each board � op boards

hpl boards� pl rangei �
M�
� �board� depth� �� ��fpl� �pl��OPP MODEL��

succ ranges� succ ranges � fpl rangeg
succ range� �min�i��max�j���i�j��succ ranges

root ranges� root ranges � fsucc rangeg
�rootmin� rootmax�� �max�i��max�j���i�j��root ranges

root boards� fb � SUCC j bmax � rootming
return hroot boards� �rootmin� rootmax�i

Figure ��� The M�
� algorithm

There are other adversary search algorithms ��� ��� that return a range of values� as does M�
� �

However� these algorithms were designed for di�erent purposes� The B� algorithm ��� returns a
range of values due to uncertainty associated with the player�s evaluation function� Nevertheless�
unlike the M�

� algorithm� B� adapts the basic zero
sum assumption and propagates values in the
same manner as does minimax� The conspiracy numbers algorithm ���� also manipulates ranges
of values� However� these ranges provide a heuristic measure of the accuracy of the minimax root
values of incomplete subtrees�

It is easy to see thatM�
� is a generalization of M�� To get M� we only need to call M�

� with all
error bounds equal to zero�� Furthermore� we can prove a stronger relationship between the two
algorithms�

Theorem � Let P be an uncertain player� Let hB� �i� j�i�M�
� �pos� depth� P �� Let Pc be a certain

player consisting of arbitrary functions that satisfy the error constraints of P � Let hb� valuei �
M��pos� depth� Pc�� Then value � �i� j� and b � B

�In fact� M� obtained by a specialization of M�

� has advantage over the original M�� In the original M�� we did
not handle the case where a node has successors with equal values� M�

� called with zero error bound will correctly
assume the worst case for opponent nodes with more than one possible outcome� while M� would have un�justi�ably
returned the �rst�
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Proof�

By induction on d� the depth of the search tree� For d � � and d � � the proof follows
immediately�

Assume that the theorem is true for d � k� We will show that it is true for d � k� According
to the �rst inductive assumption� for any succ � SUCC�pos��M��succ� k��� OP MODEL�Pc�� re

turns a board b that belongs toB� the group of boards returned byM�

� �succ� k��� OP MODEL�P ���
According to the second inductive assumption� for any b � B� M��b� k � �� Pc� returns v� a value
in �i� j�� the range returned by M�

� �b� k � �� P �� For any succ � SUCC�pos�� M�
� returns a range

�a�� a�� such that a� is the minimal value of all the ranges of boards in B� and a� is the maximal
value of all these ranges� Therefore� value� the M� value of b that is associated with succ� belongs
to the range thatM�

� associates with succ� Finally� M� returns the maximal value among the succ
values� and in the same manner as for depth � �� this value belongs to the range returned by M�

� �
and all boards with this M� value� will belong to the group of boards returned by M�

� � �

It is interesting to note that if we call M�
� with a model that has an arbitrary opponent function

and in�nite error bounds� and with the maximin selection strategy� we actually get a minimax
player� Thus� while in section � we interpreted minimax as a player who assumes that its opponent
uses its own function �with opposite sign�� here we interpret minimax as a player who has no model
of its opponent and is therefore totally uncertain about its reactions� Whenever M�

� simulates the
opponent� all successor�ss boards will be returned since none of them can be excluded� The player
will then compute its values for these boards and will select the one with maximal minimum value�
which is exactly what minimax does�

f1= 0
f0= 8±1

f1= 5
f0= 10±1

f1= 1
f0= 4±1

f1= 2
f0= 8±1

a

b c

e f g h

M*(f1,f0)=[2,5]

M*(f0)=[8,11]

M*(f1,f0)= [0,0] M*(f1,f0)=[5,5]

[0,5]

M*(f1,f0)=[2,2]

M*(f0)=[7,9] [2,2]

d

f1= 10
f0= 0±1

f1= 0
f0= 8±0.5

f1= 5
f0= 10±0.5

f1= 1
f0= 4±0.5

f1= 2
f0= 8±0.5

a

b c

e f g h

M*(f1,f0)=[5,5]

M*(f0)=[9.5,10.5]

M*(f1,f0)= [0,0] M*(f1,f0)=[5,5]

[5,5]

M*(f1,f0)=[2,2]

M*(f0)=[7.5,8.5] [2,2]

d

f1= 10
f0= 0±0.5

Figure ��� An example for the sequence of calls produced by M�
� � The topleft 
gure shows the calls for the

case of � � � while the right one is for the case of � � ��	�

Figure �� shows an example of two calls for M�
� on the same search tree� once with � � � and

once with � � ���� In the case of � � �� M�
� selects the same move as minimax does� In the case of

� � ���� M�
� selects the same move as M� does�

� Adding pruning to M�

One of the most signi�cant extensions of the minimax algorithm is the �� pruning technique which
can reduce the average branching factor� b� of the tree searched by the algorithm to about

p
b �
��

This algorithm avoids searching subtrees that cannot e�ect the minimax value of the parent node�

Is it possible to add such an extension to M� as well� Unfortunately� if we assume a total
independence between fplayer and fopp model � it is easy to show that such a procedure cannot exist�
Figure �� illustrates a situation where using minimax with evaluation function f� �or M�with the
player �f�� ��f�� NIL��� can avoid searching node g� whereasM� that uses f� instead of�f�� cannot
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?

Figure ��� An example for a search tree where the standard �� would have pruned the branch leading to
node g� However� such pruning would change the M� value of the tree�

perform this pruning� Knowing that the opponent will have at least �� for node c does not have
any implications on the value of node c for the player�

A similar situation arises in multi
player game trees� Luckhardt and Irani ���� describe a search
algorithm� Maxn� for multi
player games and conclude that pruning is impossible without further
restrictions about the players� evaluation functions� Korf ���� showed that a shallow pruning for
Maxn is possible if we assume an upper bound on the sum of the players� functions� and a lower
bound on every player�s function�

The basic assumption used for the original �� algorithm is that fplayer�fopponent � � �the zero

sum assumption�� This assumption is used to infer a bound on a value of a node for a player based
directly on the opponent�s value� A natural relaxation to this assumption is jfplayer � fopponentj � b�
This assumption means that while fplayer and �fopponent may evaluate a board di�erently� this
di�erence is bounded� For example� the player may prefer a rook over a knight while the opponent
prefers the opposite� In such a case� although the player�s value is not a direct opposite of the
opponent�s value� we can infer a bound on the player�s value based on the opponent�s value and b�

The above assumption can be used in the context of the M�
��pass algorithm to determine a

bound on Vi � Vi�� at the leaves level� But in order to be able to prune using this assumption� we
�rst need to determine how these bounds are propagated up the search tree�

Lemma � Assume that A is a node in the search tree spanned by M�
��pass� Assume that S�� � � � � Sk

are its successors� If there exist non�negative bounds B�� � � � � Bn� such that for each successor Sj�
and for each model i�

��VSj �i� � VSj �i� ��
�� � Bi� Then� for each model � � i � n�

jVA�i� � VA�i� ��j � Bi � � �Bi�������

Proof�

Assume VA�i� � VSj �i� and VA�i� �� � VSk �i�� If j � k� VA�i� and VA�i� �� were propagated from
the same successor� therefore�

jVA�i� � VA�i� ��j � Bi � Bi � � �Bi�������

If j �� k� A is an i�th player node and therefore VA�i� �� and VA�i� �� were propagated from the
same successor Sk� It follows that

Bi�� � VSk �i� �� � VSk �i� �� � VSk �i� �� � VSj �i� �������

It is easy to show that for any successor S�

jVS�i�� VS�i� ��j � Bi � Bi�������

�
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Summing up the two inequalities for the Sj successor� we get

Bi � � �Bi�� � VSj �i� � VSk �i� �� � VA�i� � VA�i� �������

For the second side of the inequality�

VA�i� � VA�i� �� � VSj �i� � VSk �i� �� � VSk �i� � VSk �i� �� � �Bi � �Bi � � �Bi��� �����

��� The ��� pruning algorithm

Based on lemma �� we have developed an algorithm� ��� � that can perform a shallow and deep
pruning assuming bounds on the absolute sum of functions of the player and its opponent model�
The algorithm takes as input a position� a depth limit� and for each model i� a strategy fi� an
upper bound bi on jfi � fi��j� and a cuto� value �i� It returns the M

� value of the root by only
searching nodes that might a�ect this value�

Procedure ����pos� depth�
��fn� bn���fn��� bn���� �� � � � �f�� b��� � � �����n� � � � � ����

if depth � �
return �hfn�pos�� � � � � f��pos�i� hbn� � � � � b�i�

else SUCC �MoveGen�pos�
for each succ � SUCC

�succ V�succ B � � ����succ� depth� ��
��fn� bn���fn��� bn���� �� � � � �f�� b��� � � �����n� � � � � ����

loop for each i associated with current player
B�i�� succ B�i� � � � succ B�i� ��
if succ V�i� � V �i�
V �i�� succ V�i�
if i � n

V �i� ��� succ V�i� ��
if V �i� � �i

�i � V �i�
if for every i not associated with current player ��i � B�i�� V �i� ���
return �hV �n�� � � � � V �depth�i� hB�n�� � � � � B�depth�i�

return �hV �n�� � � � � V �depth�i� hB�n�� � � � � B�depth�i�

Figure ��� The ��� algorithm

The ��� algorithm is listed in �gure ��� The algorithm works similarly to the original ��
algorithm� but is much more restricted in what subtrees can be pruned� The ��� algorithm only
prunes branches that all models agree to prune� In regular ��� the player can use the opponent�s
value of a node to determine whether it has a chance to get a value that is better than the current
cuto� value� This is based on the opponent�s value being exactly the same as the player�s value
�except for the sign�� In ��� � the player�s function and the opponent�s function are not identical�
but their di�erence is bounded� The bound on Vi � Vi�� depends on the distance from the leaves
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level� At the leaves level� it can be directly computed using the input bi� At distance d� the bound
can be computed from the bounds for level d� � as stated by lemma ���

A cuto� value �i for a node v is the highest current value of all the ancestors of v from the
point of view of player i� �i is modi�ed at nodes where it is player i�s turn to play� and is used for
pruning where it is player i� ��s turn to play� At each node� for each i associated with the player
whose turn it is to play� �i is maximized any time Vi is modi�ed� For each i such that i � � is
associated with the current player� the algorithm checks whether the i player wants its model �the
i� � player� to continue its search�

a

b c

d e f g

f1=8
f0=-6

f1= 9
f0=-9

f1=4
f0=-5

V1= 8
V0=-6

V1=4
V0=-5

V1=8

| f1 + f0 | ≤ 2

α1=8
8≥2-(-5)

Figure ��� An example to pruning performed by ����

Figure �� shows a search tree similar to the one in �gure �� with one di�erence� every leaf l
satis�es the bound constraint jf��l� � f��l�j � �� This bound allows the player to perform a cuto�
of branch g� knowing that the value of node c for the opponent will be at least ��� Therefore� its
value will be at most � for the player�

Lemma � Let hV�Bi � ����pos� d�PLAYER� ���� � � � ������ Let V � �M�
��pass�pos� d�PLAYER��

where PLAYER� is PLAYER without the bounds� Assume that for any leaf l of the game tree
spanned from position pos to depth d� jfi�l� � fi���l�j � bi� Then� V � V ��

Proof�

For proving that M�
��pass�pos� � ����pos�� it is su�cient to show that any node pruned by

��� can have no e�ect on M�
��pass�pos�� Assume that u is an opponent�s node� and after searching

one of its successors� all the models associated with the player agree to prune� This means that
for every model i associated with the player� �i � Bi � V �i � ��� From lemma �� it follows that
V �i��V �i��� � Bi and therefore �i � V �i�� Since �i is the current best value for V �i� of the parent
node� there is no way that the current V �i� will a�ect its father�s value� The same argument holds
if u is a player�s node� �

As the player function becomes more similar to its opponent model �but with anopposite sign��
the level of pruning increases up to the point where they use the same function� in which case ���

prunes as much as ���

Finding an upper bound on the sum of the evaluation functions is an easy task for most practical
evaluation functions ���� Unfortunately� the bound on the sum of values increases with the distance

�For sake of clarity� the algorithm computes the bound B for each node using the bounds returned from its
successors� However� for e�cient implementation� a table of the B values can be computed once at the beginning of
the search� since they depend only on the bi and the depth�
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Figure ��� The portion of leaves pruned by ��� as a function of the bound on jf� � f�j�

from the leaves and therefore reduces the amount of pruning� Therefore� using loose bounds will
probably prohibit pruning�

In order to get some idea of how much ��� prunes� we have run a simulation applying ���

on uniform trees of depth d� and �xed branching factor b� whose leaves were assigned two random
values with a sum bounded by B �we mark such a tree by TREE�b� d�B��� The experiment was run
with one
level modelling player� �f�� f�� such that jf� � f�j � B� The experiments were conducted
for TREE��� ���B�� For each bound B we created ���� trees and ran ��� on them� Graph ��
shows the portion of leaves pruned as a function of the bound B� As expected� the amount of
pruning decreases as the di�erence between the functions increases� The maximum level of pruning
is achieved for B � �� where ��� is reduced to standard ���

� Learning a model of the opponent�s strategy

In the �rst part of this work we have presented methods for using opponent models� In this section
we describe a methodology for acquiring such a model from examples� A set of boards with the
opponent�s decisions is given as input� and the learning procedure produces a model as output�
This framework is similar to the scenario used by Kasparov as described in the opening quote�

To make the learning task more feasible� we assume that the opponent is a minimax player
and its model therefore consists of two components� a depth of search and an evaluation function�
Since the space of possible depth values is much smaller than the space of possible function� we
start by describing a method for learning the opponent�s depth
of
search� and proceed with the
more complicated task of learning its function�

��� Learning the depth of search

Given a set of examples� each consisting of a board together with the move selected by the opponent�
it is relatively easy to learn its depth of search �dopponent� under the assumption that the opponent
searches to a �xed depth and that its evaluation function is known to the learner� Since there
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is only a small set of plausible values for dopponent� we can test which of them agrees best with
the opponent�s decisions� One possibility is to test for strict agreement� i�e�� for any example
�board�move� we can reward any depth d for which minimax�board� d� returns move�board��

When fmodel � fopponent� such a method needs only a few examples to infer dopponent� However�
in the case where fmodel di�ers from fopponent� such an algorithm is prone to error� In order to
improve the learning ability in the presence of a wrong function model� we have developed an
improved algorithm that considers the relative ordering between possible moves� The algorithm
rewards every depth with the number of moves that have lower minimax values� and penalizes it
with the number of alternative moves with higher minimax values� The algorithm is shown in �gure
�
�

Procedure LearnDepth�EXAMPLES�
for each hboard�movei � EXAMPLES

boards� successors�board�
for d from � to MaxDepth

M � minimax�move�board�� d� ��
count�d�� count�d�

� j fb � boards jminimax�b� d� �� �Mg j
� j fb � boards jminimax�b� d� �� � Mg j

return d with maximal count�d�

Figure �
� An algorithm for learning a model of the opponent�s depth 
dmodel�

In order to study the e�ect of the distance between the model function and the actual function
on the learning ability of the algorithm� we have performed the following experiment�

�� fmodel � used by the learning algorithm� was �xed�

�� fopponent was de�ned to return a value according to a parameter p� The function returns fmodel

with probability p and a random value with probability �� p�

�� A set of games between two minimax players� PLAYER and OPPONENT� was conducted�
��� boards that OPPONENT faced� together with its chosen moves� were given as examples
to the learning algorithm which updated dmodel�

�� After each move� the current dmodel was compared against dopponent� If they were in disagree

ment� the accumulative error rate was incremented�

�� The experiment was repeated for various p�

Figure �� shows the accumulative error rate of the algorithms as a function of the distance
between fmodel and fopponent� It also shows the d counters after ��� examples for the case of fmodel

with probability of error equals to �����

The accumulative error rate is the portion of the learning session where the learner has a wrong
model of its opponent�s depth� The experiment shows that indeed when the function model is
close enough to the opponent�s function� the algorithm succeeds in learning the opponent�s depth�
However� when the opponent�s function is signi�cantly di�erent from the model� the algorithm�s
error rate increases�
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Depth Learning: Accumulative error rate
error 

function diff.
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Learning the op. depth
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Figure ��� Learning the depth of search using ��� examples� where dopponent � � and fmodel di�ers from
fopponent with probability between � and �� The left graph shows the accumulative error rate as a function
of the error of the function model� The right graph shows the counters of the learning algorithm for function
model error of ���	�

Learning the opponent�s depth of search may provide very useful information� especially in a
game against a weaker opponent� When a player is aware of the limit of its opponent�s search
horizon� it can lead the opponent to trap or swindle positions ����

��� Learning the opponent�s strategy

The performance of the previous algorithm depends on the knowledge of the opponent�s evaluation
function� The natural next step is to develop an algorithm for learning evaluation functions�
However� learning the opponent�s function will probably depend on knowing the opponent�s depth
of search� In order to break this circle� we have developed an algorithm for learning the function
and depth of search simultaneously�

Since learning an arbitrary real function is hard� we have made the following simplifying as

sumptions�

�� The opponent�s function is a linear combination of features� f�b� � w � h�b� � P
i wihi�b�

where b is the evaluated board and hi�b� returns the ith feature of that board�

�� A superset of the features used by the opponent is known to the learner�

�� The opponent does not change its function while playing�

Under these assumptions� the learning task is reduced to �nding the pair �wmodel� dmodel�� The
learning procedure listed in �gure �� computes for each possible depth d a weight vector wd� such
that the strategy �wd � h� d� most agrees with the opponent�s decisions� The adapted model is the
best pair found for all depths�

For each depth� the algorithm performs a hill
climbing search� improving the weight vector until
no further signi�cant improvement can be achieved� Assume that wcurrent is the best vector found
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Procedure LearnStrategy�examples�
w� � �
for d from � to MaxDepth

wd � wd��

Repeat

wcurrent � wd

wd � FindSolution�examples� wcurrent� d�
progress� jscore�wd� d�� score�wcurrent� d�j � �

Until no progress
return �wd� d� with the maximal score�

Procedure FindSolution�EXAMPLES�wcurrent� d�
Constraints � �

for each hboard� chosen movei � EXAMPLES

SUCC �MoveGen�board�
for each succ � SUCC

dominantsucc �Minimax�succ� wcurrent� d� ��
Constraints � Constraints � fw�h�dominantchosen move�� h�dominantsucc�� � �g

return w that satisfy Constraints

Figure ��� An algorithm for learning a model of the opponent�s strategy

so far for the current depth� For each of the examples� the algorithm builds a set of constraints
that express the superiority of the selected move over its alternatives� The algorithm performs a
minimax search using �wcurrent �h� d���� starting from each of the successors of the example board�
At the end of this stage each of the alternative moves can be associated with the �dominant�
board that determines its minimax value� Assume that bchosen is the dominant board of the chosen
move� and b�� � � � � bn are the dominant boards for the alternative moves� The algorithm adds the n
constraints fw � �h�bchosen�� h�bi�� � � j i � �� � � � � ng to its accumulated set of constraints�

The next stage consists of solving the inequalities system� i�e�� �nding w that satis�es the system�
The method we used is a variation of the linear programming method used by Duda and Hart ��� for
pattern recognition� Before the algorithm starts its iterations� it sets aside a portion of its examples
for progress monitoring� This set is not available to the procedure that builds the constraints� After
solving the constraints system � the algorithm tests the solution vector by measuring its accuracy
in predicting the opponent�s moves for the test examples� The performance of the new vector is
compared with that of the current vector� If there is no signi�cant improvement� we assume that
the current vector is the best that can be found for the current depth� and the algorithm repeats
the process for the next depth using the current vector for its initial strategy�

The inner loop of the algorithm� that searches for the best function for a given depth� is similar
to the method used by DEEP THOUGHT ��� and by CHINOOK ��
� for tuning their evaluation
function from book moves� However� these programs assume a �xed small depth for their search�
Meulen ���� used a set of inequalities for book learning� but his program assumes only one level
depth of search�

The strategy learning algorithm was tested by the following experiment� Three �xed strategies
�f�� 
�� �f�� 
� and �f�� ��� were used as opponents� where f� and f� are two variations of Samuel�s
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function� Each strategy was used to play games until ���� examples were generated and given
to the learning algorithm� The algorithm was also given a set of ten features� including the six
features actually used by the strategies�

The algorithm was run with a depth limit of ��� The examples were divided by the algorithm
into a training set and a testing set of size 
��� For each of the eleven depth values� the program
performed �
� iterations before moving to the next depth� Each iteration included using the linear
programing method for a set of several thousand constraints��

The results of the experiment for the three strategies is shown in �gure ��� The algorithm
succeeded for the three cases� achieving an accuracy of ���� for two strategies and ��� for the
third� Furthermore� the highest accuracy was achieved for the actual depth used by the strategies�

Strategy learning

(f1,8)
(f2,8)
(f1,6)

success/guesses

depth 
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5.00 10.00

Figure ��� Learning opponent�s strategy

��� OLSY� An Opponent Learning System

In order to test how well the M� algorithm and the learning algorithm can be integrated� we have
built a game playing program� OLSY� that is able to acquire and maintain a model of its opponent
and use it to its advantage� The system consists of two main components� a game
playing program
and a learning program� The learning program accumulates the moves performed by the opponent�
After playing a small number of moves ��� in our experiments�� the system updates its model of
opponent�

The OLSY system was tested in a realistic situation by letting it play a sequence of games
against regular minimax players� OLSY and its two opponents each used a di�erent strategy
but with a roughly equivalent playing ability� We stopped the games several times to test how
well OLSY performs against its opponents� The test was conducted by turning o� the learning
mechanism and performing a tournament of ��� games between the two�

Figure �� shows the results of this experiment� The players start with almost equivalent ability�
However� after only few examples� the learning program becomes signi�cantly stronger than its

�We have used the very e�cient lp solve program� written by M�R�C�M� Berkelaar� for solving the constraints
system
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Learning system
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Figure ��� The performance of the learning system as a function of the number of examples� Measured by
mean points per game�

non
learning opponents� The performance of OLSY kept increasing until about �� examples were
processed� After that� the learning curve was levelled� We inspected the accuracy of the models as
determined by the learning procedure� After ��� examples� OLSY succeeded in acquiring models
for its two opponents with a quality of ��� for the �rst and �
� for the second� Learning more
examples did not cause any further modi�cation of the models�

� Conclusions

The minimax algorithm assumes that the opponent uses the same strategy as does the player� In
this paper we presented a generalized version of the minimax algorithm that can utilize di�erent
opponent models� We started by de�ning a player as a pair of a strategy and a model� where
the model is also a player� We proceeded with the M� algorithm� which simulates the opponent�s
search to determine its expected decision for the next move� and evaluates the resulted board by
searching its associated subtree using its own strategy� We then presented the M�

��pass algorithm�
which is an e�cient version M� that expands the tree only once� but propagates all the necessary
values� The M� algorithm �as well as Minimax� assumes that the opponent searches as deep as the
player�s search horizon� We extended the M� and M�

��pass algorithms to enable the utilization of
models of the opponent�s depth of search�

Experiments performed in the domains of checkers and tic
tac
toe demonstrated the advantage
of M� over minimax but also showed that an error in the model can deteriorate performance
signi�cantly� We developed an algorithm� M�

� � for the cases where the player knows a bound on
the error� The algorithm converges to M� when the error bound approaches zero� and converges
to minimax when the bound goes to in�nity�

One of the most important techniques in searching game trees is �� pruning� We explored the
possibility of applying similar pruning techniques to M�� Unfortunately� pruning is impossible in
the general case since the zero
sum assumption does not hold� However� we developed a pruning
algorithm� ���� that utilizes a relaxed version of the zero
sum assumption to allow pruning� Pruning
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is allowed given a tight bound on the sum of the player�s and model�s functions� When the bound
approaches zero� the amount of pruning approaches that of ���

In the second part of the paper we tackled the problem of learning an opponent�s model by
using its moves as examples� We developed an algorithm for learning an opponent model� both
depth and evaluation function� The algorithm works by iteratively increasing the model depth
and learning a function that best predicts the opponent�s moves for that depth� For testing the
algorithm� we tried to learn minimax players that search to a �xed depth and use an evaluation
function based on a linear combination of features� known to the learner� The results show that
few examples are needed for learning a model that agrees almost perfectly with such a player� In
the future� we mean to investigate the algorithm�s ability to model more sophisticated players� We
tested the algorithm in a game
playing learning system� named OLSY� The system was tested in
a realistic situation� learning its opponent while playing against it� The system indeed showed an
improvement as more examples of opponent�s moves became available�

We believe that this work presents signi�cant progress in the area of using opponent models�
TheM� family of algorithms presented in this paper are all generalizations of minimax that allow us
to use n
level opponent models together with bounds on their errors� This work also presents initial
steps in the area of learning opponent models� The task of learning n
level models is extremely
di�cult and deserves further research�
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