K-SVD FOR DUMMIES

An Introduction to Sparse Representation and the K-SVD Algorithm

Ron Rubinstein

The CS Department
The Technion – Israel Institute of technology
Haifa 32000, Israel

University of Erlangen - Nürnberg
April 2008

Noise Removal ?

Our story begins with image denoising ...

- Practical application
- A convenient platform (being the simplest inverse problem) for testing basic ideas in image processing.

Denoising By Energy Minimization

Many of the proposed denoising algorithms are related to the minimization of an energy function of the form

\[f(x) = \frac{1}{2} \| x - y \|_2^2 + \text{Pr}(x) \]

- \(x \): Unknown to be recovered
- \(y \): Given measurements
- Sanity (relation to measurements)
- Prior or regularization

- This is in-fact a Bayesian point of view, adopting the Maximum-Aposteriori Probability (MAP) estimation.
- Clearly, the wisdom in such an approach is within the choice of the prior – **modeling the images** of interest.

The Evolution Of Pr(x)

During the past several decades we have made all sort of guesses about the prior \(\text{Pr}(x) \) for images:

- \(\text{Pr}(x) = \lambda \| x \|_2^2 \) (Energy)
- \(\text{Pr}(x) = \lambda \| Lx \|_2^2 \) (Smoothness)
- \(\text{Pr}(x) = \lambda \| Lx \|_W^2 \) (Adapt + Smooth)
- \(\text{Pr}(x) = \lambda \| Bx \|_2 \) (Robust Statistics)
- \(\text{Pr}(x) = \lambda \| x \|_1^0 \) (Total Variation)
- \(\text{Pr}(x) = \lambda \| Wx \|_1^0 \) (Wavelet Sparsity)
- \(\text{Pr}(x) = \lambda \| Bx \|_2 \) (Bilateral Filter)
- \(\text{Pr}(x) = \lambda \| x \|_0 \) (Sparse & Redundant)

For \(x = D_\alpha \)
Agenda

1. **A Visit to Sparseland**
 - Introducing sparsity & overcompleteness

2. Transforms & Regularizations
 - How & why should this work?

3. What about the dictionary?
 - The quest for the origin of signals

4. Putting it all together
 - Image filling, denoising, compression, ...

Generating Signals in Sparseland

- Every column in D (dictionary) is a prototype signal (atom).
- The vector α is generated randomly with few non-zeros in random locations and with random values.

Sparseland Signals Are Special

- **Simple**: Every signal is built as a linear combination of a few atoms from the dictionary D.
- **Effective**: Recent works adopt this model and successfully deploy it to applications.
- **Empirically established**: Neurological studies show similarity between this model and early vision processes. [Olshausen & Field (96)]

Transforms in Sparseland?

- Assume that x is known to emerge from M.
- How about "Given x, find the α that generated it in M?"
An Introduction to Sparse Representation And the K-SVD Algorithm
Ron Rubinstein

Problem Statement
We need to solve an under-determined linear system of equations:
\[\mathbf{D} \alpha = \mathbf{X} \]

- Among all (infinitely many) possible solutions we want the sparsest!!
- We will measure sparsity using the L_0 "norm":
 \[\| \alpha \|_0 \]

Measure of Sparsity?
\[\| \mathbf{x} \|_p = \sum_{j=1}^{k} |x_j|^p \]

As \(p \to 0 \) we get a count of the non-zeros in the vector
\[\| \alpha \|_0 \]

Where We Are
A sparse & random vector
\[\mathbf{\alpha} = \]
Multiply by \(\mathbf{D} \)
\[\mathbf{x} = \mathbf{D} \mathbf{\alpha} \]

Min \[\| \mathbf{\alpha} \|_0 \]
s.t. \[\mathbf{x} = \mathbf{D} \mathbf{\alpha} \]
\[\hat{\mathbf{\alpha}} \]

3 Major Questions
- Is \(\hat{\mathbf{\alpha}} = \mathbf{\alpha} \)?
- NP-hard: practical ways to get \(\hat{\mathbf{\alpha}} \)?
- How do we know \(\mathbf{D} \)?

Inverse Problems in Sparseland?
- Assume that \(\mathbf{x} \) is known to emerge from \(\mathcal{M} \).
- Suppose we observe \(\mathbf{y} = \mathbf{Hx} + \mathbf{v} \), a degraded and noisy version of \(\mathbf{x} \) with \(\| \mathbf{v} \|_2 \leq \varepsilon \). How do we recover \(\mathbf{x} \)?
- How about "find the \(\mathbf{\alpha} \) that generated \(\mathbf{y} " ?

\[\mathcal{M} \]
\[\mathbf{Hx} \]
\[\mathbf{y} \]
\[\mathbf{Q} \]
\[\hat{\mathbf{\alpha}} \]

\[\mathbf{D} \mathbf{\alpha} \]
\[\mathbf{\alpha} \]
Noise
Inverse Problem Statement

- **A sparse & random vector**
 \[\alpha = \ldots \]

- **Multiply by \(D \)**
 \[\text{"blur" by } H \]
 \[y = Hx + v \]

- **Minimize**
 \[\alpha \text{ s.t. } \|x\|_0 \leq \varepsilon \]

3 Major Questions (again!)

- Is \(\hat{\alpha} = \alpha \)?
- How can we compute \(\hat{\alpha} \)?
- What \(D \) should we use?

Agenda

1. **A Visit to Sparseland**
 - Introducing sparsity & overcompleteness

2. **Transforms & Regularizations**
 - How & why should this work?

3. **What about the dictionary?**
 - The quest for the origin of signals

4. **Putting it all together**
 - Image filling, denoising, compression, ...

The Sparse Coding Problem

Our dream for now: Find the sparsest solution to

\[D\alpha = x \]

Put formally,

\[\min_{\alpha} \|\alpha\|_0 \quad \text{s.t.} \quad x = D\alpha \]

Why should we necessarily get \(\hat{\alpha} = \alpha \)?

It might happen that eventually \(\|\hat{\alpha}\|_0 < \|\alpha\|_0 \).
Matrix "Spark"

Definition: Given a matrix D, $\sigma = \text{Spark}\{D\}$ is the smallest number of columns that are linearly dependent.

Donoho & Elad (’02)

- By definition, if $Dv=0$ then $\|v\|_0 \geq \sigma$
- Say I have α_1 and you have α_2, and the two are different representations of the same x:

 $x = D\alpha_1 = D\alpha_2 \quad \Rightarrow \quad D(\alpha_1 - \alpha_2) = 0$

 $\Rightarrow \quad \|\alpha_1 - \alpha_2\|_0 \geq \sigma$

Uniqueness Rule

- Now, what if my α_1 satisfies $\|\alpha_1\|_0 < \frac{\sigma}{2}$?
- The rule $\|\alpha_1 - \alpha_2\|_0 \geq \sigma$ implies that $\|\alpha_2\|_0 > \frac{\sigma}{2}$!

Donoho & Elad (’02)

Uniqueness: If we have a representation that satisfies $\frac{\sigma}{2} > \|\alpha\|_0$, then necessarily it is the sparsest.

So, if M generates signals using "sparse enough" α, the solution of will find them exactly.

$$P_0: \min_{\alpha} \|\alpha\|_0 \text{ s.t. } x = D\alpha$$

Question 2 – Practical P_0 Solver?

Are there reasonable ways to find $\hat{\alpha}$?

Matching Pursuit (MP) Mallat & Zhang (1993)

- The MP is a greedy algorithm that finds one atom at a time.
- Step 1: find the one atom that best matches the signal.
- Next steps: given the previously found atoms, find the next one to best fit...
- The Orthogonal MP (OMP) is an improved version that re-evaluates the coefficients after each round.
An Introduction to Sparse Representation
And the K-SVD Algorithm
Ron Rubinstein

Basis Pursuit (BP) Chen, Donoho, & Saunders (95)

Instead of solving
\[\min_{\alpha} \| x \|_0 \text{ s.t. } x = D\alpha \]

→ Solve this:
\[\min_{\alpha} \| \alpha \|_1 \text{ s.t. } x = D\alpha \]

- The newly defined problem is convex (linear programming).
- Very efficient solvers can be deployed:
 - Interior point methods [Chen, Donoho, & Saunders ('95)],
 - Iterated shrinkage [Figueiredo & Nowak ('03), Daubechies, Defrise, & Demole ('04), Elad ('05), Elad, Matalon, & Zibulevsky ('06)].

Question 3 – Approx. Quality?

\[\alpha = \text{Multiply by } D \]
\[x = D\alpha \]
\[\hat{\alpha} \]

How effective are MP/BP?

BP and MP Performance

Donoho & Elad ('02)
Gribonval & Nielsen ('03)
Tropp ('03)
Temlyakov ('03)

Given a signal \(x \) with a representation \(x = D\alpha \), if \(\| \alpha \|_1 < \text{(some threshold)} \) then BP and MP are guaranteed to find it.

- MP and BP are different in general (hard to say which is better).
- The above results correspond to the worst-case.
- Average performance results available too, showing much better bounds [Donoho ('04), Candes et.al. ('04), Tanner et.al. ('05), Tropp et.al. ('06)].
- Similar results for general inverse problems [Donoho, Elad & Temlyakov ('04), Tropp ('04), Fuchs ('04), Gribonval et.al. ('05)].

Agenda

1. A Visit to Sparseland
 Introducing sparsity & overcompleteness
2. Transforms & Regularizations
 How & why should this work?
3. What about the dictionary?
 The quest for the origin of signals
4. Putting it all together
 Image filling, denoising, compression, ...
Problem Setting

Multiply by D

$X = D\alpha$

$\|\alpha\|_0 \leq L$

Given these P examples and a fixed size (N x K) dictionary, how would we find D?

The Objective Function

$$\min_{D,A} \|DA - X\|^2_F \quad \text{s.t.} \quad \forall j, \|a_j\|_0 \leq L$$

The examples are linear combinations of atoms from D

Each example has a sparse representation with no more than L atoms

(N, K, L are assumed known, D has normalized columns)

K–SVD – An Overview

- Initialize D
- Sparse Coding: Use MP or BP
- Dictionary Update: Column-by-Column by SVD computation

Aharon, Elad & Bruckstein ('04)

K–SVD: Sparse Coding Stage

For the jth example we solve

$$\min_{\alpha} \|D\alpha - X_j\|^2_2 \quad \text{s.t.} \quad \|\alpha\|_0 \leq L$$

Ordinary Sparse Coding!
K–SVD: Dictionary Update Stage

\[\text{Min}_D \| \mathbf{DA} - \mathbf{X} \|_F^2 \quad \text{s.t.} \quad \forall j, \| \mathbf{a}_j \|_0 \leq L \]

For the \(k \)th atom we solve

\[\text{Min}_{\mathbf{a}_k} \| \mathbf{d}_k \mathbf{a}_k^T - \mathbf{E}_k \|_F^2 \]

\[\mathbf{E}_k = \sum_{p,k} \mathbf{d}_p \mathbf{a}_k^T \mathbf{x} \quad \text{(the residual)} \]

K–SVD Dictionary Update Stage

We can do better than this

\[\text{Min}_{\mathbf{a}_k} \| \mathbf{d}_k \mathbf{a}_k^T - \mathbf{E}_k \|_F^2 \]

But wait! What about sparsity?

K–SVD Dictionary Update Stage

We want to solve:

\[\text{Min}_{\mathbf{a}_k} \| \mathbf{d}_k - \mathbf{\hat{a}}_k \|_F^2 \]

Only some of the examples use column \(\mathbf{d}_k \)!

When updating \(\mathbf{\hat{a}}_k \), only recompute the coefficients corresponding to those examples

Solve with SVD!

The K–SVD Algorithm – Summary

Initialize \(\mathbf{D} \)

Sparse Coding
Use MP or BP

Dictionary Update
Column-by-Column by SVD computation
Agenda

1. A Visit to Sparseland
 Introducing sparsity & overcompleteness
2. Transforms & Regularizations
 How & why should this work?
3. What about the dictionary?
 The quest for the origin of signals
4. Putting it all together
 Image filling, denoising, compression, ...

Image Inpainting: Theory

- Assumption: the signal x was created by $x = D\alpha_0$, with a very sparse α_0.
- Missing values in x imply missing rows in this linear system.
- By removing these rows, we get $D\alpha_0 = \tilde{x}$.
- Now solve $\min \|\alpha\|_0 \text{ s.t. } \tilde{x} = D\alpha$.
- If α_0 was sparse enough, it will be the solution of the above problem! Thus, computing $D\alpha_0$ recovers x perfectly.

Inpainting: The Practice

- We define a diagonal mask operator W representing the lost samples, so that $y = W\hat{x} + \nu$ where $w_{i,i} \in \{0,1\}$.
- Given y, we try to recover the representation of \hat{x} by solving $\hat{\alpha} = \text{ArgMin}_{\alpha} \|\alpha\|_0 \text{ s.t. } y - WD\alpha \leq \epsilon$.
- We use a dictionary that is the sum of two dictionaries, to get an effective representation of both texture and cartoon contents. This also leads to image separation [Elad, Starck, & Donoho (05)].

Inpainting Results

- Source: Curvelet (cartoon) + Global DCT (texture)
- Dictionary: Curvelet (cartoon) + Global DCT (texture)
An Introduction to Sparse Representation And the K-SVD Algorithm

Ron Rubinstein

Inpainting Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Dictionary: Curvelet (cartoon) + Overlapped DCT (texture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td></td>
</tr>
</tbody>
</table>

Denoising: Theory and Practice

- Given a noisy image \(y \), we can clean it by solving:
 \[
 \hat{x} = \arg\min_\alpha \| \alpha \| \text{ s.t. } \| y - D\alpha \|_2 \leq \epsilon \quad \Rightarrow \quad \hat{x} = D\hat{\alpha}
 \]

- Can we use the K-SVD dictionary?

- With K-SVD, we cannot train a dictionary for an entire image. How do we go from local treatment of patches to a global prior?

- Solution: force shift-invariant sparsity – for each NxN patch of the image, including overlaps.

From Local to Global Treatment

\[
\hat{x} = \arg\min_\alpha \frac{1}{2} \| x - y \|_2^2 + \mu \sum_{i,j} \| R_{ij} (x - D\alpha_{ij}) \|_2 \text{ s.t. } \| \alpha_{ij} \|_0 \leq L
\]

Extracts the \((i,j)\)th patch

For patches, our MAP penalty becomes

Our prior
What Data to Train On?

Option 1:
- Use a database of images: works quite well (~0.5-1dB below the state-of-the-art)

Option 2:
- Use the corrupted image itself!
- Simply sweep through all $N \times N$ patches (with overlaps) and use them to train
- Image of size 1000x1000 pixels $\Rightarrow 10^6$ examples to use – more than enough.
- This works much better!

Image Denoising: The Algorithm

\[
\hat{x} = \text{ArgMin}_x \left\{ \frac{1}{2} \| x - y \|_2^2 + \mu \sum_i \| R_i \cdot x \cdot D \alpha_i \|_2^2 \right\} \quad \text{s.t.} \quad \| \alpha_i \|_0 \leq L
\]

Compute α_{ij} per patch

\[
\alpha_{ij} = \text{Min}_{\alpha_{ij}} \left\{ \| R_i \cdot x \cdot D \alpha_{ij} \|_2^2 \right\}
\quad \text{s.t.} \quad \| \alpha_{ij} \|_0 \leq L
\]

using matching pursuit

Compute D to minimize

\[
\text{Min}_D \sum_i \| R_i \cdot x \cdot D \alpha_{ij} \|_2^2
\]

using SVD, updating one column at a time

K-SVD

Denoising Results

Source

Result 30.829dB

Noisy image

PSNR = 22.1dB

Obtained dictionary after 10 iterations

Denoising Results: 3D

Source: Vis. Male Head (Slice #137)

2d-KSVD: PSNR=27.3dB

PSNR=12dB

3d-KSVD: PSNR=32.4dB
Image Compression

- Problem: compressing photo-ID images.
- General purpose methods (JPEG, JPEG2000) do not take into account the specific family.
- By adapting to the image-content, better results can be obtained.

Compression: The Algorithm

1. Detect main features and align the images to a common reference (20 parameters)
2. Divide each image to disjoint 15x15 patches, and for each compute a unique dictionary
3. Detect features and align
4. Divide to disjoint patches, and sparse-code each patch
5. Quantize and entropy-code

Training set (2500 images)

Compression Results

<table>
<thead>
<tr>
<th>Original</th>
<th>JPEG</th>
<th>JPEG 2000</th>
<th>PCA</th>
<th>K-SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results for 820 bytes per image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom: RMSE values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original</th>
<th>JPEG</th>
<th>JPEG 2000</th>
<th>PCA</th>
<th>K-SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results for 550 bytes per image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom: RMSE values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today We Have Discussed

1. A Visit to Sparseland
 Introducing sparsity & overcompleteness
2. Transforms & Regularizations
 How & why should this work?
3. What about the dictionary?
 The quest for the origin of signals
4. Putting it all together
 Image filling, denoising, compression, ...

Summary

Sparsity and over-completeness are important ideas for designing better tools in signal and image processing.

Approximation algorithms can be used, are theoretically established and work well in practice.

Coping with an NP-hard problem

We have seen inpainting, denoising and compression algorithms.

What dictionary to use?

How is all this used?

Several dictionaries already exist. We have shown how to practically train D using the K-SVD.

(a) Generalizations: multiscale, non-negative,...
(b) Speed-ups and improved algorithms
(c) Deploy to other applications

Why Over-Completeness?

Desired Decomposition
Inpainting Results

70% Missing Samples

DCT (RMSE=0.04)

Haar (RMSE=0.045)

K-SVD (RMSE=0.03)

90% Missing Samples

DCT (RMSE=0.085)

Haar (RMSE=0.07)

K-SVD (RMSE=0.06)