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Abstract

The K-SVD algorithm is a highly effective method of training overcomplete dic-

tionaries for sparse signal representation. In this report we discuss an efficient im-

plementation of this algorithm, which both accelerates it and reduces its memory

consumption. The two basic components of our implementation are the replacement

of the exact SVD computation with a much quicker approximation, and the use of

the Batch-OMP method for performing the sparse-coding operations.

Batch-OMP, which we also present in this report, is an implementation of the

Orthogonal Matching Pursuit (OMP) algorithm which is specifically optimized for

sparse-coding large sets of signals over the same dictionary. The Batch-OMP imple-

mentation is useful for a variety of sparsity-based techniques which involve coding

large numbers of signals. In the report, we discuss the Batch-OMP and K-SVD

implementations and analyze their complexities. The report is accompanied by

Matlabr toolboxes which implement these techniques, and can be downloaded at

http://www.cs.technion.ac.il/~ronrubin/software.html.

1 Introduction

Sparsity in overcomplete dictionaries is the basis for a wide variety of highly effective

signal and image processing techniques. The basic model suggests that natural signals

can be efficiently explained as linear combinations of prespecified atom signals, where

the linear coefficients are sparse (most of them zero). Formally, if x is a column signal

and D is the dictionary (whose columns are the atom signals), the sparsity assumption

can be described by the following sparse approximation problem,

γ̂ = Argmin
γ

‖γ‖0 Subject To ‖x − Dγ‖2
2 ≤ ε . (1.1)

In this formulation, γ is the sparse representation of x, ε the error tolerance, and ‖ · ‖0

is the `0 pseudo-norm which counts the non-zero entries. The sparse approximation

problem, which is known to be NP-hard, can be efficiently solved using several available
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approximation techniques, including Orthogonal Matching Pursuit (OMP) [1, 2], Basis

Pursuit (BP) [3, 4], FOCUSS [5], and others.

A fundamental question in the above formulation is the choice of the dictionary.

The dictionary will commonly emerge from one of two sources — either a predesigned

transform, such as the Wavelet [6], Curvelet [7], or Contourlet [8] transforms, or from

example data, using some adaptive training process. The K-SVD algorithm [9] is such

a technique for training a dictionary from given example data. It is a highly effective

method, and is successfully applied in several image processing tasks [10, 11, 12, 13, 14].

The K-SVD algorithm is quite computationally demanding, however, especially when

the dimensions of the dictionary increase or the number of training signals becomes large.

In this report we discuss an efficient implementation of the algorithm which reduces its

complexity as well as its memory requirements. The improvements are achieved by

using a modified dictionary update step which replaces the explicit SVD computation

with a simpler approximation, and employing an optimized OMP implementation which

accelerates the sparse-coding step.

We discuss our optimized OMP implementation in Section 2. The implementation is

motivated by the observation that sparsity-based techniques often involve the coding of a

large number of signals over the same dictionary. In a common image processing task, for

instance, the image could be decomposed into thousands of (possibly overlapping) image

patches, with each patch undergoing one or more sparse-coding processes ([10, 11, 12,

13, 14] and others). In our context, algorithms such as the K-SVD method commonly

use tens or even hundreds of thousands of signals for the learning process, in order

to reduce overfitting. Our implementation, which we term Batch-OMP, is specifically

suited for sparse-coding large sets of signals over a single dictionary, and it combines

existing techniques for OMP acceleration with a new contribution to allow its use with

error-driven signal processing tasks.

In Section 3 we review the K-SVD algorithm and discuss its efficient implementation.

Our Approximate K-SVD method uses a simple approximation of the SVD computation

to obtain a faster and more memory-efficient method. We show that the complexity of

the resulting implementation is dominated by its sparse-coding step, and thus employ

Batch-OMP to obtain further acceleration.

1.1 Notation

This report uses the following notation in the algorithm descriptions and mathematical

propositions:

• Bold uppercase letters designate matrices (M, Γ), while underlined lowercase

letters designate column vectors (v, γ). The columns of a matrix are referenced using

the corresponding lowercase letter, e.g. M = [ m1 | . . . |mn ] or Γ = [ γ
1
| . . . | γ

m
];

the coefficients of a vector are similarly referenced using non-underlined letters, e.g.

v = (v1, . . . , vn)T . The notation 0 is used to denote the zero vector, with its length
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deduced from the context.

• Given a single index I = i1 or an ordered sequence of indices I = (i1, . . . , ik), we

denote by MI = [ mi1
| . . . |mik

] the sub-matrix of M containing the columns indexed by

I, in the order in which they appear in I. For vectors we similarly denote the sub-vector

vI = (vi1 , . . . , vik)T . We use the notation MI,J , with J a second index or sequence of

indices, to refer to the sub-matrix of M containing the rows indexed by I and the columns

indexed by J , in their respective orders. The indexed notations are used in algorithm

descriptions for both access and assignment, so if I = (2, 4, 6, . . . , n), for instance, the

statement MI,j := 0 means nullifying the even-indexed entries in the j-th row of M.

2 OMP and Batch-OMP

2.1 The OMP Algorithm

The OMP algorithm aims to approximate the solution of one of the two following prob-

lems, the sparsity-constrained sparse coding problem, given by

γ̂ = Argmin
γ

‖x − Dγ‖2
2 Subject To ‖γ‖0 ≤ K , (2.1)

and the error-constrained sparse coding problem, given by

γ̂ = Argmin
γ

‖γ‖0 Subject To ‖x − Dγ‖2
2 ≤ ε . (2.2)

For simplicity, we assume hereon that the columns of D are normalized to unit `2-length

(though this restriction may easily be removed).

The greedy OMP algorithm selects at each step the atom with the highest corre-

lation to the current residual. Once the atom is selected, the signal is orthogonally

projected to the span of the selected atoms, the residual is recomputed, and the process

repeats (see Algorithm 1). Note that line 5 is the greedy selection step, and line 7 is the

orthogonalization step.

The computation in line 7 will usually not be carried out explicitly due to its high cost.

A practical implementation employs a progressive Cholesky or QR update process [15, 16]

to reduce the work involved in the matrix inversion. In a nutshell, the computation

γ
I

= (DI)
+x

= (DT
I DI)

−1DT
I x

requires the inversion of the matrix DT
I DI , which remains non-singular due to the or-

thogonalization process which ensures the selection of linearly independent atoms. The

matrix DT
I DI is an SPD (symmetric positive-definite) matrix which is updated every

iteration by simply appending a single row & column to it, and therefore its Cholesky

factorization requires only the computation of its last row. It is readily verified that
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Algorithm 1 Orthogonal Matching Pursuit

1: Input: Dictionary D, signal x, target sparsity K or target error ε

2: Output: Sparse representation γ such that x ≈ Dγ

3: Init: Set I := ( ), r := x, γ := 0

4: while (stopping criterion not met) do

5: k̂ := Argmax
k

| dT
k r |

6: I := ( I, k̂ )

7: γ
I

:= (DI)
+x

8: r := x − DIγI

9: end while

given the Cholesky factorization of Ã = L̃L̃
T ∈ R

(n−1)×(n−1), the Cholesky factorization

of

A =

(

Ã v

vT c

)

∈ R
n×n (2.3)

is given by A = LLT , with

L =

(

L̃ 0

wT
√

c − wT w

)

, w = L̃
−1

v . (2.4)

See Algorithm 2 for the full OMP-Cholesky implementation.

2.2 Handling Large Sets of Signals

When large numbers of signals must be coded over the same dictionary, it is worthwhile

to consider pre-computation to reduce the total amount of work involved in coding the

entire set. This approach has been previously discussed in [1], and our Batch-OMP

implementation adopts this technique, extending it to the error-constrained case.

The key observation is that the atom selection step at each iteration does not require

knowing r or γ explicitly, but only DT r. The idea is therefore to replace the explicit

computation of r and its multiplication by DT with a lower-cost computation of DT r.

Denoting α = DT r, α0 = DT x, and G = DTD, we can write:

α = DT
(

x − DI(DI)
+x

)

= α0 − GI(DI)
+x

= α0 − GI(D
T
I DI)

−1DT
I x

= α0 − GI(GI,I)
−1α0

I . (2.5)

This means that given the pre-computed α0 and G, we can compute α each iteration

without explicitly computing r. The modified update step requires only multiplication

4
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Algorithm 2 OMP-Cholesky

1: Input: Dictionary D, signal x, target sparsity K or target error ε

2: Output: Sparse representation γ such that x ≈ Dγ

3: Init: Set I := ( ), L := [1], r := x, γ := 0, α := DT x, n := 1

4: while (stopping criterion not met) do

5: k̂ := Argmax
k

| dT
k r |

6: if n > 1 then

7: w := Solve for w
{

Lw = DT
I d

k̂

}

8: L :=

[

L 0

wT
√

1 − wT w

]

9: end if

10: I := ( I, k̂ )

11: γ
I

:= Solve for c
{

LLT c = αI

}

12: r := x − DIγI

13: n := n + 1

14: end while

by the matrix GI instead of applying the complete dictionary DT . Note that the matrix

GI,I is inverted using the progressive Cholesky factorization discussed above.

The limitation of this approach is that since the residual is never explicitly computed,

an error-based stopping criterion (which is required for most practical cases) becomes

challenging to employ. In the following, we extend this method to the error-driven case

by deriving an efficient incremental formula for the `2 error. This makes the accelerated

OMP implementation useful for the many applications where error-constrained coding

is required.

We denote by rn and γn the residual and the sparse approximation, respectively, at

the end of the n-th iteration. We can now write

rn = x − Dγn

= x − Dγn−1 + Dγn−1 − Dγn

= rn−1 + D(γn−1 − γn) . (2.6)

The orthogonalization process in OMP ensures that at each iteration, the residual is

orthogonal to the current signal approximation. We thus have for all n,

(rn)TDγn = 0 . (2.7)

Using expression (2.6), and plugging-in property (2.7), we obtain the following expansion
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for the squared approximation error:

‖rn‖2
2 = (rn)T rn = (rn)T

(

rn−1 + D(γn−1 − γn)
)

= (rn)T rn−1 + (rn)TDγn−1

=
(

rn−1 + D(γn−1 − γn)
)T

rn−1 + (rn)TDγn−1

= ‖rn−1‖2
2 − (rn−1)TDγn + (rn)TDγn−1

= ‖rn−1‖2
2 − (x − Dγn−1)TDγn + (x − Dγn)TDγn−1

= ‖rn−1‖2
2 − xTDγn + xTDγn−1

= ‖rn−1‖2
2 − (rn + Dγn)TDγn + (rn−1 + Dγn−1)TDγn−1

= ‖rn−1‖2
2 − (γn)TDTDγn + (γn−1)TDTDγn−1

= ‖rn−1‖2
2 − (γn)TGγn + (γn−1)TGγn−1 . (2.8)

For simplicity, we designate the squared approximation error by εn = ‖rn‖2
2. We

also introduce the notation δn = (γn)TGγn. The error update step is thus given by the

simple formula

εn = εn−1 − δn + δn−1 . (2.9)

Note that the computation of δn each iteration is extremely cheap, as the product Gγn =

GIγ
n
I

is just the product GI(GI,I)
−1α0

I , which is computed in any event for the update

of α. Therefore, the only added work in computing δn is the dot product between this

vector and the sparse vector γn, which requires a negligible amount of work.

The complete error-constrained algorithm is presented as Algorithm 3. For conve-

nience, Table 1 summarizes the symbols used in the algorithm. We name this implemen-

tation Batch-OMP as it is specifically designed for sparse coding large sets of signals —

indeed, the precomputation of G limits its usability for coding small numbers of signals.

I Indices of the selected atoms (ordered sequence)

γ The sparse representation of x

r The residual (x − Dγ)

α0 The product DT x

α The product DT r

β The product Gγ

L The Cholesky factorization of GI,I

δn The weighted norm γTGγ

εn The squared error ‖r‖2
2

Table 1: Values computed in the Batch-OMP algorithm. The superscript n = 0, 1, 2, . . . (where

used) indicates the iteration number: we define a symbol’s value at the n-th iteration as its value

at the end of the n-th iteration, and use the superscript n = 0 to refer to its initial value.
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Algorithm 3 Batch-OMP

1: Input: α0 = DT x , ε0 = xT x, G = DTD , target error ε

2: Output: Sparse representation γ such that x ≈ Dγ

3: Init: Set I := ( ), L := [1], γ := 0, α := α0, δ0 := 0, n := 1

4: while εn−1 > ε do

5: k̂ := Argmax
k

{|αk|}
6: if n > 1 then

7: w := Solve for w
{

Lw = G
I,k̂

}

8: L :=

[

L 0

wT
√

1 − wT w

]

9: end if

10: I := ( I, k̂ )

11: γ
I

:= Solve for c
{

LLT c = α0
I

}

12: β = GIγI

13: α := α0 − β

14: δn = γT
I
β

I

15: εn = εn−1 − δn + δn−1

16: n := n + 1

17: end while

Note that for the sparsity-constrained version, we simply remove the updates of δn and

εn and replace the stopping criterion with the appropriate one.

2.3 Complexity Analysis

We now consider the complexity of these OMP implementations, focusing on the gain

offered by precomputing G when coding large sets of signals. For the analysis we assume

a signal x ∈ R
N and a dictionary D ∈ R

N×L. We distinguish between two types of

dictionaries — explicit dictionaries which are stored in memory in their entirety (such as

in the K-SVD case), and implicit dictionaries, which are specified through their forward

and adjoint operators (and may not provide access to individual atoms). We denote the

complexity of applying D and DT as TD ; for explicit dictionaries, we have TD = 2NL.

The following analysis assumes that a triangular n × n back-substitution process

requires n2 operations. Also, it does not take into account vector or matrix reallocation

operations, which can be avoided or optimized when sufficient memory is pre-allocated,

or a clever memory management scheme is employed.

We begin with the OMP-Cholesky implementation (Algorithm 2). The n-th iteration

includes computing DT r (TD operations), taking the absolute-value maximum (2L oper-
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Dictionary OMP Batch-OMP

Type (Per Signal) Per Signal TG

Implicit 4KTD + 2K(L + N) + K
3

TD + K
2
L + 3KL + K

3 ?

Explicit KTD + 2K
2
N + 2K(L + N) + K

3
TD + K

2
L + 3KL + K

3
NL

2

Dictionary size: N × L Target sparsity: K

Table 2: Complexity of standard OMP versus Batch-OMP. The Batch-OMP complexity is divided

into the precomputation complexity (TG) and the complexity per signal.

ations), computing w (n2 operations for the back-substitution, plus the computation of

DT
I d

k̂
), computing the new representation coefficients (two additional back-substitution

processes, or 2n2 operations), and updating the residual, which involves computing DIγI

and N subtraction operations.

The operations DT
I d

k̂
and DIγI

differ between the two dictionary types. For explicit

dictionaries, each can be done in 2nN operations using a direct computation. For implicit

dictionaries, each matrix multiplication involves a full applications of the dictionary, and

computing d
k̂

requires yet another application of the dictionary. Summing over all K

iterations, we therefore find that the final OMP-Cholesky runtime is given by

Tomp {implicit-dict} = 4KTD + 2K(L + N) + K3

Tomp {explicit-dict} = KTD + 2K2N + 2K(L + N) + K3
. (2.10)

The analysis of the Batch-OMP algorithm is similar. Assuming G is precomputed,

the algorithm requires a single application of DT during initialization (TD operations),

and other than that, the dominant operations at the n-th iteration are the absolute-value

maximum (2L operations), computing w (n2 operations), computing the updated coeffi-

cients (2n2 operations), computing β (2nL operations), and updating α (L operations).

The total number of operations, summing over all K iterations, is therefore

Tb−omp = TD + K2L + 3KL + K3 . (2.11)

Comparing this with (2.10), we see that the number of applications of D is signifi-

cantly reduced. This is a substantial improvement when the dictionary is costly to apply,

such as when it is stored explicitly.

Table 2 summarizes the complexities of OMP and Batch-OMP for a general and

explicit dictionary. For Batch-OMP, the time required to precompute G (denoted as

TG) is also specified. Note that for an explicit dictionary, this is

TG{explicit-dict} = NL2 , (2.12)

where we have taken into account the symmetry of the matrix.
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# of Signals OMP Batch-OMP Ratio

1 2.14 67.4 x0.03

10 21.43 70.2 x0.31

102 214.3 97.9 x2.19

103 2,142.7 374.8 x5.72

105 214,272.0 30,838.3 x6.95

Table 3: Operation count (in millions of operations) of standard OMP versus Batch-OMP for an

explicit dictionary. Signal size is 256, dictionary size is 256×512, target sparsity is 8. Batch-OMP

time includes precomputation time.

As a concrete example, assume an explicit dictionary with K =
√

N/2 and L = 2N .

The complexities in (2.10) and (2.11) become

Tomp ≈ 2N2.5

Tb−omp ≈ 4.5N2
. (2.13)

We see that the advantage of Batch-OMP over standard OMP is indeed asymptotic.

This per-signal advantage quickly overcomes the added cost of precomputing G (4N3

operations in this case) when the number of signals passes ∼ 2
√

N . Table 3 lists the total

number of operations required to sparse-code a variable number of signals using both

OMP and Batch-OMP for N = 256 (which could stand for 16 × 16 image patches). We

note that as the number of signals increases, the computation of G becomes insignificant

and the ratio between the two methods approaches Tomp/Tb−omp = (2/4.5)
√

N = 7.11.

2.4 Other Acceleration Techniques

With its high popularity, many acceleration techniques have been proposed for the OMP

algorithm over the years. In [17], the authors improved the straightforward OMP imple-

mentation by exploiting mathematical properties of the orthogonalization process. Their

improvements were based on the Modified Matching Pursuit implementation [16], which

implements OMP by orthogonalizing and storing the selected atoms as the algorithm ad-

vances. The complexity they achieve is similar to that of the progressive Cholesky-based

OMP implementation, however it requires more memory and is therefore less useful.

More recently, a clever acceleration scheme has been proposed for the Matching Pur-

suit algorithm, reducing its complexity to an impressive O(N log N) per iteration [18].

The acceleration is achieved by assuming a specific spatial locality property on the dictio-

nary atoms, which significantly reduces the number of atom-signal inner-products that

must be recomputed between iterations. The authors further employ a tree-structure to

accelerate the maximization process in the atom selection step. This approach, named

MPTK (MP-ToolKit), is specifically designed for coding very large signals over highly
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regular dictionaries. Batch-OMP, in contrast, is useful for sparse-coding large sets of

smaller signals over generic dictionaries. The dictionary in these cases lacks the local-

ity features required by MPTK (due to the size of the signals), and thus it cannot be

employed.

A different acceleration approach recently proposed is the Gradient Pursuit algo-

rithm [15], which employs an iterative process in order to more efficiently solve the `2

orthogonalization problem in OMP. This algorithm is not an exact implementation of

OMP, and rather an approximation of it. Like MPTK, it is best suited for sparse-coding

very large signals, though it does not impose any specific structure on the dictionary.

3 Efficient K-SVD Implementation

3.1 The K-SVD Algorithm

The K-SVD algorithm accepts an initial overcomplete dictionary D0, a number of iter-

ations k, and a set of training signals arranged as the columns of the matrix X. The

algorithm aims to iteratively improve the dictionary to achieve sparser representations

of the signals in X, by solving the optimization problem

Min
D,Γ

‖X − DΓ‖2
F Subject To ∀i ‖γ

i
‖0 ≤ K. (3.1)

The K-SVD algorithm involves two basic steps, which together constitute the al-

gorithm iteration: (i) the signals in X are sparse-coded given the current dictionary

estimate, producing the sparse representations matrix Γ, and (ii) the dictionary atoms

are updated given the current sparse representations; see Algorithm 4. The sparse-coding

part (line 5) is commonly implemented using OMP. The dictionary update (lines 6-13) is

performed one atom at a time, optimizing the target function for each atom individually

while keeping the rest fixed.

The main innovation in the algorithm is the atom update step, which is performed

while preserving the constraint in (3.1). To achieve this, the update step uses only the

signals in X whose sparse representations use the current atom. Letting I denote the

indices of the signals in X which use the j-th atom, the update is obtained by optimizing

the target function

‖XI − DΓI‖2
F (3.2)

over both the atom and its associated coefficient row in ΓI . The resulting problem is a

simple rank-1 approximation task given by

{ d , g } := Argmin
d,g

‖E − d gT ‖2
F Subject To ‖d‖2 = 1 , (3.3)

where E = XI −
∑

i 6=j diΓi,I is the error matrix without the j-th atom, d is the updated

atom, and gT is the new coefficients row in ΓI . The problem can be solved directly via

an SVD decomposition, or more efficiently using some numeric power method.
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Algorithm 4 K-SVD

1: Input: Signal set X, initial dictionary D0, target sparsity K, number of iterations k.

2: Output: Dictionary D and sparse matrix Γ such that X ≈ DΓ

3: Init: Set D := D0

4: for n = 1 . . . k do

5: ∀i : Γi := Argmin
γ

‖xi − Dγ‖2
2 Subject To ‖γ‖0 ≤ K

6: for j = 1 . . . L do

7: Dj := 0

8: I := {indices of the signals in X whose representations use dj}
9: E := XI − DΓI

10: { d , g } := Argmin
d,g

‖E − d gT ‖2
F Subject To ‖d‖2 = 1

11: Dj := d

12: Γj, I := gT

13: end for

14: end for

3.2 Approximate K-SVD

In practice, the exact solution of (3.3) can be computationally difficult, as the size of E is

proportional to the number of training signals. Fortunately, an exact solver is not usually

required here. Indeed, the entire K-SVD algorithm only converges to a local minimum

and not a global one, and respectively, its analysis as provided in [9] only assumes a

reduction of the target function value in (3.3), not an optimal solution. Put differently,

the goal of K-SVD is really to improve a given initial dictionary, not find an optimal one.

Therefore, a much quicker approach is to use an approximate solution of (3.3) rather

than the exact one — just as long as this approximation ensures a reduction of the final

target function.

Our implementation uses a single iteration of alternate-optimization over the atom

d and the coefficients row gT , which is given by

d := Eg/‖Eg‖2

g := ET d
. (3.4)

This process is known to ultimately converge to the optimum, and when truncated,

supplies an approximation which still reduces the penalty term. Our experience shows

that a single iteration of this process is generally sufficient to provide very close results

to the full computation.
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A significant advantage of this method is that it eliminates the need to explicitly

compute the matrix E. This computation is both time and memory consuming, and in

the approximate formulation is avoided by computing only the products of this matrix

with vectors. The complete Approximate K-SVD implementation is given as Algorithm 5.

Algorithm 5 Approximate K-SVD

1: Input: Signal set X, initial dictionary D0, target sparsity K, number of iterations k.

2: Output: Dictionary D and sparse matrix Γ such that X ≈ DΓ

3: Init: Set D := D0

4: for n = 1 . . . k do

5: ∀i : Γi := Argmin
γ

‖xi − Dγ‖2
2 Subject To ‖γ‖0 ≤ K

6: for j = 1 . . . L do

7: Dj := 0

8: I := {indices of the signals in X whose representations use dj}
9: g := ΓT

j, I

10: d := XIg − DΓIg

11: d := d/‖d‖2

12: g := XT
I d − (DΓI)

T d

13: Dj := d

14: Γj, I := gT

15: end for

16: end for

3.3 Complexity Analysis

The complexity analysis of the Approximate K-SVD algorithm is similar to that of the

OMP algorithm in the previous section. We assume that the sparse-coding in line 5 is

implemented using Batch-OMP, and hence requires 2NL+K2L+3KL+K3 operations

per training signal, plus NL2 operations for the precomputation of G.

As to the dictionary update step, the only difficulty with its analysis is that the atom

update complexity depends on the number of signals using it (in other words, we do not

know the number of columns in XI and ΓI). This, however, can be worked-around by

performing a cumulative analysis over the entire dictionary update loop. Indeed, the total

number of columns in each of these matrices, summing over all L iterations, is exactly

equal to the number of non-zeros in the matrix Γ (as each such non-zero represents one

training signal using one atom). The number of non-zeros in Γ is known to be R · K,
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with R the number of training signals, and thus an exact analysis can be carried out.

Considering line 10, for instance, the number of columns in XI for a single iteration

is unknown; however, the total number of columns in all XI ’s over all L iterations is

exactly RK. Therefore, the cumulative number of operations required to perform the

multiplications XIg in all iterations sums up to 2RKN . Similarly, the multiplications

ΓIg sum up to 2RKL. The multiplication by D adds 2NL operations per atom, which

sums up to 2NL2 operations over the entire dictionary update.

Concluding the analysis, the dominant operations in a single K-SVD iteration include

the sparse-coding in line 5, the atom updates in line 10, and the coefficient updates in

line 12 (which are computationally equivalent to the atom updates). We thus arrive at

a total of

TK-SVD = R ·
(

2NL + K2L + 3KL + K3
)

+ NL2 + 4RKN + 4RKL + 4NL2

= R ·
(

2NL + K2L + 7KL + K3 + 4KN
)

+ 5NL2 (3.1)

operations per iteration. Assuming an asymptotic behavior of K ¿ L ∼ N ¿ R,

the above expression simplifies to the following final K-SVD operation count per training

iteration,

TK-SVD ≈ R ·
(

K2L + 2NL
)

. (3.2)

As can be seen, this is really just the operation count for sparse-coding R signals

using Batch-OMP (excluding the precomputation which is negligible). The reason is

that with the elimination of the explicit computation of E each iteration, the remain-

ing computations become insignificant compared to the sparse-coding task in line 5.

The Approximate K-SVD algorithm is therefore dominated by its sparse-coding step,

emphasizing once again the significance of using Batch-OMP for its implementation.

4 Conclusion

We have discussed efficient OMP and K-SVD implementations which vastly improve over

the straightforward ones. The Batch-OMP method is useful for a wide range of sparsity-

based techniques which require large sets of signals to be coded. The Approximate

K-SVD implementation, which employs Batch-OMP as its sparse-coding method, also

improves on the dictionary update step by using a significantly faster and more memory

efficient atom update computation.

Both the Batch-OMP and K-SVD implementations are made available as Matlabr

toolboxes at http://www.cs.technion.ac.il/~ronrubin/software.html. The tool-

boxes can be freely used for personal and educational purposes. Questions and comments

can be sent to ronrubin@cs.technion.ac.il.
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