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TextureMapping
usingSurfaceFlattening

via Multi-DimensionalScaling
Gil Zigelman, Ron Kimmel and Nahum Kiry ati

Abstract | W e presen t a no vel tec hnique for texture map-
ping on arbitrary surfaces with minimal distortions, by pre-
serving the lo cal and global structure of the texture. The
recen t in tro duction of the fast marc hing metho d on trian-
gulated surfaces, made it p ossible to compute a geo desic
distance map from a giv en surface p oin t in O(n lg n) op era-
tions, where n is the num b er of triangles that represen t the
surface. W e use this metho d to design a surface °attening
approac h based on m ulti-dimensional scaling (MDS). MDS
is a family of metho ds that map a set of p oin ts in to a ¯nite
dimensional °at (Euclidean) domain, where the only giv en
data is the corresp onding distances b et ween every pair of
p oin ts. The MDS mapping yields minimal changes of the
distances b et ween the corresp onding p oin ts. W e then solv e
an `in verse' problem and map a °at texture patc h on to the
curv ed surface while preserving the structure of the texture.

Keywor ds| T exture mapping, m ulti-dimensional scaling,
fast marc hing metho d, Geo desic distance, Euclidean dis-
tance.

I. Intr oduction

The texture mapping problem is closely related to the
inverseproblem of °attening a curved surfaceinto a plane.
In the context of mapping the surfaceof the earth this is
known as the `map maker problem'. It has been shown
by Gaussin 1828 that an isometric mapping between two
surfacesof di®erent intrinsic curvature is not possible. In
other words, it is impossible to map a convoluted surface
onto a plane or a sphere without intro ducing metric dis-
tortions becauseboth surfacesdi®er with respect to their
Gaussiancurvature. Thus, only approximate solutions are
possible. Therefore, °attening algorithms can only aim for
minimal geometric distortions but cannot prevent distor-
tions altogether.

The computer graphics communit y has made many at-
tempts to solve the problem of mapping °at texture images
onto curved surfaces.The main problemswith most of the
existing methods are that they
² intro duce large deformations and distortions to the orig-
inal texture, and
² involve high computational complexity.

Environment mapping [5], [14], is onetechnique that cre-
ates the e®ectof environment re°ections on surfaces. It
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maps the original 2D texture to a sphere or a cube sur-
rounding the surface. Then, the surface normal at each
point is usedto ¯nd the intersectionof the re°ected viewing
vector with the surrounding simple object, and assignsthe
texture at that point to the corresponding surface point.
These methods do not preserve the local area of the tex-
ture and intro duce local deformations. Moreover, mapping
the 2D texture onto a sphere causesdistortions to begin
with. In order to minimize theseartifacts, one has to dis-
tort the original °at texture image before mapping onto a
sphere.

Bier and Sloan [4] extended the environment mapping
idea and proposed a two step procedure. First, the tex-
ture is mapped onto a simple object (preferably preserving
the area) and then it is mapped from the simple object to
the given surface,using, for example, the surfacenormal's
intersection with the simple object. This method also in-
tro ducesvisible deformations, however, it can decreasethe
distortions which exist in the previous methods.

Kurzion, MÄoller and Yagel [18] try to preserve area.
They usea cube as a simple surrounding object. For each
point they ¯nd two curvature values in specially selected
directions, and then changethe density of the surrounding
image respectively. This method is area preserving, how-
ever, it createsshear e®ects. It is also limited to smooth
surfaceswith C2 continuit y.

Arad and Elber [1] preserve the local texture area by
¯nding, for a speci¯c viewing direction, the four intersec-
tion curves(in the parametric space)betweena swept rect-
angle in the viewing direction and the surface. Then, they
warp the square texture image to ¯t the four intersection
curves. The texture imageis warped beforemapping. This
method is useful in caseswhereonewants to map a texture
on a small portion of a surface.

Bennis, V¶ezien,and Igl¶esias[3] ¯rst piecewise°atten the
surfaceand then map the texture onto each °attened part.
The °attening of a region grows around an isoparametric
curve selectedmanually. They usea distortion metric as a
control and stop the growth when the accumulated distor-
tion exceedsa given threshold. They permit discontinuities
on the mapped texture in order to minimize distortions.

Floater [11], [12], presented a `shape preserving' texture
mapping. He ¯rst limits the triangulated surface bound-
ary vertices to speci¯c coordinates of a convex polygon in
R2. Then he solvesa set of linear equations that force all
other interior vertices to be a convex combination of their
neighbors. He proves that this way there will be no self
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intersections of triangles on the °at texture plane. Since
the boundary texture coordinates are ¯xed, deformations
obviously occur, especially global ones.

L¶evy and Mallet [19] extendedFloater's ideasby adding
°exibilit y to the scheme. Instead of solving a set of linear
equations,they minimize a global criterion in a least square
sense. This allows adding new measuresin addition to
Floater's linear equations. Thesemeasurestry to preserve
the perpendicularity and constant spacingof isoparametric
curves traced on the surface. The constraints involve lo-
cal orthogonality of the chart, and local homogeneity in the
sensethat isoparametric curvesare restricted to be straight
between adjacent triangle. The constraints add freedom
to Floater model, yet require many iterations to converge,
with about 100 iterations for 3000triangles taking about a
minute on SGI R4000 processor. The constraints also en-
able them to make the texture continuous through cuts on
the surface. In general, these local constraints can not be
satis¯ed, sothe problem is rede¯ned asa least squareprob-
lem with control over the orthogonality and straightnessof
the isoparametric curvesof the chart. The constraints have
local in°uence, and the whole scheme depends mainly on
boundary conditions (otherwise the problem is ill-p osed),
though boundary conditions canbegiven inside the domain
and in a sensework like an extrapolation.

In [2], Azariadis and Aspragathosproposedto minimize a
functional that combinesa dissimilarit y measurefor neigh-
boring vertices and an area measurefor the °attened tri-
angles. They also restrict two curves in their mapping to
have identical lengths astwo selectedcurveson the surface.
Roughly speaking, this constraint can be consideredas a
boundary condition for their problem. Their non-linear
optimization schemehandlesin a few secondsabout thou-
sand vertices. Actually , had they extended their length
term in their energyde¯nition to non-neighboring vertices,
they would have been able to ignore both the boundary
constraint and the area terms, since these measuresare
implicitly included within multi-dimensional scaling func-
tionals.

Neyret and Cani [21] dealt with any surface topology
by tiling together small textured patches with matching
boundaries. Their method is limited to textures with rela-
tiv ely small details, as the tiles should be relatively small.
A solution to a similar problem was intro duced by Praun,
Finkelstein and Hoppe in [22]. They detect features in a
small texture patch, and repeatedly paste them onto any
given surface until it is completely covered. These meth-
ods are not suitable for mapping an image onto a curved
domain.

The work of Wolfson and Schwartz [28], and Schwartz,
Shaw and Wolfson [25], intro duced a clever °attening
method, the ingredients of which are revisited in this paper.
They ¯rst usea computationally intensive way for ¯nding
the geodesicdistancebetweenpairs of points on the surface.
Then, they use a speci¯c MDS (Multi-Dimensional Scal-
ing) approach to °atten the surface using these geodesic
distances,and by minimizing the functional presented by
Sammon in [24], which resembles the Stress-1 functional

[6]. Their method involveshigh computational complexity
and therefore is not practical.

Motiv ated by [28] we intro duce a new e±cient mapping
method that preservesboth the local and the global struc-
ture of the texture, with minimal shearing e®ects. It en-
ablesrealistic texture mapping on any given surfacewhich
is homeomorphic to a plane. Our method avoids the need
for an intermediate surface or boundary conditions and
doesnot require any smoothnesscondition on the surface.

Most of the previous °attening methods require bound-
ary conditions mainly due to the fact that they try to inte-
grate local measures. In the proposed method boundary
conditions are not required for a valid solution. More-
over, the structure preserved by the proposed scheme is
determined both by distancesbetweenclosepoints on the
surface and between distant points, therefore, both the
`local' as well as the `global' structure of the texture are
preserved. The method is based on two numerical tools
that replacethe numerical machinery usedin [28], namely,
the fast marching method on triangulated domains [15],
and classicalmulti-dimensional scaling [6], [7]. Section I I
brie°y reviews the fast marching method on triangulated
domains, which is used in order to calculate the geodesic
distancesbetweenpoints on the surface. In Section I I I we
discusssomematrix operations that are useful for the MDS
method presented in SectionIV. SectionV explainshow to
perform the texture mapping. Section VI provides experi-
mental results and Section VI I givesconcluding remarks.

I I. Finding Geodesic Dist ances

The ¯rst step in our °attening procedure is ¯nding the
geodesic distancesbetween pairs of points on the surface.
For this task we usethe fast marching method on triangu-
lated domains, intro duced by Kimmel and Sethian in [15].
This method is an extensionto curveddomainsof Sethian's
fast marching method [26], and Tsitsiklis Eikonal solvers
on °at domains [27]. An alternativ e method for ¯nding
the geodesic distances, basedon graph search and length
estimators, was presented by Kiry ati and Sz¶ekely [16].

Sethian's idea of using the fast marching approach for
distancecomputation is to e±ciently solvean Eikonal equa-
tion jr T j = 1, anchored at the source point p, namely
T(p) = 0. The solution T is a distance function, and
its numerical solution is computed by a monotone update
schemethat is proven to convergeto the `viscosity' smooth
solution. The idea is to iterativ ely construct the distance
function by patching together small planes supported by
neighboring grid points with gradient 1, starting from the
sourcepoint and propagating outwards.

As we go to triangulated domains, we need to carefully
deal with the update step of one vertex in the triangle,
while the T values at the two other vertices are given.
Roughly speaking, all we needto do is to solve a quadratic
equation for the new vertex, and select the larger solu-
tion. This simple update approach would work after pre-
processingobtuse triangles, as explained in [15]. The ver-
tices are updated in an increasing T order, similar to the
classicalDijkstra graph search method, the only di®erence
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being the update step which now incorporates the under-
lying geometry of the problem.

The fast marching method on triangulated domains en-
ablesus to computegeodesicdistancesin O(n lg n) wheren
is the number of triangle vertices that represent the curved
surface. This means that we can calculate all the neces-
sary geodesic distancesin O(n2 lg n). We show in Section
IV that we do not have to calculate the geodesicdistances
for all pairs of vertices on the surface. We select a subset
of the vertices and thereby speedup the algorithm.

Let us give a simple explanation for the algorithm of
fast marching on triangulated domains. Given a point on
a triangulated surface,consider the problem of ¯nding the
geodesic distance (the distance on the surface) from the
given point to the rest of the points on the surface. We
would like to be able to e±ciently compute the values of
this function at each vertex on the triangulated surface.

Consider¯rst the well known Dijkstra graph search algo-
rithm that can be used to ¯nd a rough approximate solu-
tion to the problem. The idea is to describe the surfaceasa
graph in which the edgesof the triangles are non-directed
weighted edgesin the graph connecting all the vertices,
where the weight w equalsto the Euclidean distance,

w(ev i v j ) = d(vi ; vj ):

Here d(vi ; vj ) is the Euclidean distance between the two
vertices vi and vj , and ev i v j is the edgeconnecting them.
The vertices can be dually represented as points in 3D.

The Dijkstra algorithm consistsof the following steps,
Init : Let v0 be the sourcevertex. Set T(v0) = 0, and set
the rest of the vertices to T(v) = 1 .
Step 1: Update all verticesvi which are connectedthrough
one edgeto v0 to

T(vi ) = min(T(vi ); T(v0) + w(ev0 v i )) :

Step 2: Insert the newupdated verticesto a min-heapdata
structure. If the vertex is already in the heap, then just
update its value and location.
Step 3: If the heap is empty return, elseremove the vertex
at the top of the min-heap structure, and name it v0.
Step 4: Go to Step 1.

A simple computational analysis shows that for graphs
with a small degreeat each vertex, the computational com-
plexity for computing the shortest graph distancefrom one
selectedvertex to the rest of the vertices in the graph takes
O(n lg n), where n is the total number of vertices in the
graph. The reasonis that each vertex is selectedonce,and
each update of the heap takesat most lg n.

This could have beena perfect solution to our problem.
Unfortunately, any graph search basedalgorithm imposes
an arti¯cial non-geometricmetric while computing the dis-
tance. A simple 2D example is the L 1 or Manhattan dis-
tance, also known as chess-board distance, in which the
path is restricted to vertical (south to north) and horizon-
tal (east to west) edges,like the streets in Manhattan. It
doesnot really matter how narrow and densethesestreets
are, getting from the south-west corner to the north-east

corner of town will always have a distance that equals to
traveling from the south-west corner to the south-eastcor-
ner, and then from the south east corner to the north east
corner, seeFigure 1. This property is also known as met-
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Fig. 1. The length of the path P1 is equivalent to the length of the
path P2 . As long as the path is restricted to horizontal and verti-
cal directions, the Euclidean shortest path can not be extracted.

rication error or numerical inconsistency. It meansthat a
graph search basedmethod is not guaranteed to converge
to the continuoussolution no matter how much onere¯nes
the underlying graph.

We now look at a di®erent alternativ e, one that incor-
porates the geometry of the problem into the solution. A
closeobservation of a distance function from a given point
in the plane shows that its slope equalsone almost every-
where. We can construct the distancefunction, asa mono-
tonically increasingfunction de¯ned over the domain with
a unit slope. The tric k is to replacethe update step (Step
2) in the Dijkstra algorithm such that instead of sensing
the distance through one edgeT(v0) + w(ev0 v i ), the new
update now attempts to sensethe value of the distance by
considering two neighboring vertices of the sametriangle,
and update the value of the vertex such that the slope of
the plane de¯ned by the function over the triangle equals
one.

For example,assumev1; v2; and v3 are the verticesof one
triangle, and without loss of generality assumethe three
are de¯ned on the xy plane and therefore given by two
coordinates. Given T(v1) and T(v2), the question is how
to update T(v3).

Since we want to compute a distance map we would
like a gradient that equals to 1. In general we have
two possible solutions for T(v3), one with T(v3) smaller
than T(v2) and/or smaller than T(v1), and another with
T(v3) larger than T(v1) and T(v2). We would ob-
viously like to select the second solution. Formally,
the solution is a result of a quadratic equation that
de¯nes the angle between the normal of the plane
f (v1; T(v1)) ; (v2; T(v2)) ; (v3; T(v3))g and the normal to the
planef v1; v2; v3g, to be¼=4. So,T(v3) is the larger solution
to the quadratic equation that de¯nes the plane through
the points f (v1; T(v1)) ; (v2; T(v2)) ; (v3; T(v3))g that has a
unit gradient magnitude with respect to the coordinate
plane de¯ned by the triangle f v1; v2; v3g, seeFigure 2.
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Fig. 2. The value of T (v3 ) is set so that T (v3 ) > T (v1 ),
T (v3 ) > T (v2 ), and the gradient magnitude of the plane
f (v1 ; T (v1 )) ; (v2 ; T (v2 )) ; (v3 ; T (v3 )) g is 1, that is, N̂1 ¢ N̂2 =
cos(¼=4).

I I I. Ma trix Pr oper ties

In this section we review some de¯nitions and matrix
properties [17] that will help us explain the `classicalscal-
ing' method. We de¯ne the matrix X n £ m to represent
the coordinates of n points in an m dimensional Euclidean
spaceRm . The squareEuclidean distance betweenpoint i
and point j is de¯ned as

d2
ij =

mX

a=1

(x ia ¡ x j a)2 .

Let the matrix E denote the square Euclidean distances
betweeneach pair of points in X , that is E ij = d2

ij . Then,
E can be compactly written as

E = c10+ 1c0 ¡ 2XX 0, (1)

where1 is a vector of onesof length n, c is a vector of length
n in which ci =

P m
a=1 x2

ia , and 0 denotes the transpose
operator.

Consider the translation of the coordinate origin of the
points de¯ned by X to a new location. De¯ne the location
to be an a±ne combination of the points themselves, i.e.,
s0 = w 0X where

P n
i =1 wi = 1, and for every i , wi ¸ 0.

Then, the coordinates with respect to the new origin, de-
noted by the matrix X s, are given by

X s = X ¡ 1s0

= (I ¡ 1w 0)X

= P w X . (2)

Multiplying P w by a vector of oneson either side yields a
vector of zeros,

P w 1 = (10P w )0 = 0.

When choosings to be the center of massof the points, i.e.
by using

w =
1
n

1,

the corresponding P w , denoted by J, and de¯ned by

J = I ¡
1
n

110, (3)

is called a centering matrix, since it sets the origin to be
the center of mass. If X is already column centered, i.e.,
the center of massof the points de¯ned by X is the origin
of their coordinates, then

JX = X . (4)

IV. The Fla ttening Appr oach

MDS (Multi-Dimensional Scaling) is a set of mathemat-
ical techniques used to uncover the \geometric structure"
of datasets, seee.g. [17]. For example, given a set of ob-
jects with proximit y values amongst themselves, we can
useMDS to create a 2D map of theseobjects, that is eas-
ier to comprehendor analyze. Rubner and Tomasi [23] use
MDS for texture classi¯cation. They de¯ne metric percep-
tual similarities between textures, and use MDS in order
to visualize the metrics.

Herewe usethe MDS in a similar way. As proximit y val-
ueswe usethe geodesicdistancesmeasuredbetweenevery
two points on the surface,and the resulting map represents
the °attening of the curved surface.

The input to the MDS is an n £ n symmetric matrix M .
The M ij element in the matrix M is the squaredgeodesic
distance betweenpoint i and point j , where n is the num-
ber of points on the surface. We calculate the geodesic
distancese±ciently as mentioned in Section I I.

Most MDS methods are basedon ¯nding the coordinates
xk , k 2 [1; :::; m] wherem is the dimensionweare interested
in, from the given distances. Our goal is to reconstruct the
n £ 2 matrix X , containing 2D coordinates corresponding
to the surfacepoints. Naturally , for surfaceswith e®ective
Gaussiancurvature it is impossiblefor the Euclidean dis-
tance betweenevery pair of points on the °at domain (X )
to be identical to the geodesicdistancebetweentheir corre-
sponding pair of points on the surface,seefor example [9].
In the °attening problem, we try to map the surfacepoints
to a plane such that the error between the corresponding
distancesis as small as possibleunder somecriterion.

Let M be an n £ n matrix where each entry is de¯ned
by M ij = T2

v i
(vj ), i.e. the square geodesic distances be-

tweenthe surfacepoints de¯ned by the vertices vi and vj .
One direct and simple multi-dimensional scaling approach
is known as `ClassicalScaling', see[6], [7]. The idea is to
approximate the matrix M of the squaregeodesicdistances
between surfacepoints by a matrix E that de¯nes square
Euclidean distancesbetweencorresponding points given by
their coordinates X on the plane. Notice that rank(E)=2.
`Classical Scaling' is closely related to the singular value
decomposition (SVD) method, and involves the following
steps:
² Compute the n £ n symmetric matrix M of the square
geodesicdistancesbetweensurfacepoints.
² Apply double centering and normalization to M :
B = ¡ 1

2 JMJ , where J is an n £ n centering matrix de-
¯ned in Equation (3). We want to approximate square
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geodesic distancesby square Euclidean distances. There-
fore by rewriting M , as shown in Equation (1), assuming
that X is column centered, we have

B = ¡
1
2

J(c10+ 1c0 ¡ 2XX 0)J

= ¡
1
2

Jc0 0 ¡
1
2

0c0J + JXX 0J

= XX 0. (5)

² Compute the spectral decomposition of B , B = Q¤Q 0.
We want to approximate B aswell aspossible(in the least
squaressense)by a matrix of rank two. From spectral
decomposition properties, we know that this can be ac-
complishedby taking the two largest eigenvaluesand their
corresponding eigenvectors. The `power method' [17] is an
e±cient numerical tool for ¯nding these items. A rough
analysis of the power method computational complexity
is O(n2d) where d is the number of dimensions (number
of eigenvectors) one needsto extract, see[17]. In our 2D
case,we can consider this step as O(n2), where n is the
number of vertices selectedas sparsekey points that we
use for the °attening. A similar method with a somewhat
improved computational complexity is the Lanczos algo-
rithm with the Rayleigh-Ritz procedure,for further details
see[8], [13].
² Denote the 2 £ 2 diagonal matrix of the ¯rst two largest
positive eigenvalues as ¤ + , and denote Q+ as the n £ 2
matrix of their corresponding eigenvectors. The n £ 2 co-
ordinate matrix of classicalscaling is given by

X̂ = Q+ ¤
1
2
+ , (6)

in which row i contains the °attened coordinates of the
original surface point i . We thereby obtained a distance
preserving °attening of the surface.

In order to get a more intuitiv e understanding of the
classicalscaling procedure, let us assumethat the surface
is developable. That is, the surface can be perfectly °at-
tened. This meansthat the squaregeodesicdistancesma-
trix M is identical to the squareEuclideandistancesmatrix
E given in Equation (1). Moreover, the resulting multipli-
cation XX 0 in Equation (5) is equal to X̂ X̂ 0. Therefore,
B has only two eigenvalues, and X̂ is a perfect °attening.
General surfaceswith e®ective Gaussiancurvature are not
developable, seefor example [9]. Therefore, the resulting
matrix B will havemore than two non-zeroeigenvalues. By
selectingthe two largest eigenvaluesand their correspond-
ing eigenvectors, we can approximate the matrix B . The
approximation error is determined by the rest of the eigen-
values that we ignore. Classical scaling approximates the
matrix B by a matrix of lower rank. X̂ can be computed
from the lower rank approximation of B . X̂ minimizes the
Strain loss function de¯ned as

L(X̂ ) =

°
°
°
° ¡

1
2

J (E ¡ M ) J

°
°
°
°

=
°
°
° X̂ X̂

0
¡ B

°
°
° . (7)

We note that the generaltheory of multi-dimensional scal-
ing encompassesalternativ e lossfunctions and related °at-
tening procedures.Classicalscalingusesa simple lossfunc-
tion that yields an e±cient minimization procedure.

The classical scaling procedure is very simple to pro-
gram. For example, given the square geodesic distances
matrix M of dimensionsn £ n, a short and simple Matlab
implementation of the stepsdescribed above is given by

J = eye(n) ¡ ones(n):=n;
B = ¡ 0:5 ¤ J ¤ M ¤ J;

% Find largest eigenvalues+their eigenvectors:
[Q; L ] = eigs(B ; 2; 'LM' );

% Extract the coordinates:
newy = sqrt(L (1; 1)): ¤ Q(:; 1);
newx = sqrt(L (2; 2)): ¤ Q(:; 2);

The vectorsnewx and newy hold the °attened coordinates.
Computing the geodesicdistancesbetweenevery pair of

vertices in a complex triangulated surface, and the spec-
tral decomposition of the corresponding distance matrix is
computationally expensive. In practice we select a subset
of the vertices and apply the °attening procedure on this
subset. The geodesicdistance betweeneach pair of points
in this set is calculated using the complete surfacemodel.
Thus, after proper °attening of the subset of anchor ver-
tices, we needto correctly interpolate the local coordinates
in order to ¯nd the local map of the rest of the vertices.

As an example, in Figure 3b we show the °attening of
a 3D object shown in Figure 3a. Figure 4 presents an-
other example, of °attening a cylinder, which is a devel-
opable surface. The °attened texture preservesboth local
and global features of the surface texture. The surfaces
in Figures 3 and 4 include approximately 40,000vertices.
25£ 25 points were sampleduniformly on a regular grid in
the range-imagedomain, and the results were obtained in
about 30 seconds.

(a) (b)

Fig. 3. An example of a face °attening. (a) A 3D reconstruction of
a face. (b) The °attened texture image of the face.

Figure 5 comparesthe geodesic distance versusthe Eu-
clidean distance of the °attened surface shown in Figure
3. The result approximates the diagonal line, which would
have beenthe (geometrically impossible)perfect °attening
outcome.
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(a) (b)

Fig. 4. An example of a cylinder °attening. (a) A 3D reconstruction
of a cylinder. (b) The °attened texture image of the cylinder.
Both the local and global features of the surface texture are pre-
served.
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Fig. 5. The geodesic distance on the surface versus the Euclidean
distance after °attening. The data corresponds to the face sur-
face shown in Figure 3. The result approximates the diagonal
line, which would have been the geometrically imp ossible perfect
°attening outcome.

V. Using MDS f or Texture Mapping

Low distortion mapping of a curved surface onto the
plane is useful for mapping planar texture onto the surface.
After applying classical scaling to the measuredgeodesic
distancesbetweenthe surfacepoints, we get a 2D °attened
version of the surface. We now have the mapping of every
point on the 3D surfaceto its corresponding 2D °attened
point. Given a °at texture image we can easily map each
point from the 2D °attened map to a point on the texture
plane.

Next, we would like to map the texture back to the sur-
face. The technique is straightforward. For each vertex P
on the surface
² ¯nd the corresponding 2D point in the °attened map,
² translate the 2D coordinates to the texture image coor-
dinates,
² usethis point's color as texture.

If the triangulation of the surfaceis not denseenough,we
might encounter aliasing e®ects.Thesecanbesolvedby se-
lectively subdividing large triangles into small onesas was
implemented in our experiments. Determining the texture
in the newly created vertices is done by applying the same
subdivision on the 2D corresponding triangle in the texture
imageplane,and taking the proper interpolated colorsfrom
the corresponding image points.

In order to map the texture onto the surfacewith mini-
mal distortions we take the following steps. First, we °at-
ten the surfaceby classicalscaling applied to the geodesic
distancesbetweenthe selectedsub-grid vertices. The °at-
tening procedure gives us a simple mapping between the
plane and the surface. Since we consider only a subset of
the vertices we needto locally interpolate the map for the
rest of the vertices.

VI. Experiment al Resul ts

We tested our technique on surfacesobtained using a 3D
laser scannerdeveloped in our laboratories. The scanner
createsa textured range image on a rectangular grid that
is consideredas a parameterization plane. A set of ver-
tices in this range image is chosenas an input to the MDS
algorithm. After °attening using the selectedvertices, as
shown in Figure 6, the planar coordinates for the vertices
that werenot selected,are linearly interpolated using their
relative location in the initial parameterization plane.

z

y

x s

t

u

v

Fig. 6. Left: Giv en (u; v) parameterization plane. Middle: The sur-
face embedded in R3 . Right: The °attening result as an (s; t )
parameterization. The locations of the decimated vertices within
each patch in the new (s; t ) parameterization are bi-linearly in-
terp olated according to their locations in the given (u; v) param-
eterization.

For example, in our scannedobjects, we associate each
bilinear patch de¯ned between neighboring selected ver-
tices on the initial parametric plane (in the range image
of our experiments, P R

a ; PR
b ; PR

c , and PR
d in Figure 7) to

a bilinear patch de¯ned by the corresponding vertices of
the °attened surface (P M D S

a ; PM D S
b ; PM D S

c , and PM D S
d

in Figure 7). We next apply a scan conversion procedure
to map the points within each MDS planar patch in the
(s; t) plane to a corresponding range image bilinear patch
in the (u; v) plane. For example,the point P M D S in Figure
7 is mapped to the point P R . Then, PR is a mapped from
the imageplane to the surfacepoint P S . Using this proce-
dure we can createa °at surfaceimage, like thoseshown in
Figures 3b and 4b. In order to map texture from the plane
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to speci¯c surfacepoints, a reverseoperation is performed.

t

s

z

y

x

v

u

b
MDS

PMDS

MDS

P

c

P

aP
P

c

R

PMDSMDS

P

Pd

R

S

R
aP

d
RP

b
RP

Fig. 7. A metho d for mapping between the surface and the °at plane.
In our experiments the surface is given as a range image, i.e. a
speci¯c (u; v) parametric form. Left: The sub-grid rectangle`s
vertices selected for the MDS procedure. Each vertex corresponds
to a surface point in 3D. Right: After °attening, we ¯nd four
corresponding points which are overlaid on the texture image.

For more complex surfaces,a generalgeometry sensitive
decimation-interpolation method is presented in [10]. It is
basedon a simple iterativ e decimation technique, like the
sequential polygon reduction algorithm in [20]. First, we
°atten the subsetvertices that survive the sequential deci-
mation procedure[20], using the unsampledsurfacefor the
geodesic distance computation. Next, we plug back the
decimatedverticesoneby one,in a reverseorder to their re-
moval sequence,while restricting them to the plane. Each
decimated vertex holds the relative distance to its neigh-
bors on the surface. That is, we keep the relationship in-
formation while decimating the mesh,and then plug back
vertex by vertex to the plane and get the desired interpo-
lation result for non-regular triangulations.

Figure 8 demonstratesa chess-board texture mapped to
the face surface with minimal distortions. Figures 9 and
10 present additional examples.

Figure 11 shows the result of a chess-board texture
mapped onto a synthetic (sin x siny) graph surface. This
example shows the behavior near surfacepoints with pos-
itiv e and negative Mean/Gaussian curvatures. Figure 12
demonstrates the abilit y of the method to handle (syn-
thetic) objects that are not restricted to be range images.
Again, the proposedgeodesicdistance preservingmapping
maintains the generalstructure of the texture.

Finally, in Figure 13 we compareour MDS texture map-
ping results with the shape preservingalgorithm presented
by Floater [11], [12]. As can be seen,the proposedgeodesic
distancepreservingmapping reducesthe deformations and
better preserves the local and global structure of the tex-
ture.

VI I. Conclusions

We presented a simple and generalstructure preserving
texture mapping approach with minimal distortions. Us-
ing the fast marching method on triangulated domains we
e±ciently calculategeodesicdistancesbetweenpairs of sur-
facepoints. It enablesus to achieveaccuratemeasurements

Fig. 8. Chess board texture mapped onto the head object.

(a) (b)

Fig. 9. Texture mapped onto the head object via our global and
local structure preserving procedure.

that characterize the geometry of the surface,with a rea-
sonablecomputational complexity. Next, we usedthe sim-
plest MDS method, known as `classicalscaling', to °atten
the surface,and usedthe °attened surfaceto back project
a °at texture image onto the curved surface. The method
is computationally e±cient, the surface does not have to
be smooth, and boundary conditions are not necessary. It
is unnecessaryto apply any pre-warping or deformations
to the original texture image.
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(a) (b) (c)

(d) (e) (f )

Fig. 13. A comparison between Floater's shape preserving mapping and the MDS mapping. Parametric coordinates and the corresponding
texture mapping for a face model created by the prop osed metho d (a, b, c), and Floater's shape preserving procedure (d, e, f ).

Fig. 10. Texture mapping results: Left: The original objects. Right:
The objects textured using the algorithm prop osed in this paper.
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