Spectral gradient fields embedding for nonrigid shape matching

Alon Shtern*, Ron Kimmel

Geometric Image Processing Laboratory, Technion – Israel Institute of Technologies, Haifa 32000, Israel

A R T I C L E   I N F O
Article history:
Received 15 August 2014
Accepted 9 February 2015

Keywords:
Correspondence
Laplace–Beltrami operator
Shape embedding

A B S T R A C T
A popular approach for finding the correspondence between two nonrigid shapes is to embed their two-
dimensional surfaces into some common Euclidean space, defining the comparison task as a problem of rigid
matching in that space. We propose to extend this line of thought and introduce a novel spectral embedding,
which exploits gradient fields for point to point matching. With this new embedding, a fully automatic system
for finding the correspondence between shapes is introduced. The method is demonstrated to accurately
recover the natural maps between nearly isometric surfaces and shown to achieve state-of-the-art results on
known shape matching benchmarks.

1. Introduction

The embedding of manifolds into some Euclidean space is often
used for simplifying matching and comparison procedures [1–3]. A
useful property of such a target metric space is that corresponding
points of different isometric shapes are mapped to nearby points in
the target space. In that case, the embedding of multiple isomet-
ric shapes into this common target space naturally leads to a dis-
tance between shapes that is easy to compute. Recently, attention has
been given to the spectral type of embedding that use the eigenval-
ues and eigenfunctions of the Laplace–Beltrami operator of the shape
as a target space [2,4–6]. The fact that the Laplace–Beltrami oper-
ator is invariant to isometric deformations makes spectral embed-
ding well suited for comparing the same object in different poses and
expressions.

Bérard et al. [1] exhibited the spectral embedding of Riemannian
manifolds by their heat kernel. They embedded manifolds into a com-
patible common target space (infinite Hilbert space) and used the
Hausdorff distance in that space to define a metric between isome-
try equivalent classes of Riemannian manifolds. It means, in partic-
ular, that two manifolds are at zero distance if and only if they are
isometric.

Rustamov [4] introduced the global point signature (GPS) of a point
on a shape. It encodes both the eigenvalues and the eigenfunctions of
the Laplace–Beltrami operator evaluated at that point. The GPS kernel
is, in essence, the integration over all scales of the heat kernel on the
surface [7]. The GPS kernel coincides with the Green’s function, and
in some sense measures the extent to which two points are geomet-
rically connected. He showed that the GPS embedding of a surface
without self-intersections has no self-intersections as well.

A different approach was introduced by Sun et al. [5] Their signa-
ture, called the heat kernel signature (HKS), is defined for every point
of the shape, by observing the heat kernel in that point over time.
The set of all HKS on a shape characterizes a given surface up to an
isometry under the condition that the eigenvalues of the Laplace–
Beltrami operator are non-repeating. The invariance of the heat ker-
nel signature to isometric deformations ensures that this signature
can be used to find correspondence between different poses of the
same shape.

We propose a novel spectral embedding, using gradient fields
(GFs) of the Laplace–Beltrami operator eigenfunctions, for corre-
respondence detection. We call the gradient fields of the eigenfunc-
tions, spectral gradient fields (or spectral GFs), and refer to the proposed em-
bedding as the spectral gradient fields embedding. As Laplace–Beltrami
eigenfunctions computed independently for different shapes are of-
ten incompatible with each other, the aim of our construction is to
embed the shapes using the eigenfunctions that correspond to the
lowest eigenvalues. While existing methods [1,4] use the eigenfunc-
tions themselves to define the target space, we embed the shapes us-
ing pairs of eigenfunctions. Thereby, more information is being ex-
tracted from the interaction between the relatively stable first few
eigenfunctions.

1.1. Contribution

We propose to find correspondence by embedding the shapes
using a point-wise feature vector, which is based on the inner
and external products between the GFs of pairs of eigenfunctions.
For each pair of eigenfunctions \( \phi_i, \phi_j \), that correspond to the eigenvalues \( \lambda_i, \lambda_j \), we calculate their respective gradient fields \( \nabla \phi_i, \nabla \phi_j \), and compute the inner product \( \langle \nabla \phi_i, \nabla \phi_j \rangle \), and the external product taken as the cross product in the normal direction \( ((\nabla \phi_i \times \nabla \phi_j) \cdot \mathbf{n}) \).

Fig. 1 presents two eigenfunctions and their corresponding spectral GFs inner and external products. Because the inner and external products depend on the eigenfunctions and the gradient operator, they are relatively stable under isometric deformations, different poses and articulations. These features enable us to extract fine geometric information from a pair of eigenfunctions, as well as obtaining the global structure of an object. For the human shape shown as an example in Fig. 1, the inner product (third column and enlarged figure) distinguishes between the neck’s left and right sides, while the external product (fourth column) partitions the body’s front and back.

### 1.2. Metric geometry

A metric space \((X, d_X)\) is a pair, where \(X\) is a set and \(d_X : X \times X \to \mathbb{R}_{\geq 0}\) is a well defined distance function, satisfying the symmetry property \(d_X(x_1, x_2) = d_X(x_2, x_1)\), the identity property \(d_X(x_1, x_2) = 0\) iff \(x_1 = x_2\), and the triangle inequality \(d_X(x_1, x_3) \leq d_X(x_1, x_2) + d_X(x_2, x_3)\) for any \(x_1, x_3 \in X\). If the distance \(d_X(x_1, x_2)\) between two distinct points can be zero, then \((X, d_X)\) is called a pseudometric space.

Suppose \(A, B \subseteq X\) are two closed subsets of a common bigger metric space \((X, d_X)\), and we want to compare \(A\) to \(B\) in order to decide whether they represent the same object or not, one might compute the Hausdorff distance \(d_H(A, B)\) between \(A\) and \(B\).
The spectral gradient fields embedding and other known spectral embeddings and signatures.

<table>
<thead>
<tr>
<th>Spectral gradient fields</th>
<th>((\sqrt{-\Delta})^{-1} (\nabla \phi_i(x), \nabla \phi_j(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\sqrt{-\Delta})^{-1} (\nabla \phi_i(x) \times \nabla \phi_j(x)) \cdot \mathbf{n}(x))</td>
<td>i, j \geq 1</td>
</tr>
</tbody>
</table>

Spectral embedding [1] \(e^{-\lambda_i t} \phi_i(x)\); i \geq 1, t > 0

Global point signature [4] \((\nabla \phi_i(x))\); i \geq 1

Heat kernel signature [5] \(\sum \exp(-\lambda_i t) \phi_i(x); t > 0\)

Here, \(\mathcal{M}\) is the set of all closed (i.e. compact without boundary) Riemannian manifolds of dimension \(n\). Given a Riemannian manifold \(X \in \mathcal{M}\) with volume \(\text{Vol}(X)\) and some \(t > 0\), they based their metric on the eigendecomposition of the heat kernel and defined the spectral embedding \(I_t^\phi : X \to \mathbb{R}^2\) from the Riemannian manifold \(X\) into the Hilbert space \(\mathbb{R}^2\) of real valued square-summable sequences

\[
I_t^\phi(x) \equiv \left\{ \sqrt{\text{Vol}(X)} e^{-\lambda_i t/2} \phi_i(x) \right\}_{i \geq 1},
\]

utilizing the eigenfunctions \(\phi_i\) and eigenvalues \(\lambda_i\) of the Laplace–Beltrami operator \(\Delta\).

Given a pair of eigenbases \(\Phi^X, \Phi^Y\), they embedded the two Riemannian manifolds \(X\) and \(Y\) into \(I_t^{\Phi^X}\) and \(I_t^{\Phi^Y}\) respectively. Then, they measured the Hausdorff distance \(d_t\) between the manifolds in the common \(\mathbb{R}^2\) space. Béard et al. defined the distance \(d_t^{\text{EMB}} : \mathcal{M} \times \mathcal{M} \to \mathbb{R} \cup \{0\}\) between the manifolds \(X, Y\), as the upper-bound of the Hausdorff distance between any eigenbasis \(\Phi^X\) and its closest counterpart \(\Phi^Y\).

\[
d_t^{\text{EMB}}(X, Y) \equiv \max(d_t(\Phi^X, \Phi^Y), d_t(\Phi^Y, \Phi^X)).
\]

We call \(d_t^{\text{EMB}}(X, Y)\) the spectral embedding distance (for a detailed description of the spectral embedding distance, we refer the reader to [1]). They showed that for any fixed \(t > 0\), the spectral embedding distance \(d_t^{\text{EMB}}\) is a metric between isometry classes of Riemannian manifolds. In particular, \(d_t^{\text{EMB}}(X, Y) = 0\) if and only if the Riemannian manifolds \(X\) and \(Y\) are isometric.

### 2. Spectral gradient fields embedding

#### 2.1. Inner and external products

A spectral gradient field is a tangent vector field defined as the gradient of an eigenfunction \(\nabla \phi_i\). The feature vector we define is based on the inner product between two spectral gradient fields, \(\omega_{i,j} : X \to \mathbb{R}\) for all \(i, j \geq 1\), where

\[
\omega_{i,j}(x) \equiv \text{Vol}(X) \left( \sqrt{\lambda_i \lambda_j} \right)^{-1} (\nabla \phi_i(x), \nabla \phi_j(x))\quad \text{for all } x \in X.
\]

For the special case that the Riemannian manifold is an oriented two-dimensional manifold embedded in \(\mathbb{R}^3\), we enrich the feature vector by using the cross product between two spectral GFs in the normal direction, \(\nu_{i,j} : X \to \mathbb{R}\) for all \(i, j \geq 1\), where

\[
\nu_{i,j}(x) \equiv \text{Vol}(X) \left( \sqrt{\lambda_i \lambda_j} \right)^{-1} ((\nabla \phi_i(x) \times \nabla \phi_j(x)) \cdot \mathbf{n}(x)).
\]

#### 2.2. Embedding

Let us study the embedding and the distance between shapes that are induced by this feature vector. We limit our analysis to the inner product between the gradients of the eigenfunctions. Thus, we define the spectral GFs embedding \(I_t^{\Phi} : X \to \mathbb{R}^2\) as

\[
I_t^{\Phi}(x) \equiv \left\{ \left. e^{-(\lambda_i + \lambda_j)/2} \omega_{i,j}(x) \right|_{i,j \geq 1} \right\}, \quad t > 0.
\]

**Proposition 1.** Let \(x_1, x_2 \in X\) be two distinct points on the Riemannian manifold \(X \in \mathcal{M}\). Then, there exists a smooth function \(f\) such that \(\nabla f(x_1) \neq 0\), and \(\nabla f(x_2) = 0\).

The proof of Proposition 1 is given in \(A\).

**Theorem 1.** For a Riemannian manifold \(X \in \mathcal{M}\), the embedding \(I_t^{\Phi} : X \to \mathbb{R}^2\) is injective, i.e. \(x_1 \neq x_2 \Rightarrow I_t^{\Phi}(x_1) \neq I_t^{\Phi}(x_2)\).
Proof. The proof is motivated by Rustamov’s analysis of his GPS embedding [4]. Suppose that for two different points \(x_1, x_2 \in X\), we have \(J^0_1(x_1) = J^0_1(x_2)\). This means that for all \(i, j \geq 1\), we have \((\nabla \phi_i(x_1), \nabla \phi_j(x_1)) = (\nabla \phi_i(x_2), \nabla \phi_j(x_2))\). Now, any smooth scalar function \(f : X \rightarrow \mathbb{R}\) can be represented as a linear combination of the eigenbasis \(f = \sum a_i \phi_i\). We can thereby write the norm of the gradient as

\[
\|\nabla f(x_1)\|^2 = \sum_{i,j} a_i a_j (\nabla \phi_i(x_1), \nabla \phi_j(x_1)) = \sum_{i,j} a_i a_j (\nabla \phi_i(x_2), \nabla \phi_j(x_2)) = \|\nabla f(x_2)\|^2.
\]

On the other hand, using Proposition 1, there always exists a smooth function \(f\), such that \(\|\nabla f(x_1)\| \neq \|\nabla f(x_2)\|\), a contradiction. Therefore, \(J^0_1(x_1) \neq J^0_1(x_2)\). \(\square\)

Theorem 2. The family of maps \((J^0_1)_{t=0}\) is invariant to global scaling of the metric.

See Appendix B for a proof of this Theorem.

2.3. Point to point distance

Given a Riemannian manifold \(X \in \mathcal{M}\), the embedding \(J^\Phi_1 : X \rightarrow \mathbb{R}^2\) induces a metric \(\hat{d}_X : X \times X \rightarrow \mathbb{R}_{+}\) on the manifold, in a way that the distance between any two points \(x_1, x_2 \in X\) coincides with the distance between the images of these points in the \(\mathbb{R}^2\) space

\[
\hat{d}_X(x_1, x_2) = \|J^0_1(x_1) - J^0_1(x_2)\|.
\]

The metric \(\hat{d}_X\) is a well defined distance function which is invariant to the choice of the orthonormal eigenbasis \(\Phi\).

2.4. Distance between Riemannian manifolds

Let \(X, Y \in \mathcal{M}\) be the two closed Riemannian manifolds we would like to compare, and let us be given some \(t > 0\). Given a pair of eigenbases \(\Phi^X, \Phi^Y\), we embed the two Riemannian manifolds \(X\) and \(Y\) into \(J^\Phi_1\) and \(J^\Phi_t\), respectively, and measure the Hausdorff distance \(d_{H_t}\) between the manifolds in the common \(\mathbb{R}^2\) space. We define the spectral gradient fields distance, denoted by \(d_{\Phi^t}\), as the supremum of the Hausdorff distance between any eigenbasis \(\Phi^X\) and its closest counterpart \(\Phi^Y\).

\[
d_{\Phi^t}(X, Y) \equiv \max(d_{H_t}(J^\Phi_1, J^\Phi_t)),
\]

\[
d_{\Phi^t}(X, Y) \equiv \inf_{\{\Phi^t\}} d_{H_t}(J^\Phi_1, J^\Phi_t).
\]

We say that \(X, Y\) are spectral gradient fields equivalent, if the metric spaces \((X, \hat{d}_X), (Y, \hat{d}_Y)\) are isometric and if \(d_{\Phi^t}(X, Y) = 0\).

Theorem 3. The spectral GFs distance \(d_{\Phi^t}\) is a pseudometric between spectral GFs equivalent classes of Riemannian manifolds.

The proof of Theorem 3 is given in C.

Remark. The use of the spectral GFs external product \((\nabla \phi_i \times \nabla \phi_j) \cdot n(x)\) is obviously restricted to oriented two-dimensional surfaces embedded in the three-dimensional Euclidean space. Although the cross product of two tangent vectors is extrinsic in nature, its projection in the normal direction is invariant to isometric deformations. Consequently, for a two-dimensional surface embedded in \(\mathbb{R}^3\), adding the elements \(e^{-\Delta_i \phi_j} n(2)_i n(2)_j v_{1j}\) for all \(i, j \geq 1\) to the embedding \(J^\Phi_1\), leaves the above analysis unchanged. Hence, the statements of Theorems 1–3 hold for the extended feature vector as well.

Conjecture 1. The spectral GFs distance \(d_{\Phi^t}\) is a metric between spectral GFs equivalent classes of Riemannian manifolds.

We consider Conjecture 1 in C. We believe that a proof of this conjecture is beyond the scope of this paper and leave it to future work.

3. Experiments and results

3.1. Truncated feature vector

Let us study the spectral GFs feature vector when we are restricted to using the \(N_0\) eigenfunctions that correspond to the lowest eigenvalues. Remember that we are driven by the task of finding correspondence between two nearly isometric shapes. Because empirical evidence suggests that there are only a few eigenfunctions that are stable to approximately isometric deformations, for the shape matching application we prefer to avoid eigenfunctions that correspond to high eigenvalues.

In our analysis (and implementation) we use the plain vanilla feature vector \(J^\Phi_1 \equiv J^\Phi_0 \cup J^\Phi_t\), where \(J^\Phi_0 \equiv \{a_i \phi_i\}_{1 \leq i \leq j \leq N_0}\) and \(J^\Phi_t \equiv \{v_{1i} v_{2j}\}_{1 \leq i \leq j \leq N_0}\) are the inner and external parts of the feature vector, respectively. \(J^\Phi_1\) excludes the dependency on the parameter \(t\). This feature vector is invariant to global scaling as shown in the proof of Theorem 2. Notice, that we have omitted some of the features because \(v_{1i} = 0\), \(v_{2j} = -v_{2j}\), and \(a_i = 0\), for all \(i, j\).

In that case, \(\|J^\Phi_1\| = \frac{1}{2} N_0(N_0 - 1) + N_0\) and \(\|J^\Phi_0\| = \frac{1}{2} N_0(N_0 - 1)\). Therefore, the number of nontrivial and unique features in \(J^\Phi_1\) is \(N_0\).

3.2. Spectrum

As a case study, we analyze the spectral GFs embedding of a human shape. For this shape, assume we are given \(N_0 = 6\) eigenfunctions. Accordingly, the size of the spectral GFs feature vector is \(6^2 = 36\). Since \(J^\Phi_1\) is nonlinear in \(\phi\), it is interesting to visualize how the energy of the feature vector is distributed as a function of the eigenvalues. This spectral density \(S(\lambda_i)\) is calculated by

\[
S(\lambda_i) \equiv \frac{\sum_n a^2_{n\lambda_i}}{\sum_n a^2_{n\lambda_i}},\quad a_{n\lambda_i} \equiv \int_X f_n(x) \phi_i(x) dx a(x).
\]

where \(f_n(x)\) is the \(n\)th element of the feature vector. In Fig. 2, we plot the energy of the spectral GFs features vector as a function of the

---

**Fig. 2.** Spectral density of the spectral GFs feature vector computed on the human shape, compared to the spectrum of the GPS embedding.
eigenvalues, and compare it to the spectrum of the global point signature (GPS) feature vector. We see, that the spectrum of the inner and external products is more widely distributed, which means that they could reflect finer details of the surface structure.

3.3. Intra-shape point to point distances

The feature vector \( J^\Phi \) induces a distance \( \tilde{d}_X : X \times X \rightarrow \mathbb{R} \geq 0 \) between points on the shape

\[
\tilde{d}_X(x_1, x_2) = \| J^\Phi(x_1) - J^\Phi(x_2) \| = \sum_{i,j=1}^{N_\Phi} (\omega_{i,j}(x_1) - \omega_{i,j}(x_2))^2 + (\nu_{i,j}(x_1) - \nu_{i,j}(x_2))^2.
\]

**Fig. 3.** The spectral GFs feature vector induced the distance function \( \tilde{d}_X(p, x) \) between a fixed point \( p \) to all points \( x \in X \) (left), and the distance function \( \tilde{d}_Y(q, y) \) from the corresponding point \( q = \psi(p) \) to all points on shape \( Y \) (right).

3.4. Inter-shape point to point distances

For two shapes \( X, Y \), let us assume we are given compatible eigenbases of size \( N_\Phi \), meaning that \( \phi_i^X(x) = \phi_i^Y(\psi(x)) \), \( \forall i \in \{1 \ldots N_\Phi\} \), for all points \( x \in X \). In the common embedding space, the distance \( d_{X,Y}(x, y) : X \times Y \rightarrow \mathbb{R} \) between a point on one shape to a point on the other shape is simply

\[
d_{X,Y}(x, y) = \| J^\Phi^X(x) - J^\Phi^Y(y) \| = \sum_{i,j=1}^{N_\Phi} (\omega_{i,j}^X(x) - \omega_{i,j}^Y(y))^2 + (\nu_{i,j}^X(x) - \nu_{i,j}^Y(y))^2.
\]

**Fig. 4.** In the common space, the inter-shape distance \( d_{X,Y}(p, y) \) is calculated between a fixed point \( p \) on shape \( X \) and all points in shape \( Y \). From left to right: spectral GFs with the embeddings \( J^\Phi \), \( J^\Phi_\omega \) (inner-products), \( J^\Phi_\nu \) (external products) and the GPS embedding.
3.5. Compatible eigenfunctions

For two nearly isometric shapes $X, Y$, one might say that the eigenfunction $\phi_i^X$ is matched to the eigenfunction $\phi_j^Y$ up to a sign, if the difference between $\phi_i^X$ and $\phi_j^Y \circ \varphi$ is lower than a certain threshold, where $\varphi$ is the area element of $X$. In Fig. 5, we see that for the databases we analyze [15,16], the probability of finding a match for the $i$th eigenfunction drops sharply as $i$ increases beyond a certain point (the seventh eigenfunction for the databases we tested). This means that $N_0$, the number of eigenfunctions that is used for defining the common embedding, should be kept small.

$$E(i, j) = \min_{s \in \{+1, -1\}} \int_X |\phi_i^X(x) - s\phi_j^Y(\varphi(x))|^2 \, da(x).$$

is lower than a certain threshold, where $da$ is the area element of $X$. In Fig. 5, we see that for the databases we analyze [15,16], the probability of finding a match for the $i$th eigenfunction drops sharply as $i$ increases beyond a certain point (the seventh eigenfunction for the databases we tested). This means that $N_0$, the number of eigenfunctions that is used for defining the common embedding, should be kept small.

3.6. Implementation

For the purpose of testing our ideas, we developed a holistic correspondence system. At the heart of the system we use the spectral GFs embedding, defined in Eqs. (1) and (2), and compute the inter-shape point to point distances $d_{X,Y}(x, y)$ of Eq. (3), where we use $N_0 = 6$ compatible eigenfunctions that are found automatically (based on [17]). Then, we apply a nearest neighbor search to find the initial correspondence

$$\hat{\varphi}_0(x) = \arg\min_{y \in Y} d_{X,Y}(x, y).$$

As a preprocess step, pairs of points that have low possibility of being matched are filtered out by comparing a mix of global and local features, using the compatible eigenfunctions themselves and the wave kernel signature [6]. We filter out pairs of points if their feature vectors are too far in the $L^2$ sense. After applying the spectral GFs embedding method using Eq. (5), we refine the correspondence with the iterative closest spectral kernel maps (ICSKM) algorithm [18]. The alignment of the spectral kernels of the two shapes by the ICSKM algorithm, produces the final dense map $\hat{\varphi} : X \rightarrow Y$.

3.7. Performance

We tested the proposed method on pairs of shapes represented by triangulated meshes from both the SCAPE database [15] and the TOSCA database [16]. The SCAPE dataset contains 71 registered meshes of a particular person in different poses. The TOSCA dataset contains 80 densely sampled synthetic human and animal surfaces, divided into several classes with given ground-truth point-to-point correspondences between the shapes within each class. We compare the results of our framework to several correspondence detection methods.

- Spectral GFs Embedding – the method proposed in this paper.
- Spectral Maps – the correspondence system used in this paper, without the use of the spectral GFs embedding. At the preprocess stage we filter out all correspondences except one.
- Blended – the method proposed by Kim et al. that uses a weighted combination of isometric maps [14].

Figs. 6 and 7 compare our correspondence method with existing methods on the SCAPE and TOSCA benchmarks, using the evaluation protocol proposed in [14]. For each method we plot the distortion curves with the ICSKM refinement procedure (solid), and without it (dotted). The distortion curves describe the

---

**Fig. 5.** The empirical probability that there is an eigenfunction $\phi_j^Y$ that matches $\phi_i^X$ up to a sign. The matching threshold is set to 0.1, i.e. we check if $E(i, j) < 0.1$ for some $j$ (see Eq. (4)). Notice, that this probability drops sharply beyond the seventh eigenfunction.

**Fig. 6.** Evaluation of the correspondence system applied to shapes from the SCAPE database, using the protocol of [14], (with allowed symmetries).

**Fig. 7.** Evaluation of the correspondence system applied to shapes from the TOSCA database, using the protocol of [14].
percentage of surface points falling within a relative geodesic distance from what is assumed to be their true locations. For each shape, the geodesic distance is normalized by the square root of the shape’s area. It is evident from the benchmarks that the proposed method is well suited for finding maps between approximately isometric shapes, and together with the ICSKM algorithm achieves state-of-the-art results.

3.8. Reflective symmetry

Intrinsic symmetry detection can be viewed as finding a map from a shape to itself [19]. When the shape has a reflective symmetry, its self-map flips the orientation of the surface. In that case, we can apply the proposed shape matching method, by adjusting the normal to the surface to point inward, and consequently change the external product features of the reflective shape to be $-v_{ij}$. Then, we can use the estimated reflective self-map $\hat{\varphi}_R : X \to X$ to partition the shape into its two mirror halves. First, we find a point $p$ that is well inside one of the two halves of the shape, for example by selecting a point that is as far as possible from its reflective image $\varphi(p)$, i.e. we find the point $p = \arg\max_{p \in X} g(x, \hat{\varphi}_R(x))$, where $g : X \times X \to \mathbb{R}_{\geq 0}$ is the geodesic distance function between two points on the surface of the shape. Then, we check if each point $x \in X$ belongs to the half of the shape that includes $p$. We assign $x$ to this half if $g(x, p) + g(\hat{\varphi}_R(x), \hat{\varphi}_R(p))$ is less than $g(\hat{\varphi}_R(x), p) + g(x, \hat{\varphi}_R(p))$. In Fig. 8, we demonstrate the effectiveness of the proposed approach, by visualizing the bilateral symmetry for several shapes from the TOSCA database.

4. Conclusions

A new feature vector for embedding nonrigid shapes was introduced and integrated into a holistic shape matching system. The embedding, which is proved to be injective, induces a distance between points on the surface, and can be defined to measure a distance between shapes. We have demonstrated the effectiveness of the proposed approach by achieving state-of-the-art results on shape matching benchmarks.

In the future, we plan to examine the properties of the GFs embedding in conjunction with compatible functions on the two shapes, that are different from the eigenfunctions. For example, one may use the heat kernel signature (HKS), wave kernel signature (WKS) [6] or the heat kernel maps (HKM) [20] set with landmark correspondences. These options seem particularly useful when the shapes are noisy, or the deformations are large, making the eigenfunctions incompatible.

Acknowledgment

This work has been supported by Grant agreement No. 267414 of the European Community’s FP7-ERC program.

Appendix A. Proof of Proposition 1

We need to prove that if $x_1$ are two distinct points on the Riemannian manifold, then, there exists a smooth function $f$, such that $\nabla f(x_1) \neq 0$, and $\nabla f(x_2) = 0$. We use two technical Lemmas.

Lemma 1. Let $U_1, U_2$ be two disjoint closed sets. Then, there exists a smooth function $u_1 : X \to \mathbb{R}_{>0}$, such that

i. $u_1(x) = 1, \forall x \in U_1$.

ii. $u_1(x) = 0, \forall x \in U_2$.

Proof. $U_1, U_2$ are disjoint, thereby $\{X \cup X \setminus U_1\}$ is an open cover for $X$. Hence, there exists a partition of unity of nonnegative functions $u_1, u_2 : X \to \mathbb{R}_{\geq 0}$ such that the support of $u_1$ is contained in $X \setminus U_2$ and the support of $u_2$ is contained in $U_1$. Moreover, $u_1 + u_2 = 1$ everywhere.

i. The support of $u_2$ is contained in $X \setminus U_1$, hence, $u_2(x) = 0, \forall x \in U_1$. Therefore, $u_1(x) = 1 - u_2(x) = 1, \forall x \in U_1$.

ii. Because the support of $u_1$ is contained in $X \setminus U_2$, it follows that $u_1(x) = 0, \forall x \in U_2$.

Lemma 2. Let $x_1, x_2$ be two distinct points on the Riemannian manifold. Then, there exists a smooth function $u_1 : X \to \mathbb{R}_{>0}$, such that $u_1(x_1) = 1, u_1(x_2) = 0, \nabla u_1(x_1) = 0$ and $\nabla u_1(x_2) = 0$.

Proof. Construct two disjoint closed sets $U_1, U_2$, such that $x_1$ is in the interior of $U_1$, and $x_2$ is in the interior of $U_2$. Then, use Lemma 2 to make such $u_1$.

Now, take a smooth function $g : X \to \mathbb{R}$, with a non zero gradient at point $x_1$, i.e. $g(x_1) \neq 0$. Using Lemma 2, construct the function $f = u_1 g$. By the chain rule

$$\nabla f(x_1) = u_1(x_1) \nabla g(x_1) + g(x_1) \nabla u_1(x_1) = 1 \cdot \nabla g(x_1) + g(x_1) \cdot 0,$$

$$\nabla f(x_2) = u_1(x_2) \nabla g(x_2) + g(x_2) \nabla u_1(x_2) = 0 \cdot \nabla g(x_2) + g(x_2) \cdot 0.$$

We conclude that $\nabla f(x_1) \neq 0$ and that $\nabla f(x_2) = 0$. Fig. 8. Bilateral symmetry. The two mirror halves of several shapes from the TOSCA database are found by embedding the shape using spectral gradient fields.
Appendix B. Proof of Theorem 2

Proof. If the Riemannian manifold $\tilde{X}$ is obtained by uniformly scaling the metric of the Riemannian manifold $X$ by a factor $\alpha > 0$, then, the eigenvalues of the Laplace–Beltrami operator are scaled according to $\lambda_{X}^{\alpha} = \alpha^{-2}\lambda_{\tilde{X}}^{\alpha}$, the corresponding $L^{2}$-normalized eigenfunctions become $\phi_{i}^{X} = \alpha^{-1}\phi_{i}^{\tilde{X}}$, and the gradient operator reads $\nabla^{X} = \alpha^{-1}\nabla^{\tilde{X}}$. We have

$$\omega_{i,j}^{X} = \text{Vol}(\tilde{X}) \frac{\langle \nabla^{\tilde{X}} \phi_{i}^{\tilde{X}}, \nabla^{\tilde{X}} \phi_{j}^{\tilde{X}} \rangle}{\sqrt{\alpha^{-2}\lambda_{\tilde{X}}^{\alpha} \alpha^{-2}\lambda_{\tilde{X}}^{\alpha}}} = \alpha^{-2}\text{Vol}(\tilde{X}) \frac{\langle \nabla^{X} \phi_{i}^{X}, \nabla^{X} \phi_{j}^{X} \rangle}{\sqrt{\alpha^{-2}\lambda_{\tilde{X}}^{\alpha} \alpha^{-2}\lambda_{\tilde{X}}^{\alpha}}} = \alpha^{-2}\omega_{i,j}^{\tilde{X}},$$

which means that $\omega_{i,j}^{X}$ is global invariant. Now, if we set $\tilde{t} = \sqrt{\alpha}t$

$$\left(J^{\tilde{X}}_{\tilde{t}}\right)_{ij} = e^{-(\lambda_{i}^{\tilde{X}} + \lambda_{j}^{\tilde{X}})/2\tilde{t}} \omega_{i,j}^{\tilde{X}} = e^{-(\lambda_{i}^{X} + \lambda_{j}^{X})/2t} \omega_{i,j}^{X} = \left(J^{X}_{t}\right)_{ij},$$

Appendix C. Proof of Theorem 3

We would like to show that the spectral gradient fields distance $d_{GF}^{X} : M \times M \rightarrow \mathbb{R}_{\geq 0}$ satisfies the following properties of a pseudometric.

P1: Symmetry – $d_{GF}^{X}(X, Y) = d_{GF}^{X}(Y, X)$ for every $X, Y \in M$.

P2: Triangle-inequality – For every three Riemannian manifolds $X, Y, Z \in M$,

$$d_{GF}^{X}(X, Z) \leq d_{GF}^{X}(X, Y) + d_{GF}^{Y}(Y, Z).$$

P3: Identity – If $X, Y \in M$ are spectral GFs equivalent, then $d_{GF}^{X}(X, Y) = 0$.

Proposition 2. For every three Riemannian manifolds $X, Y, Z \in M$,

$$d_{GF}^{X}(Y, Z) \leq d_{GF}^{X}(X, Y) + d_{GF}^{Y}(Y, Z).$$

Proof. We denote

$$d_{XY}(x, y) = \|J^{X}_{t}(x) - J^{Y}_{t}(y)\|, \quad \text{dis}(\psi) = \sup_{x \in X} d_{X}(x, \psi(x)), \quad \text{dis}(\psi) = \sup_{x \in X} d_{X}(x, \psi(x)).$$

The Hausdorff distance between $J^{X}_{t}$ and $J^{Y}_{t}$ is

$$d_{H}(J^{X}_{t}, J^{Y}_{t}) = \max \left( \sup_{x \in X} d_{X}(x, \psi(x)), \sup_{y \in Y} d_{Y}(y, \psi(y)) \right).$$

Lemma 3. if $d_{H} = \varepsilon$, then there exist $\psi : X \rightarrow Y$ and $\psi : X \rightarrow Y$ such that $d_{H}(X(x, \psi(x))) \leq \varepsilon, \forall x \in X$ and $d_{H}(Y(y, \psi(y))) \leq \varepsilon, \forall y \in Y$.

Proof. $X, Y \in M$ are compact and $J^{X}_{t}$, $J^{Y}_{t}$ are continuous one-to-one mappings. Thus, their images are also compact, which allows us to define $\psi(x) = \arg\min_{y \in Y} d_{XY}(x, y)$ and $\psi(y) = \arg\min_{x \in X} d_{XY}(x, y)$. □

Now, if $d_{GF}^{X}(X, Y) \leq \varepsilon$, then for any $\Phi^{X}$, one can find $\Phi^{Y}, \psi, \psi$ (using Lemma 3) such that $\text{dis}(\psi) \leq \varepsilon, \text{dis}(\psi) \leq \varepsilon$, i.e.

$$d_{XY}(x, (\psi(x))) \leq \varepsilon, \forall x,$$

$$d_{Y}(y, (\psi(y))) \leq \varepsilon, \forall y.$$}

Appendix D. Outline of a possible proof of Conjecture 1

Conjecture 1 states that the spectral GFs distance $d_{GF}^{X}$ is a metric between spectral GFs equivalent classes of Riemannian manifolds. This conjecture can be proved by assuming that $d_{GF}^{X}(X, Y) = 0$ implies that there exist eigenbases $\Phi^{X}, \Phi^{Y}$ and maps $\psi : X \rightarrow Y, \psi : Y \rightarrow X$ such that $J^{X}_{t}(x) = J^{Y}_{t}(\psi(x)), \forall x \in X$ and $J^{Y}_{t}(\psi(y)) = J^{X}_{t}(y), \forall y \in Y$.

Remark. To prove this assumption we suggest to follow the footsteps of Bérard et al. [1], but a rigorous proof of this hypothesis is left for future work.

Now, because $J^{X}_{t}(x) = J^{Y}_{t}(\psi(x)), \forall x \in X$, then for all $x_{1}, x_{2} \in X$ we have

$$\|J^{X}_{t}(x_{1}) - J^{X}_{t}(x_{2})\| = \|J^{Y}_{t}(\psi(x_{1})) - J^{Y}_{t}(\psi(x_{2}))\|.$$}

We also know that $X, Y$ are equipped with the metrics $\tilde{d}_{X}, \tilde{d}_{Y}$ derived from the distances in the common space

$$\tilde{d}_{X}(x_{1}, x_{2}) = \|J^{X}_{t}(x_{1}) - J^{X}_{t}(x_{2})\|, \forall x_{1}, x_{2} \in X,$$

$$\tilde{d}_{Y}(y_{1}, y_{2}) = \|J^{Y}_{t}(y_{1}) - J^{Y}_{t}(y_{2})\|, \forall y_{1}, y_{2} \in Y.$$

Hence, $\psi$ is a distance preserving map

$$\tilde{d}_{X}(x_{1}, x_{2}) = \tilde{d}_{Y}(\psi(x_{1}), \psi(x_{2})).$$
In the same way
\[ \tilde{d}_X(\psi(y_1), \psi(y_2)) = \tilde{d}_Y(y_1, y_2). \]
Moreover, \( x = \psi(\phi(x)) \) for all \( x \in X \) and \( y = \phi(\psi(y)) \) for all \( y \in Y \), or else w.l.g.o. there would be two distinct points \( x_1, x_2 \in X \) such that \( x_2 = \psi(\phi(x_1)) \). In that case \( f^b_X(x_1) \) and \( f^b_Y(x_2) \) would both be equal to \( f^b_Y(\psi(x_1)) \), which contradicts the fact that \( f^b_X \) is injective. Therefore, \( \psi, \phi \) are bijections and distance preserving, hence (if our assumption is true), \( X, Y \) are spectral GFs equivalent.

References