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In many computational and economic models of multi-agent interaction, each participant repeatedly “best-
responds” to the others’ actions. Game theory research on the prominent “best-response dynamics” model
typically relies on the premise that the interaction between agents is somehow synchronized. However, in
many real-life settings, e.g., internet protocols and large-scale markets, the interaction between participants
is asynchronous. We tackle the following important questions: (1) When are best-response dynamics guar-
anteed to converge to an equilibrium even under asynchrony? (2) What is the (computational and commu-
nication) complexity of verifying guaranteed convergence? We show that, in general, verifying guaranteed
convergence is intractable. In fact, our main negative result establishes that this task is undecidable. We ex-
hibit, in contrast, positive results for several environments of interest, including complete, computationally-
tractable, characterizations of convergent systems. We discuss the algorithmic implications of our results,
which extend beyond best-response dynamics to applications such as asynchronous Boolean circuits.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Algorithmic Game
Theory

Additional Key Words and Phrases: Best response dynamics; asynchronous models; convergence; game the-
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1. INTRODUCTION
In dynamic environments where computational nodes (be they humans or machines)
repeatedly interact, the prescribed behavior for each node is often to repeatedly “best-
respond” to the others’ actions. Game theory has produced a slew of alternative mod-
els of behavior, yet repeated best-response remains a natural, simple, and low-cost
behavior to build into distributed systems, as evidenced, for instance, by today’s proto-
cols for routing and congestion control on the Internet (see [Fabrikant and Papadim-
itriou 2008; Jaggard et al. 2011; Griffin et al. 2002; Godfrey et al. 2010; Levin et al.
2008; Suchara et al. 2011]). Game theoretic analysis shows that, in many interest-
ing contexts, the resulting best-response dynamics eventually drive the system to an
equilibrium state (e.g., in potential games [Monderer and Shapley 1996; Osborne and
Rubinstein 1994; Rosenthal 1973]). However, these positive results typically rely on
the premise that nodes’ interaction is somehow synchronized, i.e., nodes “take turns”
at best-responding, and each node’s actions are immediately observable to all other
nodes.

When analyzing distributed computational systems, or large-scale economic envi-
ronments such as markets, the premise that agents’ interaction is somehow synchro-
nized is usually unrealistic. In any Internet-scale distributed system, a computational
node can perform many megaflops of complex computations in the few milliseconds it
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takes light to cross a continent enabling any information at all to reach a distant node
in the system. Consider, e.g., the Border Gateway Protocol (BGP), which establishes
routes between the numerous self-interested economic entities that comprise today’s
Internet (AT&T, Google, Hebrew U, etc.). As observed in [Fabrikant and Papadimitriou
2008; Levin et al. 2008], BGP routers implement best-response dynamics in a specific
class of routing games. BGP convergence to a “stable” global routing configuration is
an important desideratum from a practical viewpoint, as oscillatory behavior can lead
to significant outages and greatly degrade network performance. BGP operates in an
inherently asynchronous environment and so analyzing BGP’s convergence properties
in such a setting is important.

Asynchronous best-response dynamics also arise in many other distributed Inter-
net protocols: congestion control, peer-to-peer protocols, and more. Even in a single
chip, especially in low-power or high-density settings, the design can benefit from the
removal of a global clock, with circuit components interacting as asynchronous dis-
tributed nodes. This too can be modeled as best-response dynamics in the presence
of asynchrony [Jaggard et al. 2011]. Such phenomena also arise outside the realm of
computational artifacts. Asynchronous best-response can model viral spread of tech-
nologies in social networks. Also, in high-frequency equity trading, a transaction hedg-
ing across multiple international markets may well require a trader to transmit price
data to another system while the market already starts to respond to the transaction.
In all of these settings, listed in [Jaggard et al. 2011], stable system states are not only
easier to analyze, but also more desirable from a variety of engineering considerations.

We tackle two closely-related questions: (1) Can we characterize when best-response
dynamics are guaranteed to converge to an equilibrium even in the presence of asyn-
chrony?; and (2) What is the complexity of checking such a system for guaranteed
convergence?

1.1. Asynchronous Best-Response Dynamics
Under “traditional” best-response dynamics, agents take turns selecting strategies,
each repeatedly selecting a strategy that maximizes his utility given the others’ cur-
rent strategies. This goes on until a “stable state”, i.e., a pure Nash equilibrium, is
reached. We present and study a model of asynchronous best-response dynamics that
abstracts and unifies models of BGP routing and of TCP congestion control on the
Internet [Griffin et al. 2002; Godfrey et al. 2010]).

As in traditional best-response dynamics, in our model the system evolves from some
initial combination of agents’ strategies and agents repeatedly best-respond to other
agents’ actions. However, our model of “asynchronous best-response dynamics” cap-
tures scenarios in which agents can make decisions simultaneously, and in which the
propagation of information about agents’ actions is not instantaneous. In our model,
whenever an agent selects a new strategy, he announces his newly chosen strategy via
an update message to every other agent, sent along a private pairwise communication
channel. Update messages sent along each of these channels need not arrive immedi-
ately and can experience (arbitrary) delays. We call a multi-agent system “convergent”
if convergence of best-response dynamics to an equilibrium is guaranteed for every ini-
tial state of the system and for every “schedule” of update-message arrivals. See formal
exposition of this message-passing model in Section 2.

Research on traditional best-response dynamics established that determining, for a
given game, whether best-response dynamics are guaranteed to coverge to a pure Nash
equilibrium is, in general, intractable [Hart and Mansour 2010]. What are the implica-
tions of adding asynchrony to the mix? This question can inspire two totally different,
and mutually contradictory, intuitions. On the one hand, introducing asynchrony im-
plies a much smaller space of convergent systems, and should therefore render the task
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of determining whether a system falls in this category easier. On the other hand, asyn-
chrony also implies a “blow up” in the number of possible sysem configurations (e.g.,
update-messages in transit), thus making verifying guaranteed convergence harder.
We show that both these intuitions are, in fact, false; verifying guranteed convergence
is sometimes easy in our message passing model but hard in the traditional model,
and vice versa. We now present our (positive and negative) results along these lines.

1.2. Negative Results
We explore the complexity of verifying guaranteed convergence to an equilibrium in
our message-passing model — a task we term “Is-Convergent”. Our main negative re-
sult establishes that Is-Convergent is, in fact, undecidable!

Theorem: Is-Convergent is undecidable even for a constant number of agents.

Observe that, in contrast, verifying guaranteed convergence in the traditional best-
response dynamics model is in P for a constant number of agents (as one can simply
examine all possible configurations of the system and check for loops). Our proof of the
above theorem suggests that asynchronous best-response dynamics are sufficiently ex-
pressive to capture nondeterministic computations in the sense that such mutli-agent
interaction systems can be regarded as a computational artifact where the update-
message queues are the “storage” and agents’ best-responses simulate the “logic”. We
leverage this idea to show a long and delicate reduction from the notoriously unde-
cidable HALT-ALL—the language of Turing machines that halt on every input—to
Is-Convergent in our message-passing model.

Our reduction consists of three main steps: We first establish, via a subtle reduc-
tion, that an interesting variant of HALT-ALL we call “HALT-ALL-CONFIG”, in
which the objective is to determine whether a given Turing machine halts for every
input and possible initial configuration of the system (even “illegal” configurations), is
also undecidable. We next reduce from HALT-ALL-CONFIG in the Turing machine
model to an analogous problem in the (computationally-equivalent) Queue Automa-
ton model. This step lays the foundation for utilizing message-queues as a storage
element. The last and most delicate step of our reduction is constructing a game for
which best-response dynamics converge in our message-passing model if and only if
the given queue automaton halts from every initial configuration. A basic building
block in this step of the proof is a game called the “Increment Game”, which provides
us with the means for synchronizng the system to the extent that any dynamic that
does not obey a specific set of rules must converge. We believe that some of the ideas
and techniques presented in our proof (e.g., HALT-ALL-CONFIG and the Increment
Game) will prove to be useful in the analysis of other asynchronous game-theoretic
dynamics.

We complement this computational-complexity result with an exponential, essen-
tially tight, communication-complexity lower bound.

Theorem: Is-Convergent requires exponential communication (in n) even for a con-
stant number of strategies per agent and when agents’ best-responses are unique.

This result can be viewed as the analogue, in our asynchronous setting, of the com-
munication complexity results of Hart and Mansour [Hart and Mansour 2010] for ver-
ifying guaranteed convergence of traditional best-response (and better-response) dy-
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namics1. Our proof of this theorem involves an interesting combinatorial argument
that makes it possible to reason about agents’ beliefs about other agents’ actions in
the course of the convergence process.

1.3. Positive Results
Our above hardness results for Is-Convergent establish that (1) Is-Convergent is unde-
cidable for a constant number of agents (eleven) with an arbitrary number of strategies
per-agent; and (2) Is-Convergent requires exponential communication for an arbitrary
number of agents with a constant number (five) of strategies per agent. We show that,
in spite of these discouraging results, Is-Convergent is tractable for two relatively broad
classes of games.

Our positive results rely on characterizing convergent systems. Our main positive re-
sult along these lines is the following. We focus on the well-studied scenario that agents
have unique best-responses. We prove that the highly-restrictive game-theoretic cate-
gory of dominance-solvable games—games in which the iterated elimination of domi-
nated strategies results in a single strategy per agent—fully characterizes convergent
systems in two complementary settings.

Theorem: When agents’ best-responses are unique, dominance solvability fully char-
acterizes guaranteed convergence

— for systems with an arbitrary number of agents and 2 strategies per agent;
— for 2-agent systems with an arbitrary number of strategies per agent.

This characterization of convergent systems has important implications for the (com-
putational and communication) complexity of Is-Convergent. Our characterization im-
plies, in particular, that when agents’ best-responses are unique, Is-Convergent is
tractable in the two above settings. This result should be contrasted with the hardness
result in [Hart and Mansour 2010] for verifying guaranteed convergence of traditional
best-response dynamics in systems with an arbitrary number of agents and 2 strate-
gies per agent. We discuss a surprising corollary of this theorem: verifying stability of
an asynchronous circuit is in P.

We also show that Is-Convergent is tractable for 2-agent systems even when agents’
best-responses are not (necessarily) unique.2 Our proof of the latter fact highlights an
interesting connection between convergence in such systems and permutations over
finite spaces.

Theorem: Is-Convergent is in P for two-agent systems.

1.4. More Results: Observability and Randomness
Our message-passing model captures realistic scenarios in which agents’ actions are
not immediately observable to all other agents (as in Internet protocols, etc.). We
also consider the simpler model of agent interaction in [Jaggard et al. 2011]—the
“observable-actions model”—which, intuitively, captures a lower level of asynchrony
in which agents’ actions are observable to all, but arbitrary subsets of agents can act
simultaneously in an uncoordinated manner. We show that Is-Convergent is PSPACE-
complete in this model, thus closing an open question posed in [Jaggard et al. 2011].

1[Hart and Mansour 2010] shows that determining that a game is a potential game (and hence that better-
response dynamics are guaranteed to converge to a pure Nash equilibrium) requires exponential communi-
cation.
2Observe that solving Is-Convergent is not a trivial task even for two-agent systems as the length of agents’
message queues is unbounded (and thus the number of possible states of the system is also unbounded).
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Theorem: Is-Convergent is PSPACE-complete in the observable actions model even
when agents’ best-responses are unique.

Our proof of this theorem relies on an interesting “convergence preserving reduc-
tion”.

A natural question in light of the above results is: “What happens when randomness
is introduced into this setting?”. We extend the above PSPACE-completeness result for
the observable-actions model to a stochastic variant of Is-Convergent, which we call
Is-Stochastically-Convergent.

Theorem: Is-Stochastically-Convergent is PSPACE-complete in the observable actions
model.

1.5. Future Research
We believe that we have but scratched the surface in the exploration of game-theoretic
dynamics under asynchrony. Two important directions for future research are the fol-
lowing:

(1) Looking at subclasses of games. Our hardness results for Is-Convergent do not
impose any constraints on the class of games under consideration. We believe that
the key to obtaining more positive results is to examine specific classes of games
and investigate the complexity of Is-Convergent (e.g., is Is-Convergent tractable for
potential games?).

(2) Looking at other game-theoretic dynamics. We have restricted our attention
here to the convergence of (asynchronous) best-response dynamics to a pure Nash
equilibrium. Understanding the convergence properties of other well-studied game-
theroetic dynamics (e.g., fictitious play, no-regret dynamics, etc.) under asynchrony
is an important research direction. An interesting recent result in this vain [Lehrer
and Lagziel 2012] shows that no-regret dynamics exhibits good convergence prop-
erties even under asynchrony (see also [Jaggard et al. 2011]).

Research along the above lines could provide useful insights into environments in
which simple and natural distributed protocols are guaranteed to converge to a “sta-
ble”, “globally-rational”, outcome, and also shed light on the behavior of existing pro-
tocols.

1.6. Related Work
The immediate precursor of our work is [Jaggard et al. 2011], which brings together re-
search in distributed computing theory and in game theory to study asynchronous dy-
namic environments where computational nodes’ behavior is simple, natural and my-
opic (“adaptive heuristics” in the language of Hart [Hart 2005]). Our message-passing
model extends the framework of [Jaggard et al. 2011] to capture the possibility of
outdated information, thus making it possible to reason about the behavior of best-
response dynamics in a variety of real-life environments. Our work also rests on the
extensive research on best-response dynamics in game theory, on protocol termination
in distributed computing, and on networking research on Internet protocols.

Game theory. Much work in game theory and economics deals with best-response dy-
namics (e.g., [Monderer and Shapley 1996; Osborne and Rubinstein 1994; Rosenthal
1973]). Best-response dynamics have also been approached from a computer science
perspective (e.g., [Fabrikant and Papadimitriou 2008; Mirrokni and Skopalik 2009]).
Generally speaking, such research has thus far primarily concentrated on synchro-
nized environments in which steps take place in some predetermined prescribed order
and agents’ choices of strategies are immediately observable to other agents. Nisan et
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al. [Nisan et al. 2008] analyze the behavior of best- and better-response dynamics in
asynchronous computational environments for restricted classes of games (dominance-
solvable games and potential games). Lagziel and Lehrer [Lehrer and Lagziel 2012] re-
cently showed that no-regret guarantees are achievable even when the decision maker
is informed of the actual payoffs with delay. This implies that (a specific class of)
no-regret dynamics converges to an equilibrium in various environments even under
asynchrony. See also some simple observations about no-regret dynamics and asyn-
chrony in [Jaggard et al. 2011].

Distributed computing. Over the past three decades, much work has been devoted
to characterizing the possibility/impossibility borderline for fault-tolerant computation
(see [Lynch 1989; Fich and Ruppert 2003]). While the risk of protocol non-termination
is such environments stems from the possibility of failures of nodes or other compo-
nents, our focus is on settings where the computational nodes and the communication
channels are reliably failure-free, and the risk of non-convergence stems from limita-
tions imposed by simplistic node behaviors. Convergence of best-response dynamics to
an equilibrium in our models can be viewed as the self stabilization [Dolev 2000] of
such dynamics. Recent work on “population protocols” [Aspnes and Ruppert 2007] also
deals with convergence of local interactions to a globally stable state, but considers
very different environments (nodes are indistinguishable, computation is restricted to
direct interaction between two nodes, etc.) and thus does not capture adaptive heuris-
tics [Hart 2005] such as best-response dynamics.

Internet protocols. Research on the dynamics of the Border Gateway Protocol
(BGP) [Fabrikant and Papadimitriou 2008; Gao and Rexford 2002; Griffin et al. 2002;
Suchara et al. 2011] can be viewed as analyzing convergence of best-response dynamics
in the presence of asynchrony in a specific routing environment. Our message-passing
model abstracts the standard model for analyzing BGP dynamics, put forth in [Griffin
et al. 2002]. Our model also abstracts the model of congestion control on the Internet
in [Godfrey et al. 2010].

1.7. Organization
We present our model of asynchronous best-response dynamics in Section 2. Our un-
decidability result for Is-Convergent is presented in Section 3 and the complementary
communication complexity lower bound appears in Section 4. We present our charac-
terizations of convergent systems and discuss their algorithmic implications (e.g., to
asynchronous circuits) in Section 5, and present our algorithm for Is-Convergent for
two-agent systems in Section 6. Our results for the observable-actions model and for
Is-Stochastically-Convergent appear in Section 7.

2. MODEL
We now present our main model of asynchronous best-response dynamics. We will
consider other (including randomized) models of system dynamics in Section 7.
Games. We study the following standard n-agent game-theoretic setup: n agents (or
players) 1, . . . , n, each with finite strategy space Si and a utility function ui : S1 ×
. . . × Sn → R+. Let S =

∏
j∈[n] Sj denote the space of strategy-vectors and S−i =∏

j∈[n]\{i} Sj denote the space of strategy-vectors of all agents but the i’th. We use
(si, s−i) as shorthand for the strategy-vector in which the strategy of agent i is si ∈ Si,
and the strategies of of all other agents are as in s−i ∈ S−i. Strategy s∗i ∈ Si is a
“best response” of agent i to s∗−i ∈ S−i if s∗i ∈ argmaxsi∈Si

ui(si, s
∗
−i). Strategy-vector

s∗ = (s∗1, . . . , s
∗
n) ∈ S is a “(pure Nash) equilibrium” if, for every i ∈ [n], s∗i is a best

response to s∗−i.
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Best-response dynamics. Under (traditional) best response dynamics, agents take
turns best-responding to other agents’ strategies. Whenever an agent i is “active”, he
examines the strategies of the others st−i ∈ S−i and, in the event that his strategy is
not a best-response to s−i, i updates his strategy to a best-response strategy.
Best-response dynamics and asynchrony. We present a model of asynchronous
best-response dynamics that captures the possibility of non-instantaneous propaga-
tion of information about agents’ strategy changes. Our model unifies and abstracts
the models of BGP routing and of congestion control in [Griffin et al. 2002] and [God-
frey et al. 2010], respectively. In our model, whenever an agent selects a new best-
response strategy he sends an update message to every other agents announcing his
newly chosen strategy over a private communication channel between them. When-
ever an agent i ∈ [n] receives an update-message from another agent j 6= i, this event,
called RECEIVE(I,J), triggers an atomic step in which agent i executes the following
three steps:

(1) i examines the most recently learned strategies of other agents (his “beliefs” about
others’ agents) sB−i ∈ S−i (stored in a locally-maintained data structure);

(2) i updates his strategy si to a best response strategy s∗i to s−i (if si is a best-response
to s−i i does not select a new strategy);

(3) if s∗i 6= si, i sends an update message to every other agent announcing s∗i .

Transmission along every communication channel can experience arbitrary
(channel-specific) update-message delays. We make the assumption that each chan-
nel maintains a FIFO queue of the sent messages (in each direction), and so messages
are received in the order of transmission.

We call a complete specification of the order of events of the form RECEIVE(I,J), i.e.,
update-message arrivals, a “schedule”. A is schedule “fair” if no agent is indefinitely
starved from receiving messages from another agent. We call a system “convergent”
if, for every initial combination of the agents’ strategies and fair schedule, from some
point in time agents’ strategies constitute a pure Nash equilibrium.

3. IS-CONVERGENT IS UNDECIDABLE
Our main negative result establishes that, in general, Is-Convergent is undecidable.

THEOREM 1. Is-Convergent is undecidable for 11-agent systems.

We prove Theorem 1 via a long and delicate chain of reductions in the full version.
Here, we give a high-level overview of the proof. We then present in more depth a basic
building block in our construction, the so called “Increment Game”.

3.1. High-Level Overview of Proof

High-level ideas. Intuitively, the hardness of Is-Convergent in our message-passing
model stems from the fact that nodes’ message-queues are unbounded. This suggests
that best-response dynamics in this model might be expressive enough to capture non-
deterministic computations: agents’ best-responses implement the “logic”, message
queues function as “storage”, and the nondeterminism is captured by the fact that
the schedule of events is (almost) arbitrary. To formalize this intuition, we identify a
computational model that is somewhat “close” to our setting—the Queue Automaton
model3. While in some sense similar to our context, queue automata are also very dif-
ferent, and so must be approached with caution. Differences include (1) the fact that

3Queue Automaton is a computational model equivalent to Turing Machine. While similar to a Pushdown
Automaton, instead of a stack it uses a queue.
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in our setting there is no clear notion of input; (2) in the Queue Automaton model
the initial configuration is predetermined, whereas in our model it is adversarially
chosen; and (3) in our context agents’ responses are based on very limited (almost
no) “memory”, and so the intricate interactions and dependencies between agents are
key to achieving the desired result. To address the first point, we show a reduction
from Halt-All—the language of Turing machines that halt on every input. By doing so,
we effectively eliminate the need to have an input (and essentially generate one in a
nondeterministic fashion using our nondeterministic schedules). To handle the second
point, we present and study a variant of Halt-All, called “Halt-All-Config”. A Turing ma-
chine is in Halt-All-Config if it halts for every input and starting configuration (even
“illegal” configurations). We discuss our results for Halt-All-Config below. The last of
these points is addressed by presenting a basic building block that introduces synchro-
nization between players. The synchronization is levereged to construct an analogue
concept of memory within the game. We now discuss the three steps in our reduction
from Halt-All to Is-Convergent.

Step I: Halt-All to Halt-All-Config. The first reduction is from Halt-All to Halt-All-Config,
and as explained above, it provides the context of computation from an arbitrary con-
figuration. Given an input to Halt-All—a Turing machine M—the reduction constructs
a Turing machine Q such that Q halts from any starting configuration if and only if M
halts on every input. We stress that for any arbitrary start configuration of Q, even an
“illegal” configuration that does not match any computation of M , Q must either reach
a “legal” configuration, or halt. To achieve this, Q keeps track of the entire history
of the simulation thus far and verifies that the history is valid after simulating each
and every execution step of M . Q’s construction ensures that, regardless of its initial
state, Q is guaranteed to execute this verification process (unless it halts earlier). In
the event that the verification fails, Q halts. Otherwise, we prove that Q successfully
simulates the execution step in M and the execution of Q can continue without risking
the crucial properties of the reduction, as described above. We defer the many subtle
details of this first reduction to the full version.

Step II: Turing Machines to Queue Automata. The second step is reduction from
Halt-All-Config to its analogue in the Queue Automaton model, Halt-All-Config-Queue.
The motivation for moving to queue automata is the storage model, the queue, which
makes reduction to our setting easier. While this might seem as a technical step4, this
too requires special care. Again, merely simulating the Turing machine by a queue
automaton is not enough. When starting from a configuration that is not a valid sim-
ulation step of the given Turing machine, the queue automaton should either get to
a configuration that represents a valid simulation step of the given Turing machine
or halt within in a finite number of steps. Our reduction from Halt-All-Config to Halt-
All-Config-Queue, which requires modifying the classical reduction for simulating a
Turing machine with a queue automaton, is described in the full version.

Step III: Queue Automata to Is-Convergent. The last and most subtle step in our
reduction is a reduction from Halt-All-Config-Queue to Is-Convergent. We need to be
able to simulate any execution of a given queue automaton (starting from an arbitrary
configuration) via best-response dynamics. The key element in our constructed game is
a message queue that simulates the queue of the queue automaton. However, to utilize
this message queue we must overcome two main challenges:

4One might consider skipping the Turing machine model by providing a reduction from the Halt-All variant
for queue automata to Halt-All-Config-Queue, yet this is actually far more tedious and nonintuitive, as the
queue automaton model is harder to work with.
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(1) Synchornization. We must eliminate schedules in which messages are removed
from the queue “too fast” or “too slowly”. In other words, we must somehow syn-
chronize the system to ensure that it evolves in a desired way.

(2) Memory. We need to emulate the state machine of the queue automaton, which, in
turn, requires a notion of memory in the game.

Our solutions to these two challenges turn out to be strongly related. At the heart of
our construction is a building block we term the “Increment Game”. Informally speak-
ing, in the Increment Game a single “leader” increments a finite counter, while all the
other players, the “followers”, follow the leader’s strategy. Careful design guarantees
that regardless of the initialization of this game, and of the timing of update message
arrivals, the resulting sequence of the leader’s chosen strategies is an infinite cyclic se-
quence of integers. We can therefore use the Increment Game as an internal “system
clock” and utilize it to effectively synchronize the system. We introduce memory into
the game by tagging the counter with labels that can be manipulated by the players.
We show how the Increment Game can be used, in an input-output programming-like
fashion, as a building block in a modular design of games. Our construction combines
two Increment Games; one Increment Game serves as a Writer—simulating the state
transitions of the queue automaton and the writing of symbols into the simulated
queue; the other serves as a Reader—reading symbols from the queue head and feed-
ing them back to the Writer.

We prove that (well-behaved) best-response dynamics in the constructed game re-
flect executions of the queue automaton, and that such dynamics converge to a pure
Nash equilibrium if and only if the corresponding execution halts.

3.2. The Increment Game
Here, we give a “taste” of the proof by zooming in on a crucial building block in the last,
and most subtle, step of our reduction—the Increment Game. As explained above, the
Increment Game effectively synchronizes an inherently asynchronous system, and also
provides the means for carrying out complex computations. Below we sketch only how
the Increment Game achieves the first of these goals: synchronizing the system. We
explain the various more complex functions of the Increment Game in our reduction,
and how these are realized, in the full version.

Increment Games. In an Increment Game there are n ≥ 3 players, all with identical
best-response functions, with the exception of a single player, who shall be referred
to hereafter as the Leader or Inc. Inc’s strategy space contains the elements in Zr for
a fixed r ≥ 5 and another unique strategy called the “halt strategy”. Intuitively, Inc
is in charge of incrementing the global index (modulo r), thus guaranteeing all other
players, which we refer to as the Followers, do the same. The Followers’ strategy spaces
include all strategies of the form (c, bool), where c ∈ Zr and bool is either true or false,
and also the halt strategy. Intuitively, c in a pair (c, bool) represent the counter being
incremented (which we simply refer to as the counter), while bool indicates whether
the Follower sees any other Followers with a smaller counter than his. In what follows,
additions and subtractions of the counter are modulo r.

Valid configurations. Consider a strategy vector s and suppose that Inc’s strategy
in s is some C ∈ Zr. We say that s is valid if it satisfies at least one of (1) the counters
of all Followers equal C, or (2) the counters of all Followers equal C − 1, or (3) the
strategies of all Followers are either (C, true) or (C − 1, false).

We say that player i observes an invalid strategy-vector s−i if there is no strategy
si ∈ Si such that (s−i, si) is a valid strategy vector.
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Best-responses in the Increment Game. We define players’ best-responses in the
Increment Game so as to ensure the following properties: (1) the halt strategy is always
a best-response (for any player and any strategy-vector) and so once a player chooses
the halt strategy he will never deviate from it; (2) the halt strategy is a player’s sole
best-response to all invalid strategy vectors, and also to all strategy vectors in which
some other player’s strategy is halt.

Observe that once even a single player halts, the game is bound to reach an equilib-
rium in which all players play halt within a finite number of steps. We call an initial
strategy-vector and (fair) schedule for which the system does not converge to this “all-
halt equilibrium” a non-halting evolution of the system.

We are left with defining a player’s best-response to a valid strategy vector s:

— Leader: Let c be the maximum counter of a Follower in s. Then, the best-response of
the Leader is c+ 1.

— Follower: Let C be Inc’s strategy in s. If there is another Follower whose strategy is
C − 1, the best-response of the Follower is (C, true). Otherwise (all other Followers’
counters are C), the best-response is (C, false).

Why are Increment Games useful? Increment Games are carefully designed to
have the following useful properties, which we repeatedly leverage in our reduction.

THEOREM 2 (INCREMENT). In any Increment Game G

— The strategy sequence of the Leader in any non-halting evolution has the form
. . . , C, C + 1, . . . , r − 1, 0, 1, . . . , r − 1, 0, 1, . . .

— A non-halting evolution exists.

Below we only prove that there indeed exists a non-halting evolution of the sys-
tem where the strategy sequence of the Leader is of the form . . . , C, C + 1, . . . , r −
1, 0, 1, . . . , r−1, 0, 1, . . . We defer the more delicate proof that any non-halting evolution
is of this nature (which plays a crucial role in our reduction) to the full version.

A non-halting evolution which mimics a system clock exists. We next exhibit
such a non-halting evolution. Let the initial strategies and beliefs of all the players
be that the Leader is playing 0 and that all the Followers are playing (0, false). We
first allow all initial messages from all Followers and the Leader to be received by all
Followers. Observe that this does not change the Followers’ strategies. We next let all
the messages from the Followers reach the Leader. This causes the Leader to change
his initial strategy from 0 to 1.

The system evolves in iterations, with each iteration i beginning in a global system
configuration similar to that in the end of the above short initialization phase, in which
(1) no Forwarders’ messages are in transit and all the Leader’s messages about the
counter increment from i− 1 to i are still pending; and (2) the Leader believes that all
the Followers are playing (i − 1, false), and each Follower believes that the leader is
playing i−1 and all other Followers are playing (i−1, false). The i’th iteration consists
of the following sequence of steps:

(1) The Leader’s messages about his counter increment to i are received by all Followers
(who respond by choosing (i, true)).

(2) All Followers’ (i, true) messages are received by all players. Once a Follower receives
all n − 2 such messages, he responds with (i, false). Notice that by the end of this
step no player observes any Follower playing (i − 1, false). The Leader responds
with i+ 1 messages which are not received until the next iteration.

(3) All Followers’ (i, false) messages are received by all the players.
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Observe that this is indeed a non-halting evolution since each player observes a valid
strategy-vector at all times.

4. COMMUNICATION COMPLEXITY LOWER BOUND
We present the following exponential communication lower bound for Is-Convergent.

THEOREM 3. Is-Convergent requires Ω(αn) communication for some constant α > 1
even when agents’ best-responses are unique.

We now present a very high-level exposition of the proof of Theorem 3. See full proof
in the full version. We show a reduction from the classical communication Set Dis-
jointness setting, in which there are n parties {1, . . . , n}, each party i holding a subset
Ai ⊆ {1, . . . , t}, and the objective is to distinguish between the two following extreme
scenarios: (1)

⋂n
i=1Ai 6= ∅, vs. (2) for every i 6= j, Ai ∩Aj = ∅.

Classical results in communication complexity establish that solving Set Disjointness
entails (in the worst case) transmitting Ω( tn ) bits [Alon et al. 1996; Nisan 2002].

We construct, for a given instance of Set Disjointness, an instance of Is-Convergent
with n agents, representing the parties in Set Disjointness, each with action space
{0, 1, 2, 3, 4}. We prove that our construction ensures that if

⋂n
i=1Ai 6= ∅ in Set Disjoint-

ness then the constructed Is-Convergent instance is not convergent, and if for every
i 6= j, Ai ∩Aj = ∅, the constructed Is-Convergent instance is convergent.

We first establish the existence of an exponentially-large family of vectors in
{0, 1, 2, 3}n with useful combinatorial properties.

LEMMA 4. Given n > 0, there exists a set V ⊆ {0, 1, 2, 3}n such that

— the hamming distance between every two vectors in V is strictly greater than 2n
3 ;

— for every vector (v1, . . . , vn) ∈ V , ((v1 + 1) mod 4, . . . , (vn + 1) mod 4) ∈ V as well;
— |V | = Ω(αn) for some constant α > 1.

We associate each element of {1, . . . , t} in Set Disjointness (for a large enough t) with
a distinct set of 4 vectors in V that are closed under the (+1 mod 4, . . . ,+1 mod 4)
operation. We let Ve denote the set of 4 vectors in V associated element e ∈ {1, . . . , t}.
We now define each agent’s best-responses in the Is-Convergent instance as follows: (1)
in the event that the other agents’ strategies (as seen by agent i) are as in some vector
v ∈ Ve for e ∈ Ai, agent i’s (unique) best-response is (vi + 1) mod 4; (2) otherwise, i’s
best-response strategy is always 4.

We let I denote the given Set Disjointness instance, and IC(I) denote the constructed
instance of Is-Convergent in the message. We prove the following lemma.

LEMMA 5. IC(I) is not convergent if
⋂n
i=1Ai 6= ∅ in I, and is convergent if for every

i 6= j ∈ [n], Ai ∩Aj = ∅ in I.

As in our reduction t = Ω(αn) for some constant α > 0, the lower bound on communi-
cation for Set Disjointness now implies Theorem 3. We now give the high-level intuition
for the proof of Lemma 5.

Consider first the (simpler) scenario in which
⋂n
i=1Ai 6= ∅ in I. Consider a vector

v = (v1, . . . , vn) ∈ Ve for an element e ∈
⋂n
i=1Ai and observe that in our construction of

IC(I) allowing all agents to best respond to v simultaneously transitions the system to
the strategy-vector ((v1 + 1) mod 4, . . . , (vn+ 1) mod 4) ∈ Ve. We conclude that, in this
scenario, when agents’ initial strategy-vector is in Ve, agents’ repeated simultaneous
best responses induce a (fair) oscillation in IC(I) between strategy-vectors in Ve.

We now turn our attention to the more challenging scenario in which for every i 6=
j ∈ [n], Ai ∩ Aj = ∅ in I. We observe that every fair oscillation must involve multiple
agents repeatedly selecting strategies in {0, 1, 2, 3} which, in turn, implies that agents
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see strategy-vectors in V infinitely often. Let Vi =
⋃
e∈Ai

Ve. We prove that as the
hamming distance between every two vectors in V is large, and as Vi ∩Vj = ∅ for every
i 6= j ∈ [n], our construction ensures that (1) agents’ views of other agents’ strategies
must change drastically over time; and (2) agents’ views of other agents’ strategies
must be very inconsistent across nodes. We show that the number of generated update
messages is not sufficient to maintain such contradicting views.

5. CHARACTERIZATION RESULTS
We now focus on the well-studied scenario that agents have unique best-responses.
We show that the game-theoretic category of dominance-solvable games fully-
characterizes convergent systems in two complementary settings: (1) for an arbitrary
number of agents with 2 strategies per agent; and (2) for 2-agent systems with an ar-
bitrary number of strategies per agent. We discuss the interesting implications of this
characterization to the (computational and communication) complexity of Is-Conver-
gent.

5.1. Dominance Solvability vs. Convergence
An agent’s strategy is said to be dominated if it is never a best-response strategy.

Definition 5.1. A game is dominance-solvable if the iterated removal of dominated
strategies results in a single strategy-vector s∗ ∈ S.

Dominance-solvable games can easily be seen to be convergent (see [Nisan et al.
2008]). We now show that the converse is also true in two interesting contexts and so,
in these contexts, dominance-solvability fully-characterizes guaranteed convergence.
(See proofs in the full version.)

THEOREM 6. When agents’ best-responses are unique, dominance solvability fully
characterizes guaranteed convergence:

6(a). for multi-agent systems with 2 strategies per agent;
6(b). for 2-agent systems.

We will now prove the more challenging part of the Theorem 6(a). We defer the proof
of 6(b) to the full version.

5.2. Proof of Theorem 6(a)
Consider a multi-agent system Θ where each agent has (at most) 2 possible strategies.
As observed in [Nisan et al. 2008], if Θ is dominance-solvable, then it is convergent in
our message-passing model (presented in Section 2). Hence, we are left with showing
that if Θ is not dominance-solvable then it is also not convergent. We will now show
that if Θ is not dominance-solvable then there indeed exists a fair oscillation.

The act-and-tell model. To prove this result we consider a model of agent interaction
that we term the “act-and-tell model”, which captures a simplified variant of model and
is inspired by the state-transition graph in [Sami et al. 2009]. We show that a noncon-
vergence result in the act-and-tell model also holds in our message-passing model, and
so, to prove Theorem 6(a), we can restrict our attention to the act-and-tell model.

In the act-and-tell model, as in our message-passing model, the system evolves from
an initial combination of agents’ strategies over infinitely-many discrete time steps
and, at each time step, a subset of the agents is activated. In this new model, though,
whenever an agent i is activated, it must choose between the two following possibili-
ties.
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— Act: pick a best-response strategy in Si to what i thinks are the current strategies of
the other agents. i’s choice of strategy is not immediately observable to other nodes.

— Tell: send a strategy-update to one other agent j, informing j of i’s current strategy.
This message arrives at node j immediately (i.e., at the end of that time step).

Thus, in the act-and-tell model, whenever an agent is activated it can either update
its strategy to be a best-response to its view of others, or tell a single other agent about
its current strategy. We call a schedule of agent activation “fair” if (1) each agent i
“acts” (i.e., updates its strategy) in infinitely many time steps; and (2) each agent i
“tells” every other agent j (i.e., sends a strategy-update to j) in infinitely many time
steps. The act-and-tell model is much easier to reason about than our message-passing
model as there are never messages in transit (when a strategy-update is sent it arrives
immediately).

We prove (the proof, which follows in the footsteps of [Sami et al. 2009], is omitted)
that if Θ is not dominance-solvable there must exist a fair oscillation in the act-and-tell
model. The following claim shows that this implies a fair oscillation in the message-
passing model of Section 2.

CLAIM 7. If there exist an initial strategy-vector and a fair schedule for which the
system dynamics oscillates indefinitely in the act-and-tell model then there also exist
an initial strategy-vector and a fair schedule for which the system dynamics oscillates
indefinitely in the message-passing model.

Two or more pure Nash equilibria imply an oscillation. [Jaggard et al. 2011]
shows that in a large variety of settings the mere existence of two stable states to which
dynamics can converge implies the possibility of a persistent oscillation (see [Jaggard
et al. 2011] for a formal exposition of this result). We observe that the result in [Jaggard
et al. 2011] (which is proven in the observable-actions model) implies the following.

COROLLARY 8. [Jaggard et al. 2011] If agents have unique best-responses and mul-
tiple pure Nash equilibria exist, the system is not convergent in the act-and-tell model.

Hence, we can henceforth restrict our attention to the case that Θ contains a unique
stable state (for otherwise a fair oscillation exists and so 6(a) follows). Observe that if
some agent has a dominated strategy then Θ is convergent iff the sub-system obtained
from Θ via the elimination this dominated strategy is convergent. Hence, we shall also
make the assumption that no agent in Θ has a dominated strategy.

System dynamics under traditional best-response dynamics. To construct a fair
oscillation in the act-and-tell model, we first consider the system dynamics under tra-
ditional best-response dynamics. Let Si = {0, 1} for each agent i (recall that |Si| = 2).
W.l.o.g., let

−→
1 = (1, . . . , 1) be the unique pure Nash equilibrium of the system. Now,

consider the evolution of the system under traditional best-response dynamics when
the initial state is

−→
0 = (0, . . . , 0) and agents are activated one at a time in some ar-

bitrary predefined cyclic order. In the event that the resulting system dynamics do
not eventually reach the pure Nash equilibrium

−→
1 we have found a fair oscillation

of traditional best-response dynamics, which can easily be shown to imply a fair os-
cillation in the act-and-tell model (using arguments similar to those in the following
paragraph). We need therefore only consider the case that the resulting system dy-
namics converges to the equilibrium

−→
1 . Observe that, for each agent i, there exists a

unique point in time ti where i’s strategy changed from 0 to 1 and never changed back
to 0 thereafter. W.l.o.g., let t1 < t2 < . . . < tn.
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System dynamics in the act-and-tell model. We now observe that the system be-
havior in the act-and-tell model under the following dynamics mimics the system be-
havior under traditional best-response dynamics, as described above. Fix the same
cyclic order over the agents as before. Start at the initial state

−→
0 . Repeatedly allow

a single agent, chosen according to the cyclic order, to update its strategy (“act”) and
then immediately inform all other agents of its newly chosen strategy (“tell” all oth-
ers) until the system has reached the same state as after t1 time steps in the original
best-response dynamics. Let t1 be the point in time at which this happens. From time t1
onwards do not activate agent 1 again. Now, continue activating agents 2, . . . , n accord-
ing to the same cyclic order (after 1 is removed), letting each agent update its strategy
and then immediately informing all other agents in {2, . . . , n} of its newly chosen strat-
egy (but not agent 1). This continues until the system has reached the same state as
after t2 time steps in the original best-response dynamics. Let t2 be the point in time at
which this happens. From time t2 onwards do not activate node 2 again. And so on. Ob-
serve that the system behavior in the act-and-tell model under these dynamics indeed
mimics the system behavior under traditional best-response dynamics, as described
above, and, in particular, reaches the unique pure Nash equilibrium

−→
1 .

Constructing a fair oscillation in the act-and-tell model. Consider an agent i.
As 0 is not a dominated strategy for i there must exist some strategy vector x−i ∈
{0, 1}n−1 = S−i such that i’s (unique) best-response to x−i is 0. Consider the evolution
of the system in the act-and-tell model described above. We make the following crucial
observation. Consider the system after time t1, i.e., after agent 1 changes its strategy
from 0 to 1 and is never activated again. Observe that, at that point in time, every
other agent in Θ either has strategy 0 and will select strategy 1 at a later point in time
(as its strategy in the equilibrium is 1) or has strategy 1 and will select strategy 0 at
a later point in time (for otherwise that would contradict the definition of t1). Hence,
after time t1, by allowing agents {2, . . . , n} to “tell” agent 1 of their astrategies at the
appropriate times we can make 1’s view of the other agents’ strategies be precisely
x−1. Similarly, after time t2 every agent in {3, . . . , n} either has strategy 0 and will
select strategy 1 at a later point in time or has strategy 1 and will select strategy 0 at
a later point in time. Hence, after time t1, by allowing agents {3, . . . , n} to “tell” agent
2 of their strategies at the right times we can make 2’s view of the strategies of the
agents in {3, . . . , n} be as in x−2. In general, after ti time has passed, it is possible to
ensure that agent i’s view of the strategies of the agents in {3, . . . , n} be precisely their
strategies in x−i. Observe, though, that agent i’s view of the strategy of every agent in
{1, . . . , i− 1} is 1.

Now, consider the time when the pure Nash equilibrium
−→
1 is reached — when each

agent’s strategy is 1. By the above arguments, agent 1’s view at that time is x−1, agent
2’s view is x−2, but with a possible exception of agent 1’s strategy, agent 3’s view is x−3,
but with a possible exceptions of agents 1 and 2’s strategies, etc. We can now ensure
that each agent i’s view be exactly x−i as follows. Allow agent 1 to update its strategy
to 0 (recall that its view is x−1) and tell its new strategy to every agent i > 1 such 1’s
strategy in x−i is 0. Observe that at this point, agent 2’s view is precisely x−2. The next
step is allowing agent 2 to update its strategy to 0 and tell all agents i > 2 for which
2’s strategy in x−i is 0. This process enables us ensure that all agents update their
strategies to 0. We now allow all agents to tell all other agents their current strategies
(that are 0 for all agents). Observe that we are now back at the initial state of the
dynamics. Note also that in this process all agents were allowed to “act” and also to
“tell” all other agents. Thus, we have constructed a fair oscillation.
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5.3. Algorithmic Implications
Observe that as agents’ message queues are unbounded, the system dynamics cannot,
in general, be described by a finite “state-transition graph”. Importantly, the above
characterization shows that, in spite of this, convergent systems do have a succinct
description in interesting contexts.

When determining whether a strategy is dominated is a tractable feat, the following
simple algorithm can be executed to verify the dominance-solvability of a given game:
Go over agents in some cyclic (round-robin) order and iteratively eliminate dominated
strategies until each agent has a single surviving strategy (in which case the game is
dominance-solvable) or no more dominated strategies exist yet some agent has more
than a single surviving strategy (in which case the game is not dominance-solvable).
Thus, in this scenario Is-Convergent is solvable in O(Σi|Si|) time.

Unfortunately, determining whether a strategy in Si is dominated can be NP-hard
(simple proof omitted). We observe, however, that the fact that whether a strategy in
Si is dominated depends solely on agent i’s utility ui immediately implies the following
communication complexity upper bound.

COROLLARY 9. When agents’ best-responses are unique, Is-Convergent is solvable
in a communication-efficient manner for an arbitrary number of agents with 2 strate-
gies per agent.

This result should be contrasted with our exponential communication lower bound
for 5 strategies per agent and unique best-responses (in Section 4).

Another scenario in which determining whether a strategy is dominated is tractable,
and so verifying dominance-solvability is also tractable, is in the well-studied class
of graphical games, i.e., when agents reside on a graph and each agent’s utility is
explicitly given as a function of his neighbors’ strategies. Hence, another corollary
Theorem 6 is the following.

COROLLARY 10. Is-Convergent ∈ P in graphical games with 2 strategies per agent.

This fact has the following interesting implication for asynchronous Boolean circuits:

5.4. Application: Asynchronous Circuits
Work in computer architecture research on asynchronous circuits — circuits in which
the components aren’t governed by global clock — explores the implications of asyn-
chrony for circuit design (see, e.g., [Davis and Nowick 1996]). [Jaggard et al. 2011] ob-
serves that asynchronous Boolean circuits can be modeled as best-responses dynamics
in which agents’ best-responses are unique and each agent has 2 possible strategies.
Agents are then the logic gates, and the strategy space of each is the Boolean values
{T, F}. See [Jaggard et al. 2011] for more details. The above results hence imply a
complete characterization of “inherently stable” asynchronous Boolean circuits when
changes in logic gates’ outputs might only propagate to other circuit components after
some delay. We observe that when the fan-in of each logic gate is a constant (as with all
standard logic primitives), each node’s reaction function in this formulation of asyn-
chronous Boolean circuits is explicit and so the asynchronous circuit can be modeled
as a graphical game with 2 strategies ( “T” and “F”) per agent (gate).

COROLLARY 11. Determining if an asynchronous Boolean circuit with feedback
comprised of primitives with constant fan-in is inherently stable is in P.

6. ALGORITHM FOR 2-AGENT SYSTEMS
We next present a computationally-efficient algorithm for solving Is-Convergent for 2-
agent systems (even when agents’ best-responses are not unique), establishing:
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THEOREM 12. Is-Convergent is in P for two-agent systems.

We point out that even when there are only two agents Is-Convergent is far from triv-
ial as the number of possible configurations of the system is seemingly infinite (since
agents’ message queues are not bounded). Our algorithm for 2-agent systems exploits
an interesting connection between guaranteed convergence and cycles in permuations
over finite spaces. This positive result should be contrasted with our undecidability
result for n ≥ 11 agents in Section 3.

Notation and definitions. Before presenting the algorithm we introduce some no-
tation and definitions. BRi(x) denotes the set of best-response strategies of agent i
when the other agent’s strategy is x. BR∗i (x) denotes the unique best-response strat-
egy that agent i selects upon receiving an update that the other agent’s strategy is x if
i’s strategy at that time is not a best-response to x.

A strategy cycle c is a sequence of |c| strategies for each agent i ∈ {0, 1},
s0i , s

1
i , . . . , s

|c|−1
i ∈ Si. Of special interest to us are cycles with the following “transition

property”: for every 0 ≤ i < |c|, si2 = BR∗2(si1) and si1 = BR∗1(s
i−1 mod |c|
2 ).

Definition 6.1. Two cycles with the transition property c = {si1}0≤i<|c| ∪ {si2}0≤i<|c|
and d = {tj1}0≤j<|d| ∪ {t

j
2}0≤j<|d| “can follow each other” if there exists 0 ≤ δ < α =

gcd (|c|, |d|) such that:

— For every 0 ≤ i < |c| and 0 ≤ j < |d|/α, si1 6∈ BR1(t
(i+δ+|c|·j) mod |d|
2 ) and si2 6∈

BR2(t
(1+i+δ+|c|·j) mod |d|
1 )

— For every 0 ≤ j < |d| and 0 ≤ i < |c|/α, t(j+δ+1) mod |d|
1 6∈ BR1(s

(j+|d|·i) mod |c|
2 ) and

t
(j+δ) mod |d|
2 6∈ BR2(s

(j+|d|·i) mod |c|
1 )

Algorithm. We are now ready to present our algorithm for 2-agent systems. Our algo-
rithm consists of the following steps:

(1) Build a directed bipartite graph G = (S1, S2, E), where Si is the strategy space of
agent i and E = {(s1, s2)|si ∈ Si, BR∗2(s1) = s2} ∪ {(s2, s1)|si ∈ Si, BR∗1(s2) = s1}.

(2) Recursively remove any vertex with zero in-degree and its outgoing edges. Let L and
R denote the remaining vertices on the lefthand and righthand) side, respectively.
Note that each remaining vertex must have in- and outdegree 1, and that |L| = |R|.

(3) If |L| = |R| = 1, return CONVERGENT.
(4) Set π1(s1) := BR∗1(BR∗2(s1)) for all s1 ∈ S1 and π2(s2) := BR∗2(BR∗1(s2)) for all s2 ∈

S2. Note that π1 and π2 are permutations on L and R respectively; π1 and π2 have
the same number of cycles; and each cycle in π1 has a same-length corresponding
cycle in π2 (these two cycles are defined by the same cycle in the bipartite graph).
Let c11, . . . , cm1 be the cycles in permutation π1 and c21, . . . , cm2 be the cycles in π2.

(5) Check, for all k ∈ [m] such that |ck1 | > 1, that both (1) for each s1 ∈ ck1 , s1 /∈
BR1(BR∗2(s1)); and (2) for each s2 ∈ ck2 , s2 /∈ BR2(BR∗1(s2)). Output NOT CON-
VERGENT if true for some k ∈ [m].

(6) Check for every two (possibly identical) i, j ∈ [m] whether ci and cj can follow each
other and return NOT CONVERGENT if true for some i, j ∈ [m].

(7) Return CONVERGENT.

The algorithm can easily be seen to be computationally-efficient. We prove (in the
full version) that the algorithm returns CONVERGENT if and only if the two-agent
system is indeed convergent.
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7. OTHER MODELS: OBSERVABLE ACTIONS AND RANDOMNESS
We now consider best-response dynamics in the model studied in [Jaggard et al. 2011],
which we call the “observable actions model”. This model captures agent interaction
when agents’ actions are immediately observable to all other agents, but subsets of
agents can act simultaneously in an uncoordinate manner. We study the complexity of
Is-Convergent in this model. We then introduce and study a natural stochastic variant
of Is-Convergent, which we call Is-Stochastically-Convergent.

7.1. Observable-Actions Model
7.1.1. The Model. Agent interaction. Agents interact over infinitely long discrete time
t = 1, 2, . . .. The system evolves from an initial state (combination of agents’ strategies)
s0 ∈ S. At each time step t ∈ N , a subset of agents σ(t) ⊆ [n] is “activated”, and (if
necessary) each activated agent i ∈ σ(t) updates his strategy to be a best-response
strategy to the others’ current strategies (strategies of i 6∈ σ(t) remain unchanged).
Convergent systems. A complete specification of which subset of nodes σ(t) is acti-
vated at each time step t ∈ N is called a “schedule”. A schedule is “fair” if every agent
i ∈ [n] is activated infinitely many times, i.e., no agent is indefinitely starved from act-
ing. In the observable actions model, a system is “convergent” if, for every initial state
of the system and for every fair schedule, from some point in time onwards agents’
strategies constitute a pure Nash equilibrium.

7.1.2. IS-CONVERGENT is PSPACE-Complete. Is-Convergent in the observable actions
model is the task of determining if a given system is convergent in this model. In
contrast to our undecidability result for Is-Convergent in our message-passing model,
when the number of agents is constant, Is-Convergent in the observable-actions model
is, in fact, in P. One can simply examine all possible configurations of the system (i.e.,
action profiles) and search for “fair” best-response loops in this polynomial-size graph.
We now show the a computational hardness result for Is-Convergent in the observable-
actions model, which closes an open question from [Jaggard et al. 2011].

THEOREM 13. Is-Convergent is PSPACE-complete in the observable-actions model
even when agents’ best-responses are unique.

We prove Theorem 13 in the full version by exhibiting a general “convergence-pre-
serving reduction” from multi-agent systems in which agents’ reactions only depend
on the present to best-response dynamics when agents’ best responses are unique.

7.2. Randomness Does Not (Always) Help
We also investigate the complexity of the stochastic variant of Is-Convergent in the
observable-actions model, which we term Is-Stochastically-Convergent. In Is-Stochasti-
cally-Convergent, unlike Is-Convergent, the schedule is randomized, i.e., each agent i is
activated with some nonnegative probability pi > 0 at each time step, and the goal is to
determine whether convergence to a stable state occurs with probability 1. This task
is equivalent to checking whether the game is “weakly acyclic” [Young 1993; Mirrokni
and Skopalik 2009; Fabrikant et al. 2010], i.e., that from every strategy-vector there
exists a path leading to a pure Nash equilirium. We prove in the full version that
Is-Stochastically-Convergent also is PSPACE-complete in the observable-actions model.

THEOREM 14. Is-Stochastically-Convergent is PSPACE complete in the observable
actions model.
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