Note

Approximation algorithm for the minimum weight connected k-subgraph cover problem ♠

Yaping Zhang a, Yishuo Shi a, Zhao Zhang b, *

a College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China
b College of Mathematics Physics and Information Engineering, Zhejiang Normal University, Zhejiang, Jinhua, 321004, China

Abstract

A subset F of vertices is called a connected k-subgraph cover (VCC_k) if every connected subgraph on k vertices contains at least one vertex from F. The minimum weight connected k-subgraph cover problem ($MWVCC_k$) has its background in the field of security and supervisory control. It is a generalization of the minimum weight vertex cover problem, and is related with the minimum weight k-path cover problem ($MWVCP_k$) which requires that every path on k vertices has at least one vertex from F. A k-approximation algorithm can be easily obtained by LP rounding method. Assuming that the girth of the graph is at least k, we reduce the approximation ratio to $k-1$, which is tight for our algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The topology of a wireless sensor network (WSN) can be modeled as a graph, in which vertices represent sensors and edges represent communication channels between sensors. In recent years, new security protocols for WSN emerge. For example, in the k-generalized Canvas scheme [12] which guarantees data integrity, two kinds of sensor devices, protected and unprotected, are distinguished. An attacker is unable to copy data from a protected device. Suppose each information can be stored in a path of k vertices. So, it is required that every such a path has at least one protected vertex. The problem is to minimize the cost of the network by minimizing the number of protected vertices. Such a consideration leads to the minimum weight k-path vertex cover problem ($MWVCP_k$), the goal of which is to find a minimum weight vertex set F such that every path of k vertices contains at least one vertex from F.

In this paper, we propose a related problem as follows: Given a graph $G = (V, E)$ and a vertex-weight function w, the goal is to find a minimum weight vertex set $F \subseteq V$ such that every connected subgraph on k vertices has at least one vertex from F. Call such a set F as a connected k-subgraph cover (VCC_k) and the problem as a minimum weight connected k-subgraph cover problem ($MWVCC_k$). For $k = 2$, $MWVCC_2$ is exactly the minimum weight vertex cover problem. For $k = 3$, $MWVCC_3$ is the same as $MWVCP_3$.

This problem also has its background in the field of security and supervisory control. For example, in a WSN, if an attacker knows at least k related information fragments, then he can decode the whole information. Therefore, every connected k-vertex set must have at least one protected vertex to ensure security. For another example, if every k connected
sensors can work as a group, then in order to control their work, at least one sensor from every potential work group should be supervised.

It is not difficult to obtain a k-approximation for $MWVCC_k$ (as well as for $MWVCP_k$), using LP rounding technique. Under the assumption that the girth (the length of a shortest cycle) is at least k, we improve the approximation ratio for $MWVCC_k$ to $k - 1$. Factor $k - 1$ is tight for our algorithm.

In [14], Tu and Zhou gave a 2-approximation algorithm for $MWVCP_3$. Since $MWVCP_3$ is the same as $MWVCC_3$ and the girth of a simple graph is always at least three, Tu and Zhou’s result [14] is included in our result.

The remainder of this paper is organized as follows. We first introduce some related works in Section 2. In Section 3, we present our algorithm and its theoretical analysis. In Section 4, we conclude the paper with a discussion on future work.

2. Related work and preliminaries

Related work in this section is focused on approximation results on Minimum k-Path Vertex Cover problem ($MVCP_k$) and Minimum Weight k-Path Cover problem ($MWVCP_k$).

The $MVCP_k$ problem was proposed in [12]. In [5], Bresar et al. gave a polynomial-time approximation-preserving reduction from the Minimum Vertex Cover problem to $MVCP_k$, which, combining with [6], implies that for every $k \geq 2$, $MVCP_k$ is not able to be approximated within a factor of 1.3606 unless $P = NP$. They also gave a linear-time algorithm for $MVCP_k$ on trees and some upper bounds on the minimum cardinality of VCP_k. In [9], Kardoš et al. presented a polynomial-time randomized approximation algorithm for VCP_3 with an expected approximation ratio $23/11$. They also formulated as an open problem whether $MVCP_k$ has a constant approximation for each $k \geq 2$. It was proved by Tu et al. [13] that $MVCP_3$ is NP-hard even for a cubic planar graph of girth 3, and a 1.57-approximation greedy algorithm was given for VCP_3 in cubic graphs. Recently, Li and Tu [10] presented a 2-approximation for VCP_4 in cubic graphs.

Requiring that the k-path vertex cover induces a connected subgraph, the problem is the Minimum k-Path Connected Vertex Cover ($MCVCP_k$). In [11], Liu et al. gave a PTAS for $MVCP_k$ in unit disk graphs.

The above works mainly concentrate on unweighted $MVCP_k$ problem.

Considering weight, Tu and Zhou [14] gave a 2-approximation for $MWVCP_3$ by using a layering method. By using a primal–dual method, they also achieved a 2-approximation [15].

For general k, it is not difficult to obtain a k-approximation for $MWVCP_k$ as well as for $MWVCC_k$. In fact, $MWVCC_k$ can be modeled as the following integer linear program:

$$\begin{align*}
\min \quad & \sum_{i=1}^{n} w_i x_i \\
\text{s.t.} \quad & \sum_{i \in S} x_i \geq 1, \quad \forall S \subseteq V, \ |S| = k, \ G[S] \text{ is connected}, \\
& \quad x_i \in \{0, 1\}, \ i = 1, 2, \ldots, n,
\end{align*}$$

(1)

where $G[S]$ is the subgraph of G induced by vertex set S. By a classical rounding technique (see, for example [16]), one has a k-approximation. To be more concrete, solving the relaxed linear program of (1) (that is, relax $x_i \in \{0, 1\}$ to $0 \leq x_i \leq 1$) to obtain an optimal fractional solution x^*. Let $x^*_i = 1$ if $x^*_i \geq \frac{1}{k}$, and $x^*_i = 0$ otherwise. Then $C = \{v_i : x^*_i = 1\}$ is a VCC_k of G and $w(C) = \sum_{i=1}^{n} w_i x^*_i \leq \sum_{i=1}^{n} w_i x_i \leq k \cdot \text{opt} \leq k \cdot \text{opt}$, where opt is the optimal fractional value for the relaxation of (1) and opt is the optimal integral value for (1). The $MWVCP_k$ problem can be modeled by a similar 0–1 integer linear program as (1), except that “$G[S]$ is connected” is replaced by “$G[S]$ is a path on k vertices”.

In this paper, we present a $(k - 1)$-approximation for $MWVCC_k$ under the assumption that the girth of G is at least k, using local ratio method. Local ratio method was first proposed by Bar-Yehuda and Even [3], and has been used to design approximation algorithms for the feedback vertex set problem [1], the node deletion problem [8], resource allocation and scheduling problems [2], the minimum s–t cut problem and the assignment problem [4]. The readers may refer to [7] for a systematic introduction of the local ratio method. The key step in obtaining the desired approximation ratio is to find a special weight function w_1 and prove the desired approximation ratio with respect to w_1. In the following section, we shall put our focus on how to realize this step for $MWVCC_k$, and how to make use of such w_1 recursively.

3. The algorithm and its theoretical analysis

Let $d_G(v)$ denote the degree of vertex v in G. The subscript G is omitted if there is no ambiguity in the context. Given a vertex subset S, let $E[S]$ denote the set of edges having both ends in S, and let $G[S]$ denote the subgraph of G induced by S. Notice that $F \subseteq V$ is a VCC_k if every component of $G[V \setminus F]$ has cardinality at most $k - 1$. A VCC_k F is said to be minimal if for any $v \in F$, $F - \{v\}$ is no longer a VCC_k. Let γ denote the size of a VCC_k of G with the smallest cardinality.

Theorem 3.1. Let G be a connected graph, k be an integer with $k \geq 3$, and F be a VCC_k. Suppose the girth of G, denoted as $g(G)$, is at least k. Then

$$\sum_{v \in F} (k - 1)d(v) \geq (k - 1)|E| - (k - 2)|V| + (k - 2)\gamma.$$

(2)
Furthermore, if F is a minimal VCC_k, then
\[\sum_{v \in F} d(v) \leq (k - 1)|E| - (k - 2)|V| + (k - 2)\gamma. \]

Proof. First, we prove inequality (2). If $F = V$, then inequality (2) holds trivially, since $\sum_{v \in V} d(v) = 2|E|$ and $\gamma \leq |V|$. Now, suppose $F \neq V$. Since $g(G) \geq k$ and every component of $G[V \setminus F]$ has cardinality at most $k - 1$, every component of $G[V \setminus F]$ is a tree. So
\[|E[V \setminus F]| = |V \setminus F| - t, \]
where t is the number of connected components in $G[V \setminus F]$. It follows that
\[|E| \leq \sum_{v \in F} d(v) + |E[V \setminus F]| = \sum_{v \in F} d(v) + |V| - |F| - t. \]
By observing that $t \geq \frac{|V| - |F|}{k - 1}$, we obtain
\[\sum_{v \in F} d(v) \geq |E| - \frac{k - 2}{k - 1}(|V| - |F|). \]
Then inequality (2) follows from $|F| \geq \gamma$.

We now prove inequality (3). Notice that the righthand side of inequality (3) can be rewritten as
\[
\sum_{v \in V} d(v) + (k - 3)|E| - (k - 2)|V| + (k - 2)\gamma
= \left(\sum_{v \in F} d(v) + 2|E[V \setminus F]| + |\delta(F)| \right) + (k - 3)|E| - (k - 2)|V| + (k - 2)\gamma,
\]
where $\delta(F)$ is the set of edges with one end in F and the other end in $V \setminus F$. Combining $|E| = |E[F]| + |E[V \setminus F]| + |\delta(F)|$ with (4) and (5), we see that proving inequality (3) is equivalent to proving the following:
\[(k - 2)|\delta(F)| \geq (k - 2)|F| + (k - 2)t - |E[V \setminus F]| - (k - 3)|E(F)| - (k - 2)\gamma. \]

Observing that for each $v \in F$, there is a connected subgraph C_v on k vertices such that $C_v \cap F = \{v\}$, otherwise F would not be minimal. Call such a C_v as a witness of v. Let $C = \{C_v : v \in F\}$ and T be a maximum sub-collection of C such that witnesses in T are mutually vertex-disjoint. Let $F_T = \{v \in F : C_v \in T\}$ and $\tilde{F} = F \setminus F_T$. Notice that $|F| = |T| + |\tilde{F}|$, $|T| \leq \gamma$, and $k \geq 3$. So, to prove (5), it suffices to prove
\[|\delta(F)| \geq |\tilde{F}| + t. \]

For every component H in $G[V \setminus F]$, there is an edge between H and F because G is connected. Choose such an edge to correspond to H, and denote it as e_H. Furthermore, if it is possible, then choose e_H to be an edge between H and F_T. Next, we shall prove that each vertex $v \in \tilde{F}$ is incident with an edge $e_v \in \delta(F)$ such that $e_v \neq e_H$ for any component H of $G[V \setminus F]$. For this purpose, notice that by the maximality of T, there is a vertex $w \in F_T$ such that $V(C_w) \cap V(C_v) \neq \emptyset$. Since v is the only vertex of C_v in F and w is the only vertex of C_w in F, we see that there is a component H in $G[V \setminus F]$ which is adjacent with both v and w. By the choice of e_H (see (8)), the edge between v and H can serve as the desired e_v. It follows that edges in $\{e_H\}_H$ is a component of $G[V \setminus F] \cup \{e_v\}_{v \in \tilde{F}}$ are all distinct, and thus $|\delta(F)| \geq |\{e_H\}| + |\{e_v\}| = |\tilde{F}| + t$. This finishes the proof. \qed

In the following, we give a $(k - 1)$-approximation algorithm for $MWVCC_k$. For this purpose, we first consider a special vertex weight function w_1 called a degree-weight function, that is, $w_1(v) = c \cdot d(v)$ ($\forall v \in V$) for some constant c.

Lemma 3.2. Let w_1 be a degree-weight function on the vertices of $G = (V, E)$, F be a minimal VCC_k of G and F^* be a minimum weight VCC_k of G. Then $w_1(F) \leq (k - 1) \cdot w_1(F^*)$.

Proof. We may assume that G is connected. By Theorem 3.1, we have
\[w_1(F) = \sum_{v \in F} w_1(v) = c \cdot \sum_{v \in F} d(v) \leq c \cdot (k - 1) \sum_{v \in F^*} d(v) = (k - 1)w_1(F^*). \]
The lemma is proved. \qed
For a general nonnegative weight function \(w \), we can recursively decompose it into degree-weight functions, which are denoted as \(t_0, t_1, \ldots, t_l \) in Algorithm 1. Algorithm 1 constructs a nested sequence of subgraphs \(G = H_0 \supset H_1 \supset H_2 \cdots \supset H_l \), where \(H_i \) is obtained from \(H_{i-1} \) by removing vertices of residual weight zero, i.e., every vertex \(v \in V(H_{i-1}) \setminus V(H_i) \) has \(w(v) = 0 \). Since components in \(H_i \) with cardinality less than \(k \) play no role in a minimal \(VCC_k \), the algorithm continues to work on \(G_i \), which is obtained from \(H_i \) by removing such components. Since \(V(G_i) = \emptyset \), every component in \(H_i \) has cardinality smaller than \(k \), and thus \(F_i = \emptyset \) is a minimum \(VCC_k \) of \(H_i \). Then the algorithm extends it recursively in a backward manner to a \(VCC_k \) of \(G_0 = G \). It should be noticed that \(F_i \cup \{V(G_{i-1}) \setminus V(H_i)\} \) is a \(VCC_k \) of \(G_{i-1} \), because \(G_{i-1} - (F_i \cup \{V(G_{i-1}) \setminus V(H_i)\}) = H_i - F_i = (G_i - F_i) \cup (H_i - G_i) \), and every component of \(G_i - F_i \) and \(H_i - G_i \) has at most \(k - 1 \) vertices. So, a vertex set \(V_i \) as in Line 11 of Algorithm 1 exists.

Algorithm 1 Algorithm for MWVCC_k.
Input: A connected vertex-weighted graph \(G \) and a positive integer \(k \).
Output: A \(VCC_k \) \(F_0 \).
1: \(i \leftarrow 0 \), \(G_0 = G \), \(w^i \leftarrow w \).
2: while \(|V(G_i)| \neq 0 \) do
3: \(c \leftarrow \min_{v \in V(G_i)} \frac{w^i(v)}{d^i(v)} \).
4: For each vertex \(v \in V(G_i) \), \(t_i(v) \leftarrow c \cdot d^i(v) \), \(w^{i+1}(v) \leftarrow w^i(v) - t_i(v) \).
5: \(i \leftarrow i + 1 \).
6: \(H_i \leftarrow \) the subgraph of \(G_{i-1} \) induced by vertices \(v \) with \(w^i(v) > 0 \).
7: \(G_i \leftarrow \) the union of those components of \(H_i \) with at least \(k \) vertices.
8: end while
9: \(F_i \leftarrow \emptyset \).
10: for \(i = l, \ldots, 1 \) do
11: Choose a minimal set of vertices \(V_i \) from \(V(G_{i-1}) \setminus V(H_i) \) such that \(F_{i-1} = F_i \cup V_i \) is a \(VCC_k \) of \(G_{i-1} \).
12: end for

Theorem 3.3. The running time of Algorithm 1 is \(O(|V|^2 |E|) \).

Proof. The running time follows from the observation that both the while loop and the for loop are executed at most \(|V| \) times, and each while loop needs time \(O(|V| + |E|) \), each for loop needs time \(O(|V| \cdot |E|) \). For example, Line 11 can be accomplished by setting \(V_i = \emptyset \) initially, and checking vertices \(v \in V(G_{i-1}) \setminus V(H_i) \) one by one. As long as adding \(v \) to \(G_{i-1} \setminus (F_i \cup V_i) \) creates a component of cardinality at least \(k \), then set \(V_i := V_i \cup \{v\} \). Since checking whether \((G_{i-1} \setminus (F_i \cup V_i)) \cup \{v\} \) has a component of cardinality at least \(k \) requires time \(O(|E|) \), Line 11 can be done in time \(O(|V| \cdot |E|) \).

Theorem 3.4. Algorithm 1 is a \((k - 1)\)-approximation for MWVCC_k.

Proof. We show by induction on \(i \) that \(F_i \) is a minimal \(VCC_k \) of \(G_i \) and is a \((k - 1)\)-approximation for MWVCC_k on \(G_i \) with respect to weight function \(w^i \). This is trivially true for \(i = l \).

Suppose the claim is true for \(F_i \), and \(V_i \subseteq V(G_{i-1}) \setminus V(H_i) \) is a minimal vertex set such that \(F_{i-1} = F_i \cup V_i \) is a \(VCC_k \) of \(G_{i-1} \). We first show that \(F_{i-1} = F_i \cup V_i \) is a minimal \(VCC_k \) of \(G_{i-1} \) (this implies that a minimal \(VCC_k \) of \(G_{i-1} \) can be obtained by extending \(F_i \) while keeping vertices in \(F_i \) intact). To see this, it suffices to show that for any vertex \(v \in F_{i-1} \), \(G_{i-1} - (F_{i-1} \setminus \{v\}) \) has a connected subgraph on \(k \) vertices. This is true for \(v \in V_i \) because of the minimality of \(V_i \). For \(v \in F_i \), by the minimality of \(F_i \), \(G_i - (F_i \setminus \{v\}) \) has a connected subgraph of \(k \) vertices, and so has \(G_{i-1} - (F_{i-1} \setminus \{v\}) \), because \(G_i - (F_i \setminus \{v\}) \) is a subgraph of \(G_{i-1} - (F_{i-1} \setminus \{v\}) \).

Let \(F^*_{i-1} \) be a minimum \(VCC_k \) of \(G_{i-1} \) with respect to weight function \(w^{i-1} \). Notice that \(F^*_{i-1} \cap V(G_i) \) is a \(VCC_k \) of \(G_i \). So by induction hypothesis,

\[
w^i(F_i) \leq (k - 1)w^i(F^*_{i-1} \cap V(G_i)). \tag{9}\]

By Line 6 of Algorithm 1, \(w^i(v) = 0 \) for any \(v \in V(G_{i-1}) \setminus V(H_i) \). So by Line 11 of Algorithm 1,

\[
w^i(V_i) = 0. \tag{10}\]

Combing (9), (10) with \(F_{i-1} = F_i \cup V_i \), we have

\[
w^i(F_{i-1}) = w^i(F_i) \leq (k - 1)w^i(F^*_{i-1} \cap V(G_i)) \leq (k - 1)w^i(F^*_{i-1}). \tag{11}\]

Since \(F_{i-1} \) is a minimal \(VCC_k \) of \(G_{i-1} \) and \(t_{i-1} \) is a degree weight function on \(V(G_{i-1}) \), by Lemma 3.2,

\[
t_{i-1}(F_{i-1}) \leq (k - 1)t_{i-1}(F^*_{i-1}). \tag{12}\]
Summing (11), (12) together, and noticing that $w^{i-1}(v) = w^i(v) + t_{i-1}(v)$ for $v \in V(G_{i-1})$ (by Line 4 of Algorithm 1), we have $w^{i-1}(F_{i-1}) \leq (k-1)w^{i-1}(F^*_{i-1})$. This finishes the proof for the induction step.

In particular, taking $i = 0$, F_0 is a VCC_4 of $G_0 = G$ which approximates F^*_0 within a factor of $k - 1$. □

4. Discussion and future work

Tu and Zhou proved in [14] that for a degree-weight function, any minimal VCP_3 approximates an optimal VCP_3 within a factor of 2. This cannot be generalized to MWVCP_k with $k \geq 4$. Consider the example in Fig. 1, where $k = 4$. Suppose the weight function $w(u) = d(u)$ for $u \in V(G)$, and $d(u_1) = d(u_5) = \Delta$, where Δ is the maximum degree of the graph. Then $\{u_3\}$ is the minimum VCP_4 with weight 2, and $\{u_1, u_3\}$ is a minimal VCP_4 with weight 2Δ. This implies that for MWVCP_k with $k \geq 4$, taking minimal VCP_k cannot achieve a constant approximation.

In this paper, we obtain a $(k - 1)$-approximation for MWVCC_k when the girth is at least k. The factor $k - 1$ is tight in the following sense. Consider the example in Fig. 2. Suppose the weight function $w(u) = d(u)$ for $u \in V(G)$, and $d(u_1) = d(u_3) = k - 1$. Then $\{u_2\}$ is the optimal solution of VCC_k with weight 2, and $\{u_1, u_3\}$ is a minimal VCC_k with weight 2($k - 1$), which is $(k - 1)$ times the optimal value.

As a future work, we are interested in achieving better approximation for MWVCC_k in some special graphs emerging from WSN, such as disk graphs. And for general graphs, better approximation without girth assumption needs to be further explored.

References