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A LOCAL-RATIO THEOREM FOR APPROXIMATING THE
WEIGHTED VERTEX COVER PROBLEM

R. BAR-YEHUDA and S. EVEN

Computer Science Department Technion - Istrael Institute of Technology
Haifa, Istrael 32000

A localratio theorem for approximating the weighted vertex cover problem is pre-
sented. It consists of reducing the weights of vertices in certain subgraphs and has the
effect of local-approximation.

Putting together the Nemhauser-Trotter local optimization algorithm and the local
ratio theorem yields several new approximation techniques which improve known
results from time complexity, simplicity and performance-ratio point of vicw.

The main approximation algorithm guarantees a ratio of ‘.’——l where K is the smal-
loglogn = K
) !

lest integer s.t. (2k—1)*=> n (hence: ratio <2
2logn

This is an improvement over the cumrently known ratios, especially for a “practical”
number of vertices (c.g. for graphs which have less than 2400, 60000, 102 vertices the
ratio is bounded by 1.75, 1.8, 1.9 respectively) )

1. Introduction

A Vertex Cover of a graph is a subset of vertices such that each edge
has at least one endpoint in the subset. The Weighted Vertex Cover
Problem (WVC) is defined as follows: Given a simple graph G{V, E)
and a weight function w: V = R’, find a cover of minimum total
~weight. WVC is-known to be NP—Hard, even if all weigts are 1 [16]
and the graph is planar [8]. Therefore, it is natural to look for efficient
approximation algorithms.

Let A be an approximation algorithm. For graph G with weight fun-
ctions w, let C Al C*be the cover A produces and an optimum cover,

T All log bascs, in this paper, are 2.
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respectively. Define

w (CA)
R4 (G w) =—————and let the performance ratio 74(n) be
w (C*)

rafn) = Sup [R4(G.w) | G=(V. E)wheren=|V|}.

Many approximation algorithms with performance ratio <2 have
been suggested; see, for example Table 1. No polynomial-time appro-
ximation algorithm A is known for which r4(n) <2—¢, where € >0
and fixed. Several approximation algorithms are known for which
R4(G. w) < 2~ €(G). where ¢ depends on G;eg. €(G) = A%G)

where Af G ) is the maximum degree of the vertices of G.

In Section 2 we review the Nemhauser and Trotter (18] local
optimization algorithm (NT) as well as the observation of Hochbaum
[11] to use it for approximating WVC.

In Section 3, a new theorem, the ‘Local-Ratio Theorem’ is presen-
ted and proved. It consists of reducing the weights of vertices in cer-
tain subgraphs and has the effect of local approximation. As an exam-
ple of its power we present a trivial proof for the correctness of a
linear time approximation algorithm COVER]1 with roypr1{n/<2.

In Section 4, we present two approximation algorithms in which
the NT algorithm and the local-ratio thcorem are shown to be useful.
The first algorithm COVER? satisfies r o VER?.(”) 52—\/—1,1_—f0r ge-

neral graphs, while for planar graphs r coygr2An) <1.5 and its time

complexity is O(n® logn). Hochbaum [12] obtained the same perfor-
mance ratio, but we manage to avoid the time complexity of 4-color-
ng.

. : 1
For our last algorithm, COVER3, we prove thatr~o ygR 3( n)<l- ?

where k is the least integer s.t. (2k—1)X > n. A similar result, but
only for unweighted graphs, has been obtained independently

%
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by Monien and Speckenmeyer [17].
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In Section 5, the Local-Ratio Theorem is extended to the Weighted
Set-Cover Problem.

TABLE 1-SUMMARY OF APPROXIMATION RESULTS.
(for NT, see Table 2)
Reference Performance Complexity Complexity
s ratio < for weighted for unweighted

[9] 2 not applicablc E
[11] 2 v3
1l 2 E

2
[12] o P qur” “NT”

JAY

2

this paper 2 - — “NT” “NT”
this paper 21 sV “NT” EV

2NogV

(For planar graphs)
[12] 1.6 “NT” N
[l:!] 1.5 ..NT" + «N-ru +
“4-COLORING™ “4—COLORING™
this paper 1.5 “NT” “NT”
2] 2
1 -3— not applicable v

5] 1+¢ not applicable Vieg V

* Although this result seems much better then the one shown 2 lines above for unweighted
graphs, the algorithm is not useful for practical computations. For example for the agorithm

to achieve a ratio < 2 one may need ed many ¢s 22

see [2]

160

vertices [6] .For a similar algorithm
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TABLE 2-“NT"'s Complexity

(the same as MAX FLOW)
G =(V.E) Weighted Unweighted
E2BYySA
General or E\/‘V_
EViog V
Planar Vzlog v vis

2. The Nemhauser and Trotter local optimization algorithm

In this short section we review the local optimization algorithm of
Nemhauser and Trotter {18] which is very useful for approximations
of WVC [12].

Let G(V, E) be a simple graph. We denote by Gf U) the subgraph of
G induced by U € ¥ and let U" ={u'lu € U}. Define the weights of
vertices in U’ by w(u') = wlu).

Algorithm NT
Input : G(V, E), w.

Phase 1:  Define a bipartite graph B(V, V', Ep) where
Eg={(x.y') I(x, y) € E}.

Phase 2:  Cg+ C*(B),
Output:  Co «{x |x € Cp ANDx’ € Cp|
Vo «{x |x € Cy XOR x’ € Cp}

The following theorem states results of Nemhauser and Trotter.

The NT—Theorem: The sets C,, V, which Algorithm NT produces,
satisfie the following properties:
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(1) IfasetD CV, coversG(V,)thenC=D VU C, covers G.

(ii) There exists an optimum cover C¥ G) such that C%G) 2 C,.
[(i) and (ii) are called the local optimally conditions.)

(iil) WlCHG(Vo))) 2 1/2 wl(V,).

For a proof see [18]. An altemate proof is given in the APPEN-
DIX.

The significance of the NT—Theorem, as pointed out by Hochbaum
[12], is that the problem of approximating WVC can be limited to
graphs Gf V,) which satisfy (iii). A simple illustration of this approach
was used by Hochbaum to obtain an algorithm with performace ratio
<2:CallNTIG(V)w)to get Co, Vo and return C=C, U V.

Let us consider now the time-complexity of finding C*(B), which
determines the time-complexity on NT.

For the unweighted case the problem can be converted into the ma-
ximum matching problem on B (see for example [3] which is of time-
complexity O(E/ V) (see [14]).

For the weighted case the problem can be converted into a maxi-
mum flow problem (see, for example [12]) which is of time-com-
plexity O(E?? ¥572) [10] or O(EVIogV) [19]). For a summary of the
results, seec Table 2.

3. The local-ratio theorem

In a previous paper [2] we presented a local approximation tech-
nique for the vertex cover problem of unweighted graphs. In this
section we present a local approximation technique for the vertex
cover problem of weighted graphs. First, we present the following
lemma:

Lemma: Let G(V, E) be a graph and w, w, and w; be weight func-
tions on V, s.t. for every v € V- wfv) = w,(v) +w,lv). Let C*, CT

and C] be optimum covers of G with respect t0 w, w; and w,.
It follows that: w(C*) 2w, (C*) +w,(C3).
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Proof: w(C?*) = 2 w(v)
vE c*

> z (w,(v)+w,(v)

veE ¢c*
= w,(C*)+w,(C*)
> w,(C*)+w,(C*)  [by the optimality of Cy and CJ'} -
Q.E.D.
Let G be an unweighted graph of 7 vertices, whose optimum cover

contains ¢* vertices. Define 7=n/c* Let A be an approximation algori-
thm for WVC and let LOCAL  be the following algorithm:

Algorithm LOCAL

Input: Graph G(V, E), with weight function w.

Phase 1: Choose a subgraph E( V, E) of G which is isomorphic
to G.

Choose 0 <6< Min {w(x) |x € ;}

wix)-8 ifxeV

Define w, (x) =
wlx) else
Phase 2: Call A(G. w,) to get C,.
Output: C < C,.

The Local-Ratio Theorem: R;c4r(G. w) <Max {7, R4(G, wo)}

Proof: Let c* and ¢y be the weights of the optimum covers of G with
respect to w and wo, and let r =Max{?, R 4(G, wo)}, then

W(C) < wolCHs-7  [bylCn Vi<n)
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(A

RA(G. wo) -co™ +F- 8- ¢* {by definitions}

IA

ro(co®* +5¢*) [by r's definition]

IA

r-c* [by the lemmal
Q.E.D.

Let us consider now a corollary of the Local-Ratio Theorem. Let I’
be a finite family of graphs, and rp = Max{F| G € I‘}.

We denote by G(U). U CV, the subgraph of G{V, E) induced by U.

Algorithm LOCAL

Input: G(V, E) w.
Phase 0: For every x € ¥V do wofx) + w (x) end

Phase 1: For every G( V. E), subgraph of G which is isomorphic to
some G €T, do

§ « Min{w, (x) | xeV}.
Forevery x € ¥ do wy (x) «wolx) —5 end
end
Phase 2: €, +{x | wolx)=0}.
V, <« V-C,.
Call A(CGIV,) wo) to get C,.
OQutput: C«C, V(.

The Local-Ratio Corollary:
RLOCALL (G, w) < Max [ rp R4(G(V,), wg)}.

Proof: By induction on i, the number of iterations of Phase 1, during
which § > 0.



34 R Bar-Yehuda and S. Even

For i=0 the claim is trivial.

Suppose the claim holds for i, and for some G, w Phase | runsi +1
iterations during which 8 > 0. Let G € T be the graph used in the first
iteration during which & > 0. Observe that we can view the running of
LOCALy as an application of LOCAL 5 where A (in Phase 2 of LO-
CALg) is replaced by the remaining part of LOCAL. The inductive
step is now an immediate consequence of the Local-Ratio Theorem. .

Q.E.D.

In the applications of LOCAL we shall refer to rp as (a bound on)
the local-ratio of Phase 1. Let us demonstrate a simple application of
the Local-Ratio Corollary.

Algorithm COVER

Input: G(V, E) w.
Phase 1: Forevery e € E do
Let$ =Min{w{x)bc € e}.

For every x € e do w (x) = w(x)—5 end
end

Outpur:  C<{x|wix)=0}.

This approximation algorithm is essentially the one we described in

(1.
Proposition: For algorithm COVER1.

(1) The time complexity is O(E)
(2) 1ts performance ratio <2

Proof:

(1) The number of operations spent on each edge is bounded by a

! In [1 ] we used a giobal rather then a local point of view.
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constant.

(2) Using the Local-Ratio Corollary, with T' which is a single edge.
Q.E.D.

4. Putting together NT and the local-ratio theorem

Hochbaum [12] suggested the following approach to approximate
WVC: Let G(V, E), w be the problem’s input, such that w(C¥G))=>1/2
w( V). (This is achieved by the NT algorithm). Color G by k colors and
let I be the ‘‘heaviest” monochromatic set of vertices. The cover pro-
duced is C=V -/ It follows that

w(C) W(V)—w(l) < Wl V)—wl(V)ik , 2

w(C*) w(C*) 1{2 w(V) k

2
For general graphs she gets the ratio 2 — N (4 1s the maximum

degree) and for planar graphs (k = 4) the performance ration <1.5 in
time-complexity of NT and 4-coloring.

We suggest the use of a preparatory algorithm in which all triangles
are omitted (with localratio 1.5) and therefore, the residual graph is
easier to color.

Algorithm COVER?2

Inpur: G(V. E) w,k.
Phase 1:  [Triangle elimination]

For every triangle T(T C V) do
Find § = Min {m(x) lx e T]
For every x € T do w(x) + w(x) —8 end

end
Ci «{x lwlx) =0}
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V, - V—Cl .
Phase 2: CaINT{GIV,) ,w)to get Gy, V.

Phase 3: Find a cover approximation, C,, of GfV, ),

by using k-coloring (as in Hochbaum’s approach).

Output C‘_ Cl UCQ UCg.

2
Fork =24, RcovER?2 (G, w)<2— < since the local-ratio of Pha-

se 1 is 1.5 (here I' contains of a single graph G which is a triangle), the
locakratio of Phase 2 is 1 and the local-ratio of Phase 3 is 2 —%

Since the graph colored in Phase 3 is triangle-free, we get the fol-
lowing additional results: :

(1) For general graphs 7o yvERA M) <2 ——l\/—n_by using Wigderson’s

approach [20] for coloring a triangle-free graph by k = 2 /7
colors in linear time (21].

(2) For planar graphs rogygro(n) < 1.5, and the time-complexity

of 4Coloring a triangle-free planar graph is linear. (One uses the
fact that in such graphs there is always a vertex of degree<3. See,
for example, [13]. This prevents the need to use a more complex
4-Coloring algorithms. )
Note that the 1.5 performance ratio, for unweighted planar
graphs, can be achieved by the “1 + ¢ algorithm™ of [5]} (or
[2]), however their algorithm is expo-cxponential time w.r.t.
1/¢ and for¢ = 0.5 is not practical.

Before we present our main algorithm we need a few preliminaries.
Let the triple (G(V, E), w, k) (where G is a graph with weight func-
tion w and k is a positive integer) be called proper if the following
conditions hold:

(i) Qk-1k=|V|.
(i) There are no odd circuits of length <2k —1.

(iii) w(C*)=1/2 w(V)
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In the following procedure the statements in squarc brackets are
added for the analysis only, and vanables j (integer), Co. Vo, C, V...
(sets), are used only in the brackets.

Procedure COVER.PROPER

Inpuz: proper(G(V, E), w. k).
Phase 0: V' V'« V. C+¢-[j<0l]
Phase 1: While V' +# ¢ do

Find v € V' s.t. w(») = Max {w(u) lu€V'}.
Let Ay, Ay, ..... Ak be the firstk +1 layerst
of a Breadth-First-Search (BFSt) on G{ V) starting with

A, ={v} ¢ ¢
Define By, = 4z;and By, , =lU4,;,
i=o i=o0

(fort=0,1,2,...)

f+ Min{s|w (BJ<(2—1)- w(Bg,J}.

Add By to C' {C; ~ Byl

Remove Bf v Bf_, from V" [Vi « Bfu Bf_l L= 1]

end

Ouiput: C+C.

Proposition 1: Procedure COVER.PROPER satisfies the following
properties:

(1) In every application of Phase 1, f<«x.
(2) In every application of Phase l:Bf_, is an independent setin G(V).

(3) Ccovers G.

1 Starting with some m, A Any A, may be empty.

i Sec for example (7].
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4)
(3
6)

7
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) .. 1
For every iteration j, w(C}-)S_ (1 - T ) - w(Vj)‘

w(C)<—L ). wlv
T

| 1
RcovER PROPER(GI <2 -

The time complexity isO(t V [log | V | +| E |).

Proof:

(N

(2)

3)

(4)

(5)

Assume the contrary.
Thus, for every s< k, w(B) > (2k-1) - w(Bg , ) Thus,

w(By ) > (Zk—l)k .wlB,) [by the assumption]

>V wfBy) [by (i) of the definition of properl
=V wlv) [Bo = Ao ={v}]

>| V- wlv) v cv]

ZwlV’) [by » s definition]

> w(B)) (B cV')

which 1s absurd.

An edge between two vertices of A s <k, implies the existence
of an odd-ircuit of length < 2k—1. This contradicts condition
(ii) of propemess.

For every iteration j, all edges which are (indirectly) deleted are
covered by the current Ci’ which joins C’. This follows from the
properties of BFS and (2) above.

For every iteration j, w(Bg) < (Zk-1) - “’(Bf- .. Since By= C;

and B!-_l = V]f-C’-, we have w(Cj) < (2k-1) - [w(V,-)-—w(Ci)]‘
This implies the stated inequality.

By summation of the inequality of (4) for every ;.




(6)

(N
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o wl(C)
By definition RcoyrR PROPER (G, w) =————. Property

' w(C*)
(5) above and condition (iii) of propemess imply that

1
(I—E)- w(V)

1/2 w(V)

RcoveR PROPER(G w/<

We may start the algorithm by sorting the vertices according to
their weights, which requires & |Vllogi¥l) steps. This complexity
includes, now, the total time used in Phase | for finding

Max {w(u) e € V’}.

It is not necessary to continuc the BFS of Phase 1, beyond layer
f. Thus, each such search is lincar in the number of cdges to be
eliminated from Gf V'), and the total time spent in the search
of Phase 1 is linear in |E| +|V].

Thus (7) follows.

Q.E.D.

Now, the main algorithm.

Algorithm COVER3

Input: GIV.E) w

Phase 0-  Find the least integer k s.t. (2k=1)X> |V].

Phase 1: [Elimination of short odd circuits with local—ratios2—;?].

For every odd circuit D c ¥V s.t |D| <2k—1 do
5 ~ Min {w(x)lx e D}
For every x € D do w(x) « w(x)—6 end
end
C, «{xlw(x) = 0}.
V‘ b V—Cl.

Phase 2: Call NTIG(V, ), w) toget Cpy, V.
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Phase 3: Call COVER.PROPER(G(V, ), w,k) to get C;.
Output: C~C,uUCG v,

Proposition 2: Algorithm COVER 3 satisfies the following properties:

1
1 2 - — .
n I’COVER:;(R)S 2

(2)
(3)

Its time complexity is the same as N7 's. (see Table 2)

for unweighted graphs its time complexity is 0 |V]. |E]).

Proof:

(D

(2)

The combination of Phase 2 and 3 yields an algorithm with per-
formance ratio < 2 —.71(_ , since the NT algorithm performs local-

optimization (ratio=1) and, for proper graphs, COVER.PROPER
has performance ratio < 7——:‘— [by Proposition 1(6)]. Let G; be a
simple circuit of length 2/—1 thus, n; = 2/-1 and &*= [; there-
fore, 1) = (AU-1)/! = 2—1/l. Consider, now, the Local-Ratio-Co-
rollary where, I’ ={51 I Is.k}, thus, rp =Max{71 | I_Sk} =2-1/k
and (1) follows.

Let us perform Phase 1 in a slightly different way: Choose a ver-
tex v, and build the first k layers of the BFS starting from ». If
there is an edge ¥—w, where u and w belong to the same layer,
then an odd-length-circuit D has been detected (see for example
[15]). In this case we find 5=Min { w(x) | x €D }, reduce the
weights of the vertices in D by & and the vertices whose weight
is zero are eliminated from the representation of the graph (for
the purpose of performing Phase 1). If no such edge (closing an
odd circuit) is detected then » is eliminated from the representa-
tion of the graph, since no odd-circuit of length < 2k—1 passes
through it. In any case at least one vertex is eliminated for each
BFS. Thus the time complexity is 0f|V] - |E|).

In Phase 2, the best known time-complexity of the N7 algorithm
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(table 2) is greater then [F]- |E|. Phase 3 requires Of IE|+|ViiogI V1),
by Proposition 1(7).

Thus, the wholc algorithm is of time complexity as the N7 algori-
thm.

(3) For unweighted graphs, the NT algorithm can be performed in
O(IER/ T V U time and therefore, the algorithm is of time com-
plexity O(1V|- |E|).

Q.E.D.
loglogn
Corollary: rpal(m) <2
oroliary I‘CO VER3 n Zlogn
logn
Proof: Define g(n) = which is monotone increasing for n=>16.
loglogn

By k-th definition (2k — 3)§1 < n. Thus, g((2k—=3)¢") < gfn).

We want to show that k< 2g(n). Thus, it suffices to show that
k < 2g((2k — 3)K1). This is an exercise in elementary mathematics.

Q.E.D.

5. Extending the local ratio theorem for the weighted sct cover
problem

Let HWVC be the following problem. Given a hypergraph G=(V.E)
with weight function w: V-~ R, find a set C C V¥ of minimum total
weight s.t. for every ¢ € E, |e N C|21. The local-Ratio Theorem and its
Corollary hold also for HWVC. Algorithm COVER] can be applicd
directly to HWVC with rcgyer| < Op [where Ag is the maximum

edge-degree (or cardinality) in Gl Its running time is linear in the

length of the problem’s input ( 2 | e ). HWVC is actually the Weigh-
ted-Set-Cover Problem? and is an extension of WVC [AE = 2]. Even

2Chvatal [4] gets, performance-ratio Sﬁ l =0(log D).
=11
[where Ais the maximum vertex degree in Gl.
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though we get performanCc-ratiosAE in linear time, we suspect that
for any fixed &y, there is no polynomial time approximation algor+
thm with a better constant performance ratio, unless P=NP [even for
the unweighted case], (this is an extension of a conjecture of Hoch-
baum).

6. Appendix — NT theorem

Let GV, E) be a simple graph. We denote by G{U) the subgraph of
G induced by U € V and let U’ = {u’ lue U}. Define the weights of
vertices in U’ by wlu’) = wlu).

Nemhauser and Trotter [18] presented the following local optimi-
zation algonthm:

Algorithm NT

Input: G(V. E) w.

Phase 1: Define a bipartite graph B( V. V', Ep) where
Ep ={(x. yI)lix, y)€ E}

Phase 2: Cg +~ C*(B)

Oumput:  Cy ~{x|x € Cg ANDx'€ Cp}
Vo «{x1x€Cg XOR x" € Cg}

The following theorem states results of Nemhauser and Trotter, but
our proof is shorter and does not use linear programming arguments.

The NT—Theorem: The sets Co, Vo which Algorithm NT produces,
satisfies the following properties:

(i) IfasetD CV, covers (Vo) then C=D U C, covers G.
(ii) There exists an optimum cover C*(G) such that C*G) 2 C, .

(ili) w (CHG(Ve))Z 12w (V).
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Proof: Definc [, ={x |x ¢ Cg AND x’ ¢ Cgl=V—(Vy UCy)

Let (x, y) € E. In order to prove (i) we nced to show that either
xelCoryeC

Case |: x€/,,i.c. x, x" ¢ Cp. Thus, y, y'€ C, and therefore
yGCo

Case 2: y € /,. Same as Case 1.
Case 3: x € C, or y € C, . This case is trivial.
Case 4: x, y € V,. Thus. citherx €D ory € D.

In order to prove (ii), let S = C¥G). Deﬁn_e
S$y,=SnV,Sc=5SnC(,Sy=Snl andSy=1 - S¢
Let us show that:

CB; = (V—S,) U S’ covers B. *)
Let (x. y') € Eg. We need to show that either x € CB, ory'e Cg,-

Case l:xéSI.Thus.xe V—SI[C-CBII

Case 2: x € S§; Thus, x € [,, x ¢ S and therefore x ¢ C, . It follows
that y € S [since S covers (x, y)] and y € C, [by Case 1. in
the proof of (i)]. -
Thus, y € § N C, [=S.) and thercfore y' € S’ [<_:_CBl l.

This proves (*). Now,

w (Vo) +U(Co) = wlVq U Cy U C'y)
= w(Cg) [by definitions of Vs, C, ]
fw (CBI) [by (*) and optimality of Cg)
=wl(V-8)uSc)
=wlVo UG uSuUS’J.
= wlVy) +wl(Co) +w (Sy) +(S ).

It follows that w(Cy )Sw (S-S ). Thus, w(C, U Sp)<w(S) Howe-
ver, Co U Sy covers G [by (i)) and therefore C, U S is an optimum
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cover of G and contains C, . This proves condition (ii).

In order to prove (iii), assume S, is an optimum cover of Gf V). By
(l), Co v So covers G, and by B ’s definition Co U C’o U So U S'o
covers B. Thus,

wlVoe) +2w(Co) = w(Cpg)

LwlCo UCQqUS, US,)
[by optimality of Cpg]

= 2w(Co) +2Q)(So)

Therefore, w(V,) < 2w(S,).

QE.D.
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