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Abstract

We study a generalization of covering problems capedtial covering Here we wish to cover
only a desired number of elements, rather than covering all elements as in standard covering
problems. For example, inpartial set cover, we wish to choose a minimum number of sets to cover
at leastk elements. Fok-partial set cover, if each element occurs in at mpsets, then we derive a
primal-dual f -approximation algorithm (thus implying a 2-approximation kegpartial vertex cover)
in polynomial time. Without making any assumption about the number of sets an element is in,
for instances where each set has cardinality at most three, we obtain an approximati@n\ok4
also present better-than-2-approximation algorithmskfpartial vertex cover on bounded degree
graphs, and for vertex cover on expanders of boursdedagedegree. We obtain a polynomial-time
approximation scheme far-partial vertex cover on planar graphs, and for covefimmpints in R?
by disks.
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1. Introduction

Covering problems are widely studied in discrete optimization: basically, these
problems involve picking a least-cost aattion of sets to cover elements. Classical
problems in this framework include the gaal set cover problem, of which a widely
studied special case is the vertex cover peahl (The vertex cover problem is a special
case of set cover in which the edges correspond to elements and vertices correspond to
sets; in this set cover instance, each element is in exactly two sets.) Both these problems
are NP-hard and polynomial-time approximation algorithms for both are well studied. For
set cover see [12,28,30]. For vertex cover see [6,7,13,23,24,31].

In this paper we study a generalization of “covering” to “partial covering” [29,32].
Specifically, ink-partial set cover, we wish to find a minimum number (or, in the weighted
version, a minimum weight collection) of sets that cover at |éadements. When is the
total number of elements, we obtain the regular set cover problem; similarkygartial
vertex cover. (We sometimes referitgpartial set cover as “partial set cover”, ahgartial
vertex cover as “partial vertex cover”; the case whieeguals the total number of elements
is referred to as “full coverage”.) This gemdiration is motivated by the fact that real
data (in clustering for example) often has errors (also called outliers). Thus, discarding the
(small) number of constraints posed by such errors/outliers is permissible.

Suppose we need to build facilities to provikrvice within a fixd radius to a certain
fraction of the population. We can model this as a partial set cover problem. The main
issue in partial covering is: whichelements should we choose to cover? If such a choice
can be made judiciously, we can then invoke a set cover algorithm. Other facility location
problems have recently been studied in this context by Charikar et al. [11].

We begin our discussion by focusing on vertex cover/aipartial vertex cover. A very
simple approximation algorithm for unweighted vertex cover (full coverage) is attributed
to Gavril and Yannakakis (see [14]): take a maximal matching and pick all the matched
vertices as part of the cover. The size of the matching (number of edges) is a lower bound
on the optimal vertex cover, and this yields a 2-approximation. This simple algorithm
fails for the partial covering problem, since the lower bound relies on the fact that all
the edges have to be covered. The first approximation algorithiparrtial vertex cover
was given by Bshouty and Burroughs [9]. Their 2-approximation algorithm is based on a
linear programming (LP) formulation: suitably modifying and rounding the LP’s optimal
solution. A faster approximation algorithm achieving the same factor of 2 was given by
Hochbaum [26] in which the key idea is to relax the constraint limiting the number of
uncovered elements and searching for thd deaalty value. More recently, Bar-Yehuda
[8] studied the same problem and gave a 2-approximatiok-fuartial vertex cover based
on the elegant “local ratio” method.

Our algorithm does not improve on the approximation factors of the previous
algorithms, but we derive a natural primal-dual algorithm. Burroughs [10] studied the
primal-dual algorithm and showed that applying the primal-dual algorithm as it is, gives
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an O (n) approximation. In this work we show that the primal-dual algorithm along with a
thresholding approach gives us a 2-approximation for the partial vertex cover problem.

1.1. Problem definitions and previous work

e k-partial set cover Given a setl’ = {t1,1,...,t,}, a collectionS of subsets off,
S ={51,5,...,Sx}, a cost functiorr:S — QT, and an integek, find a minimum
cost sub-collection of that covers at leagt elements of7 .
Previous resultsFor the full coverage version, aint+ 1 approximation was proposed
by Johnson [28] and Lovéasz [30]. This analysis of the greedy algorithm can be
improved to H(A) (see the proof in [14]) where is the size of the largest sét.
Chvatal [12] generalized this to the case when sets have costs. Slavik [33] shows the
same bound for the partial cover problem. Wher= 3, Duh and Furer [15] gave a
4/3-approximation for the full coverage version. They extended this result to get a
bound of H(A) — 1/2 for full coverage. When an element belongs to at mfosets
Hochbaum [23] gives ayf-approximation.

o k-partial vertex coverGiven a graptG = (V, E), a cost functior : V — QT, and an
integerk, find a minimum cost subset &f that covers at leagtedges ofG.
Previous resultsFor the partial coverage version several 2-approximation algorithms
are known (see [8,9,26]).

e Geometric covering problenGivenn points in a plane, find a minimally sized set of
disks of diameteD that covers at leadt points.
Previous resultsThe full coverage version is well-studied. This problem is motivated
by the location of emergency facilities as well as from image processing (see [25]
for additional references). For the special case of geometric covering problems,
Hochbaum and Maass [27] have developed a polynomial approximation scheme.

1.2. Methods and results

e k-partial set cover For the special case when each element is in at rficsdts, we
combine a primal-dual algorithm [13,19] with a thresholding method to obtain an
f-approximation whery > 1.

Our general method is as follows: we first “guess” the cost of the maximum cost set in
the optimal solution. We then modify the original cost function by raising the costs, of
the sets having a higher cost than the guessed set, to infinity. This is to make sure that
these sets are never chosen in our solution. This leads to dual feasible solutions for the
instance with modified costs (which we use as a lower bound) that mafdsesible

for the original problem. However, if we only raise the costs of sets that are guaranteed
to not be in the optimal solution, we do not change the optimal IP solution. Hence the
dual feasible solution for this modifiedstance is still a lower bound for the optimal

IP.

YHK =Y 1/i=nk+ o).
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For set cover where the sets have cardinality at rdottere are results (starting from
[17,20]) by Duh and Furer [15] for set cover (full coverage) that improveHtie!)

bound toH (A) — 1/2. For example, forA = 3 they present a/8 (= H(3) — 1/2)
approximation using “semi-local” optimization rather than a/@-hApproximation
obtained by the simple greedy algorithm.

For the caseA = 3, we can obtain a /8 bound for the partial coverage case. This
does suggest that perhaps #ieéA) — 1/2 bound can be obtained as well. This would
improve Slavik’s result [33].

k-partial vertex cover By switching to a probabilistic approach for rounding the

LP relaxation of the problem, we obtain improved resultsifgrartial vertex cover,
where we wish to choose a minimum number of vertices to cover at least
edges. An outstanding open question for vertex cover (full coverage) is whether the
approximation ratio of 2 is best-possible; see, e.g., [18]. Thus, it has been an issue of
much interest to identify families of graphs for whichnstant-factor approximations
better than2 (which we denote by Property (P)) are possible. In the full coverage
case, Property (P) is true for graphs of boundeimundegree; see, e.g., [21]. How

can we extend such a result? Could Property (P) hold for graphs of coastnage
degree? This is probably not the case, since this would imply that Property (P) holds
for all graphs. (Given a grap& with n vertices, suppose we add a star wittin?)
vertices toG by connecting the center of the star by an edge to some veriex tfie

new graph has bounded average degree, and its vertex-cover number is one more than
that of G.) However, we show that foexpandergraphs of bounded average degree,
Property (P) is indeed true. We also show Property (Pk{partial vertex cover in the

case of bounded maximum degree and arbitkatkis is the first Property (P) result for
k-partial vertex cover, to our knowledge. Our result on expanders uses an expectation
analysis and the expansion property. Expectation analysis is insufficient for our result
here onk-partial vertex cover, and we show that a random process behaves close to
its mean on bounded-degree graphs: the degree-boundedness helps us show that many
sub-events related to the process are (pairwise) independent. We also present certain
new results for multi-criteria versions éfpartial vertex cover.

Geometric coveringThere is a polynomial approximation scheme based on dynamic
programming for the full coverage version [27]. For the partial coverage version since
we do not know whichk points to cover, we have to define a new dynamic program.
This makes the implementation of the approximation scheme due to Hochbaum and
Maass [27] more complex, although it is still a polynomial-time algorithm.

k-partial vertex cover for planar graph¥Ve are able to use the dynamic programming
ideas developed for the geometric covering problem to design a polynomial-time
approximation scheme (PTAS) farpartial vertex cover for planar graphs. This is
based on Baker’s method for the full covering case [3].

k-partial set cover

Thek-partial set cover problem can be formadtas an integer program as follows. We

assign a binary variable; € {0, 1} to eachS; € S. In this formulation,x; = 1 iff set §;
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belongs to the cover. A binary variabjg is assigned to each element 7. y; = 1 iff 1
is not covered. Clearly, there could be at most £ such uncovered elements.

The corresponding LP relaxation, given te] is obtained by letting the domain of
andy; be 0< x;, y; < 1. Notice that the upper bound an andy; is unnecessary and is
thus dropped.

m
min " c(S)) - x;,

=1
subjecttoy, + Y x;>1, i=12....n,

J: t,‘ESj

The dual LP contains a variabig (for each element € 7) corresponding to each of
the firstn constraints in the above LP. The dual variableorresponds to thé: + 1)th
constraint in the above LP formulation. The dual LP is as follows

n
maxZui —(n—k) -z,
i=1

subject to Z wi <c(Sj), j=12,....m,

i:t;€S;
u; <z, i=12,...,n,
u; >0, i=12,...,n,
z2>20.

The algorithm &TCoOVER in Fig. 1 does the following. The algorithm “guesses” the
set with the highest cost in the optimal siddun by considering each set in turn to be the
highest cost set. For each set that is chosen, to be the highest cost sgt, Sayalong
with all the elements it contains is removiedm the instance and is included as part of the
cover for this guess of the highest cost set. The cost of all sets having a higher cost than
c(S;) is raised toco. I; = (77,87, ¢, k;) is the modified instance ESCoVER then calls
PRIMAL -DUAL on /; which uses a primal dual approach [19] to return a set covek;for
In PRIMAL -DUAL, the dual variables; are increased for al} € 7/ until there exists a
setS, such that) . s, Ui = c'(8,). Sets are chosen this way until the cover is feasible.
The algorithm then chooses the minimum cost solution amongethelutions found. For
the purpose of clarity of exposition in the pseudo-code (Fig. 1), we assume that costs of all
sets inS are distinct.

Theorem 2.1. SETCOVER(7, S, ¢, k) returns a f-approximate solution, wherg > 1 is
the highest frequency of any element, i.e., an element appears in afreet.
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PRIMAL -DUAL(77,S8’, ¢, k)
1 /I Returns a subset of S’ that is feasible,

2 [lie.,C covers> k' elements of7”’
3 1 z is maintained implicitly in the algorithm. At all times= max; u;
4 C<~0
5 E<«T
6 Initialize allu; to O
7 while C is not feasible
8 /l'increase the dual variablas for 1; € E.
9 //'When selectin@,, sumy_,. , cs, u;
10 Il'is taken over all the € S, before the start of the while loop.
11 dolIncrease; uniformly for all 7; € E until 3 a setS, s.t.)_,. Sy i = ' (Sa)
12 E < E\S,
13 C«— CU{S4}
14 return C

SETCOVER(7, S, ¢, k)
1 if (k<O0) returng

2 Sort the sets in increasing order of their cost

3 forj < 1tom

4 doc/(S)) < o0

5 forj < 1tom

6 /Il create a modified instandg = (77, S/, ¢’ k).

7 // run RIMAL -DUAL on this instance.

8 /I SC; is the cover obtained in iteration

9 do c’(sj) < c(S;) II'S;isthe highest cost set @PT
10 S/« S\{S;} /I'S;isremoved from the instance
11 T « T\S; [/lallelements of5; are removed
12 kj «—k— |Sj|
13 costSC;) = oo
14 if (IS USU--- US| =k) o
15 then SG « {S;} U PRIMAL-DUAL(77, 87, ¢ k)
16 CostSC;) = stescj c(Sy)

17 SC= min{cos(SG), cos(SG), ..., cosi(SG,)}
18 return SC

Fig. 1. Algorithm fork-partial set cover.

Proof. Let OPT refer to an optimal solution. We will u@PT to mean either an optimal
solution or the cost of an optimal solution. The meaning will be clear from the context in
which it is used. Letl be the given instance of the problem. Ligtrefer to the modified
instance of the problem, i.el; = (77,87, k;). Let S, be the set with the highest
cost in OPT. Let OPT(/,) be the optimal integer solution for the instange OPT =
OPT(y) +c(Sy). LetDFS(1y,) refer to the dual feasible solution for the instadgeAgain,
DFS(-) will be used to mean the dual feasible solution or the cost of the dual feasible
solution.DFS(I;,) may not be a feasible solutidto the instance7”, S, ¢, k;,) (note the
original cost function). However, sin@@S(7,) < OPT(1,) andOPT = OPT(1;) +¢(Sp),

5 This is because we relax the constraints for the dual problem.
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we haveDFS(1;) + ¢(Sy) < OPT. SG, is the set cover chosen by our algorithm during the
iterationj = k. Let §; be the last set chosen. LBSC= SG, \ {S;} (ASCstands for almost
set cover). Note that sinc®, is the costliest set;(S;) < ¢(Sp,). Let T, represent the set of
points covered bASC Let T, = T\ T, represent the set of uncovered elements. Since the
algorithm chooses a cov@&( of the lowest cost, co&$C) is upper bounded by ca8G,).

cos{(SO) < cos(SG,) = Z c(Sy) = Z c(Sx)

SxeSCp S,eSCy

- Z c(Sy) + ¢(S)) + c(Sn)

S,eASC

< YD uite(Sw) +c(Sy)

Sy eASCi: t;eSy
= > uil{x|ti €S A S € ASQ|+2-c(Sn)

iitieT,
<SS Y ui+2-c(Sh)
ii tieT,
n

Doui— Y u,-> +2-¢(Sp)

i=1 it eTy

(
_ (Zu — T .z) +2-¢(Sh)
(

Y ui—(n—k) 'z> +2-c(S)
< f - (DFSUp) 4+ ¢(Sp)) < f-OPT. O

Corollary 2.2. SETCOVER(E, V, ¢, k) gives a2-approximate solution fok-partial vertex
cover.

3. Set cover for small sets

Problem. Given a collectionC of small subsets of a base g&t Each small subset in the
collection has size at mosgt, and their union i¢/. The objective is to find a minimum size
sub-collection that covers at ledselements.

Here we have the original partial set cover instance with the additional information that
the sets are of “small” size, i.e4 is small. We obtain an approximation factor of4for
the case whem = 3 using the idea ofs, r) semi-local optimization [15]. This technique
consists of inserting up te 3-sets (sets of size 3) and deleting upr t8-sets from the
current cover. Then the elements that are not covered by the 3-sets (already existing ones
plus the newly added) are covered optimally using 2-sets and 1-sets. This can be solved in



62 R. Gandhi et al. / Journal of Algorithms 53 (2004) 55-84

polynomial time using maximum matching [17]. The vertices are the uncovered elements

of U and the edges are the admissible 2-sets. The 2-sets corresponding to the maximum
matching edges and the 1-sets corresponding to the vertices not covered by the maximum
matching form an optimum covering. We will order the quality of a solution by the number

of sets in the cover and among two covers of the same size we choose the one with fewer
1-sets and if the covers have the same size and neither cover has a 1-set we choose the one
that covers more elements. Without loss of generality, we assume that all subsets of each
set are available and hence all coverings are assumed to be disjoint.

The algorithm starts with any solution. One solution can be obtained as follows. Choose
a maximal collection of disjoint 3-sets. Cover the remaining elements (such that the total
number of elements covered are at lelgsbptimally using 2-sets and 1-sets. Perform
semi-local(2, 1) improvements until no improvement is possible.

The proof for the bound of 4 for full coverage does not extend to the partial coverage
version. For the full coverage, to prove the lower bound on the optimal solution Duh and
Furer [15] construct a grap@i in which the vertices are the sets choser®T and the
edges are 1-sets and 2-sets of the approximate solution. They prowg@ tiaatnot have
more than one cycle and hence argue that the total number of 1-sets and 2-sets in the
solution is a lower bound 0®PT. This works well for the full coverage version but breaks
down for the partial covering problem. For the partial covering c&seaving at most one
cycle is a necessary but not a sufficient condition to prove the lower bound.

In the full coverage version of the problem, to bound the number of 1-sets in the solution
they construct a bipartite graph with the twets of vertices corresponding to the sets
chosen by the approximate solution a@&T. If a set corresponding to the approximate
solution intersects a set correspondingQ®T in m elements then there are edges
between their corresponding vertices ir thraph. In each component of the graph they
show that the number of 1-sets of the solution in that component is at most the number of
1-sets ofOPT in that component. This is clearly not the case in the partial covering case,
since our solution may have a 1-set that covers an elemenbff@tmay not cover. We
obtain a bound on the number of 1-sets as a side effect of the proof for the lower bound on
OPT.

3.1. Analysis
Notation.

S: our solution.
OPT: optimal solution.

a;: number of sets of size(i =1, 2,3) in S.

b;i: number of sets of size(i = 1, 2, 3) in OPT.

B: set of elements covered by 2-sets or 3-set§ ahd neither covered by 2-sets nor
3-sets ofOPT, i.e., B represents “bad” elements.

C: set of elements covered by 2-sets or 3-sets§ @ind OPT, i.e., C represents the
elements common t§ andOPT.

D: set of elements covered by 2-sets or 3-set@T and neither covered by 2-sets nor
3-sets ofS, i.e., D represents desirable elements.
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} 1-cycle
Tep truncate PSRN
-cycle @ |
¥

(a) (b)

(c)

Fig. 2. (a) Example ofH. (b) Truncating a 3-set. (cH cannot have &p covering two elements iD
(Lemma 3.2).

Pcp (Tcp): a 2-set (3-set) of that covers elements iB andC. P andT stand for pair
and triple respectively.
Pcp (Tcp): a 2-set (3-set) 0DPT that covers elements i@l andD.

If S consists of only 3-sets then our solution is optimal, hence we will not consider this
case. In order to upper bound the number of 1-sets and 2-setgérwill construct a graph
G inwhich the vertices correspond to 2-sets and 3-se@df and the edges correspond to
1-sets and 2-sets 6f The terms vertices and sets@PT would be used interchangeably.
This will be true even in expressions where symbols for vertices (lower case) may be used
instead of symbols for sets. The reference will be clear from the context in which it is
used. Similarly, the terms edges and sets afill be used interchangeably. Léf be a
component of5. Note that inH, a 1-set ofS would be represented as a 1-cycle (self loop).
Also, if an edge covers two elements of a vertex of size @R, it is represented as a
self-loop on the vertex oDPT. Figure 2(a) is an example @ . In order to adhere to the
definition of graph, if an edge covers any elemengirthe vertex on that end of the edge is
a dummy vertex. Whenever we refer to the vertices of a graph, we do not include dummy
vertices.

Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, and 3.8 characterize the structure of any compflonent
in G. In each of these lemmas, we try to prove thahas a certain structure. The proof of
each of the above lemmas is based on the folgvéipproach. We assume for contradiction
that H does not have the structure in question. In that case we show that a semi-local
improvement is possible, a contradiction. We use figures to illustrate the proof of these
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lemmas. In each of the figures, we will show tresult when semi-local improvement is
applied toH . The scenario before the improvement is shown on the left of each figure and
on the right we show the improved partial cover. The improved partial cover consists of
some sets that were part©OPT and some sets that were partflbefore the improvement.
In the improved solution the sets GPT that we include are marked by solid boundaries
and the sets of that we include are represented by solid edges.

We will now introduce some notation that will be used heavily in the proofs of the
lemmas. Foanyvertexz in G, let 7/ denote truncated. We definez’ as follows. Ifz is
a 2-set the’ = z, otherwisez’ covers exactly two of the three elementsofigure 2(b)
shows a 3-set that is truncated. LRbe a path inff between vertices andw. Let 7, and
E, denote the set afternalvertices and set of edges mrespectively. Thus/, contains
all vertices ofP other tharw andw. Hence|I,| = |E,| — 1. Let F,, denote the elements
covered by edges if,. Also, every 3-set;, in I, is truncated to contain the two elements
int N F,. ThusI, consists of only 2-sets. if or w is aTcp, sayu, thenu’ consists of
an element inD and the elementin N E,. For any cycleC in H, let V. and E. denote
the vertices and edges respectively(ofFor any vertexw € C, let I, = V. \ {w}, where
again the 3-sets are truncated to contairei&snents that are covered by the cycle. Thus,
I, consists of only 2-sets. Note théb € V., |I.,| = |E.| — 1.

Lemma 3.1. The semi-local2, 1)-optimization algorithm produces a solution in which
ay + 2ap + 3az < by + 2by + 3b3 + 1.

Proof. Note thatk < b1+ 2b2 + 3b3. If a1 > 0 thenS covers exactly elements. It =0

then it may cover an extra element and hence the 1 on the right hand side of the above
inequality. Recall that ifz1 = 0, thenaz > 0 since we cannot have only 3-sets in our
solution. O

Recall thatS and OPT represent our solution and antiwpal solution respectively.
W.l.0.g. we can modify§ as follows. When we compute an optimal solution corresponding
to a certain choice of 3-sets, we pick a solution that maximizes the number of 2-sets
belonging toOPT. This does not affect the size §for the number of elements covered.
The following lemmas apply to the gragh corresponding to the modifiei

Lemma 3.2. If H has aT¢p that covers two elements i then the third element must be
shared with a3-set ofS. If H has a triple with three elements ib then our solution is
optimal.

Proof. Consider the case whet has a triplew that covers exactly two elements in

and the third element is shared with a 1-set or a 2-sef. dfe will show that a(1, 0)
optimization (insertingw) gives an improved solution, a contradiction. The new cover
would be S U {w} \ {ey}, Wheree,, is the edge incident ow in H. The new solution

covers more elements and uses the same number of sets as before. Figure 2(c) illustrates
this case. Now consider the case whers a triple that covers three elementsinIn this

case, our solution must contain all triples, i.e., our solution must be optimal. If not, then
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we can cover at least one extra element using the same number of sets by swapiting
some 2-set or 1-set ifi. This is equivalent to &1, 0) semi-local improvement. O

Lemma 3.3. H has at most one set of OPT that covers elementsamd D.

Proof. Assume otherwise. Consider a pathin H between two vertices); andw; that
cover elements il and D. By Lemma 3.2w1 andw, each cover exactly one element
in D. Lete; ¢ E, represent an edge i that is incident orw;. This happens only ifv;

is aTcp. We will consider the following three cases based on the sets represented by
andwo.

Case |. w1 =Tcp andwy = Tcp.

We will contradict our assumption by showing that we can obtain a better solution by
performing a(2, 0) semi-local optimization (inserting; andwy). Let the new cover be
(SUI, Uf{wy, w2}) \ (Ep U{e1, e2}). The size of the new cover $S| + |E,| —1+2) —

(IEp| +2) =S| — 1. The new solution covers all the elementsFin Moreover, the new
solution covers 2 extra elements dueutpandw; and loses 2 elements duedpandes.

All other edges of§ are included in the new solution. Thus we use one less set to cover the
same number of elements. Figure 3(a) illustrates this case.

Case Il. wy=T¢cp andwy = Pcp.

We will show how to obtain a better solution by performing(h 0) semi-local
optimization (insertingw1), a contradiction. Let the new cover B8 U I, U {w1, w2}) \
(EpU{e1}). The size of the new cover $S| + |E,| —1+2) — (|E,| +1) = |S|. We cover
an extra element since we cover 2 extra elements dug tandw, and lose 1 elements
due toe1. Thus we have an improved solution that uses the same number of sets to cover
more elements. This case is illustrated in Fig. 3(b).

Case Ill. w1 = Pcp andwy = Pcp.

This cannot happen gsmaximizes the number of 2-sets belongin@eT. Figure 3(c)
illustrates this case. This is an example where we use the assumption that all subsets of each
set are available. O
Lemma 3.4.If H has aT¢p or Pcp thenH is acyclic.

Proof. Assume otherwise. Let denote the set dDPT that covers elements il and D.
Let u be the vertex of the cycld,, that is closest tav. Consider the pattP between
w andu. Note that by Lemma 3.3; cannot be a¢p or a Pcp. We will consider the

following cases.

Case |. w=T¢cp or Pcp andu is a3-set.
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Tep

Wo
w1

(b)

Pep Pop

optimal L2
----- e T ey
w; wy 2-cover ‘\\T//

()

Fig. 3. Examples for Lemma 3.3. In each of the following cases an improved partial cover (represented by figures
on the right) contains the sets ®PT marked by solid boundaries and the setsSaforresponding to the solid
edges. (a) Twd¢cp sets inH lead to a(2,0) semi-local improvement. (b) Acp and Pcp in H leads to

a (1,0) semi-local improvement. (c) Tw&cp sets inOPT is not possible as, w.l.o.g., our algorithm finds a
solution maximizing the number of 2-sets belongingXeT.

A (1, 0) semi-local optimization (inserting) will give us an improved solution. The
new coveris(SU I, U{w',u} UI,) \ (E, U E;), where recall thaE; represents the edges
of the cycleL. Note that ifw = T¢p then it is truncated tgover its element iD and the
elementinw N F,. The size of the coveri§S|+ |E,| — 14+ 2+ |E/| = 1) — (|Ep| +|Ei|) =
|S|. The new solution covers all elementsify and it does not delete edges that are not
in E,. Moreover, by includingyv’ in the cover, the new solution covers an extra element.
Thus the new solution uses the same number of sets to cover an extra element and hence it
is an improvement, a contradiction. Figures 4(a) and 4(b) illustrate this case.
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Fig. 4. Examples for Lemma 3.4. In each of the following cases an improved partial cover (represented by figures
on the right) contains the sets ®PT marked by solid boundaries and the setsSaforresponding to the solid
edges. (a),(b) A1, 0) optimization (inserting:) gives us an improved solution. (c),(d) Our algorithm finds an
optimal 2-cover. The figure on the left shows a sub-optimal 2-cover.

Case Il. w=Tcp or Pcp, u is a2-set.

Sinceu is a 2-set, it must be part of a 1-cycle. We will prove that this can not happen
by showing that a better 2-cover is possible. Consider the 2-a@verl, U {w', u}) \
(E, U Ep). The size of the cover i§|S| + |E,| + 1) — (|E,| + 1) = |S|. Note that we
manage to cover all elements i}, and we do not delete any edge that is notEip.
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Moreover, the new solution covers an extra element by includih@ our cover. Thus,
we get an improved 2-cover that uses the same number of sets to cover an extra element, a
contradiction. Figures 4(c) and 4(d) illustrate this case.

Case Ill. w=u.

We will show that a(1, 0) semi-local optimization (insertingy) gives an improved
solution, a contradiction. The new cover will b&U {w} U I;,) \ (E;). The size of the new
coveris(|S|+ 1+ |E;| — 1) — | E;| = |S|. In addition to covering all the elements covered
by the cycle, the new solution covers an extra element due tdence the new solution
uses the same number of sets to cover more elements.

Lemma 3.5. H does not have more than one cycle.

Proof. By Lemma 3.4, the claim is true wheth has alcp or a Pcp, sinceH is acyclic.
For the rest of the proof we will assume thétdoes not contain &cp or a Pcp. Assume
for contradiction that# has two cycle€; andC2. We will consider the following cases.

Case |. C1 andC2 are disjoint.

Let u € C; andw € C> be the closest pair of vertices on the two cycles andPlet
be the path betweem and w. If both C; and C, are 1-cycles and andw are 2-sets
then we can show that there exists a better 2-cover that uses fewer sets. Figure 5(a)
illustrates this scenario. If botti; and C, are 1-cycles and or w (or both) is a 3-set
then by truncating the 3-sets correspondingut@nd w and removing the edges in
E,, we can get an improved solution that uses fewer set€1 I{C>) is a 1-cycle and
C2 (C1) is not thenw(u) is a 3-set. In this case @, 0) improvement (insertingv(u))
is possible. Figure 5(b) illustrates this scenario. If neithemor C; is a 1-cycle then:
andw both are 3-sets. A2, 0) improvement (inserting and w) is possible. Figure 5(c)
shows an example of this scenario. In eaththe above cases the new solution would
be (S U {u, w} U Iy U lyw U Ip) \ (E¢; U Ec, U Ep). The size of the new cover is
(ISI+ 2+ [Ec)] =1+ [Eq)l =1+ |Ep| = 1) — (|E¢y| + |Ecy| + |Ep]) = |S| — 1. Note
that the only edges deleted frafrare the edges i@y, C2 and P. The new solution covers
all the elements covered by these deleted edges. All other edgearmpart of the new
cover. Thus we use one set less to cover the same number of elements as S.

Case Il. Cq1 andCs are not disjoint.

Let u € C1 andw € C2 be some vertices shared I634 and C». If both C1 and C2
are 1l-cycles them = w is either a 2-set or a 3-set. This is a trivial case in which
(SU{u')\ (E, U E,) is a better cover. If eithe€y or Cz is a 1-cycle thent = w is
a 3-set. In this case @, 0) improvement (inserting) is possible. If neitheC1 nor Cz
is a 1-cycle then let andw both be different 3-sets. A2, 0) improvement (inserting
andw) is possible. This is illustrated in Fig. 5(d). The new solution in each of the above
scenarios is calculad as follows. Let12 and E12 be the vertices and the edges that are
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Fig. 5. Examples for Lemma 3.5. (a),(b),(c) Semi-local improvement in the case M/imes two disjoint cycles.
(d) A (2,0) improvement leads to a better solution when neitfigand C, are not disjoint and neither of them
are 1-cycles.

shared byC1 andC». Let V1_2 andE1_» be the vertices and edges that ar&€inand not

in C2. Let Vo_1 and E>_1 be the vertices and edges that areCthand not inC;. Note

that |Vio| = |E12| + 1, |V1—2| = |E1-2| — 1 and|Vo_1| = |E2_1| — 1. The new solution
would be(S U Vi_2U Vo_1 U V12) \ (E1—2 U E2_1 U E17). The size of the new cover is

(IS +1E1-2| = 1+ |E2-1] — L+ |E12| +1) — (|E1-2| + |E2-1| + | E12]) = | S| — 1. Again
following the same argument as in Case |, the new solution covers the same number of
elements as$, but using one set less.0
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Fig. 6. Examples for Lemma 3.6. In the above instan@@4) semi-local improvement yields an improved
solution.

Lemma 3.6. If a1 > 0 and if H contains al¢p or Pcp thenH does not have a-set or a
3-set of OPT that shares elements witB-aet ofS, i.e., H does not have 2-set or a3-set
of OPT sayx, such thate Ny # @, wherey is a 3-set ofS.

Proof. Letr be a 1-set ofS. Let u denote al¢cp or Pcp in H. Consider the case when
u andx denote the same set. In that cas@gal) semi-local improvement (removing the
3-sety) will cover the same number of elements using fewer 1-sets. Now we consider the
case whem andx denote different sets. Consider a p&tbetweeru andx in H. In this
case a0, 1) semi-local improvement (removing the 3-ggtis possible, a contradiction.
The new solution would béS U {x’, y',u’} U I,) \ (y U E, Ur). The size of the cover
is(IS|+3+|Ey| —1) — (14 |E,| + 1) =|S|. The new solution covers all the elements
covered byy U E,. The new solution covers an elementirby insertingu’. This accounts
for the element covered bythat is not in the new solution. Thus the new cover is of the
same size as the old one, however the new solution has one singleton less$hHeinte

it is an improved solution. Figure 6 illustrates some of the cases.

Lemma 3.7. The (2, 1) semi-local optimization technique produces a solution in which
ar+ax <b1+bx+bz+1.

Proof. The outline of our proof is as follows. In each componéhtve will charge the
edges (sets of) to the vertices (sets dDPT) of H. Our charging scheme satisfies the
following property. Each vertex is charged by at most one edge and areéd@gbarged

to a vertexv only if |e N B| > |v N D|. We then argue that each edge that is not charged
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to any vertex must cover an elementBn Through careful arguments we then show that
these edges can be accounted for by vertic&3Hi that are not yet charged.

We will now introduce some notation that will be used in the proof of this claimQ.et
be the vertices iOPT that are charged by some edge. gtbe the remaining vertices in
OPT. Leto, =|0,| ando. = |O.|. Leta},i € {1, 2}, be the number of sets of sizehat
are not charged to any set@PT. Leta; be the number of sets of sizehat are charged
to some set 0OPT.

Below are the details of the proof. Our proof considers the following two cases.

Case |.a1 > 0.

In this caseOPT cannot contain a set with two elementsin otherwise, we can use a
2-setto cover the two elementsinand drop a singleton thereby covering an extra element
using the same number of sets. In each compoHente will charge an edgeto a vertex
v using the charging scheme described below. gbe the subgraph off that consists
of all the vertices offf and all edges oH that do not cover any element B. Consider
the following two cases.

Case I(a). All elements covered by the verticestbfare in C.

By Lemma 3.5,H has at most one cycle. ThuH is a tree or contains just one cycle.
Hence, inH; the number of vertices is at least equal to the number of edges. This means
that each edge ifl; can be charged to a vertex . The edges off that are not charged
to any vertex cover an element

Case I(b). H consists of vertices that cover element®in

By Lemma 3.3,H has exactly one such vertex, sayBy Lemma 3.4 H can not have
any cycles. In this casé{, is a tree. We can charge all the edgegiinto all the vertices
in Hg, exceptw. Thus all the edges i# that do not cover any element i are charged
to some vertex irH. By Lemma 3.6, the number of edges incident on every verte in
exceptw must be equal to the size of the vertex. This means thahust have at least
one Pc . We charge one sucPcp to w. As in the previous case, the edgestbthat are
not charged to any vertex must cover an elemer.iBelow we show how to account for
these edges.

Note thata{ is the number of singleton sets 8fthat cover an element iB. All other
1-sets ofS cover elements irC and hence are charged to some seO8fT. We have
ai + a5 = o.. Recall thatOPT cannot have a set with two elementsin Also, since
a1 > 0, § and OPT cover exactly the same number of elements. Thus the number of
uncharged vertices together with the singletor@RT must be at least equal to the number
of elements inB covered by the edges that are not charged to any vertex. Thus we have

aj +ay < by,
aj +ay +aj+a;<bi1+oc,
ai+az < b1+ bs+ ba. 1)
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Case Il.a1=0.
We analyze this case by again considering two cases.
Case ll(a). H contains a3-setw that does not share elements with &get inS.

In this case there can be at most one seOIRT that covers two elements iD.
Otherwise, a1, 0) improvement (insertingv) is possible as follows. By Lemma 3.2,
cannot have two elements . If w is a T¢p then we can swap with the two edges
incident on it and use a 2-set to cover two element® itf all elements ofw are inC then
we can includew in our cover along with two 2-sets to cover the four element® iand
delete the three edges incidentonin both the cases we use the same number of sets to
cover one extra element. For the remainder of the argument we will assume that there is
at most one set covering two elementdinWe denote this set iy We analyze this sub-
case by using the same charging scheme as in Case I. As in Case |(a)Hvduersists of
vertices that only cover elementsdh we can show that the edges that are not charged to
any vertex contain an elementi Now consider the case whéhhas a vertex, say, that
covers an elementip. In this case, one vertex & may not be charged by any edge. Let
this vertex bel. The vertexd may cover two elements i and by our charging rule it will
not be charged. Recall thaf denotes the number of edges of size two that are not charged
to any vertex. Note that each edge that is natrgled to any vertex covers an elemenBin
First, we will bounda for the case when does not exist. In this case our solution may
coverk + 1 elements. Hencey < o, + b1 + 1. If 1 exists thenS covers the same number
of elements a®©PT. If not, then a(1, 0) improvement (insertingv) is possible. This is
because ifv is aT¢p then we can swap for the two edges incident on it anduf is not
a Tcp then we can include» andr and delete the three edges incidentwonn both the
cases we use one set less to cover one less element. Also, natesthat charged by any
edge and belongs to the s@},. Hence, we have; < (o, + 1) + b1 =0, + b1 + 1. Thus,
whethert exists or not the bound arj, is the same.

a5 <o, +b1+1,

ay +a5 <o, +b1+1+o,
az <b1+bx+ b3+ 1,
air+ax <bi1+by+b3+ 1

Case |1(b). H does not contaimw.

In this case, ifH contains a vertex of size three then it shares an element with a 3-set
of S. Hence, at most two elements of any vertex can be covered by edgedHence H
is either a cycle or a path. IH, if the number of edges is less than or equal to the number
of vertices then each edge is charged to some vertex. Now consider the case when the
number of edges iff is greater than the number of verticesAn In this caseH has two
elements inB and none inD. Since the number of edges is one more than the number of
vertices, exactly one edge H is not charged to any vertex ifi. Observe that the number



R. Gandhi et al. / Journal of Algorithms 53 (2004) 55-84 73

1-cycle (0,1)

) —— Y

TeS R

Fig. 7. Examples for Lemma 3.8. In the above instan@e4) semi-local improvement yields a cover whose size
is same as before but has one less singleton.

of elements covered by the edges is two more than the number of elements covered by
vertices inOPT. Thus even ifO, contains only 2-sets with both elementsiin we have

oy = ay. Taking into account singletons @PT and thatS may coverk + 1 elements we

get

ay <bi+o,+1,
as5+ay <bi+oc+o,+1,
a <by+bx+b3+ 1 O

Lemma 3.8. If H contains al-cycle thenH does not have a-set or a3-set of OPT, say
x, such thate Ny # @, wherey is a 3-set ofS.

Proof. Assume otherwise. Let be the vertex in the 1-cyclé,Let P be the path between
x andu. We will show that a semi-local0, 1) improvement is possible by discarding
The resulting solution will b&S U {x", u’} U 1,) \ (E, Ul). In the new solutionr’ contains
an elementinr Ny and an elementinN F,, andu’ contains an element é&ind an element
of u N F,,. The size of the new cover will bg@S| + 2+ |E,| — 1) — (|[E,| + 1) =|S|. The
new solution covers all the elements covereddy [. Since we retain every other set of
S, the new solution covers at least as many elemengswkile using one less singleton.
Figure 7 illustrates this case.d

Lemma 3.9. The semi-local2, 1)-optimization technique produces a solution in which
a1 < by

Proof. If a1 = 0 the condition holds trivially. Hence assumge> 0. We haver; = aj +-aj.
From inequality(1) we haveaj + a5 < b1. Thus, if we prove:{ < a5 then we are done.
We will prove this by showing that if7 has a 1-set then there is some edgéfirthat

is not charged to any vertex. ConsideHathat has a 1-set of. This 1-set corresponds
to a 1-cycle inH. By Lemma 3.5,H does not have a cycle other than the 1-cycle. By
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Lemma 3.4 H does not have & p or Pcp, i.e., all elements covered by the verticegbf
are inC. By Lemma 3.8, there can not be a 3-setpf S such thate N y £ ¢, wherex is

a set ofOPTin H. Hence,H must have &¢p, saye. Consider the subgraph &f, H; as
constructed in Lemma 3.H, contains all the vertices dff and contains edges that have
both its endpoints irC. Thus,e is not part ofH,. SinceH has a 1-cycleH, has an equal
number of vertices and edges. Each verteXjnand hencdd get charged by some edge
in Hy;. Hence, edge does not get charged to any vertex. This completes the praof.

Theorem 3.10. The semi-loca(2, 1)-optimization algorithm for th&-set partial covering
problem produces a solution that is with%OPT+ 1

Proof. Adding up the inequalities in Lemmas 3.1, 3.7 and 3.9, we get

3(a1+ a2+ a3) <4b1+bo+b3) —b1— b+ 2,
4 2
c(S)=a14+azx+az< C_SOPT+ 3 O

4. Probabilistic approachesfor partial vertex cover

We now present a randomized rounding approach to the natural LP relaxation of
k-partial vertex cover. Analyzed in three different ways, this leads to three new approxi-
mation results mentioned in Section 1: relating to vertex cover (full coverage) for expander
graphs of constant average degre@artial vertex cover on bounded-degree graphs, and
multi-criteriak-partial vertex cover problems. We first describe the basic method and prove
some probabilistic properties thereof, and then consider the three applications.

The k-partial vertex cover problem on a gragh= (V, E) can be formulated as an
integer program as follows. We assign binary variabledor eachv; € V andz; ; for
each(i, j) € E. In this formulation,x; = 1 iff vertex v; belongs to the cover, ang; =1
iff edge (i, j) is covered. The corresponding LP red¢ion can be obtained by letting each
xj andz; ; liein [0, 1].

mian:Xj,
j=1

subjecttay; +x; >z;;, (,j)€kE, (2)
Z zi,j =2k, 3)
(i.j)€E

xj,zi,j €10,1], Vi, j.

Our basic approximation recipe will be as follows. The LP relaxation is solved
optimally. Let {x}}, {z;’jj} denote an optimal LP solution, and let= 2(1 — ¢), where
¢ €0, 1] is a parameter that will be chosen based on the applicatior§il-et{v; | x;.‘ >
1/A}, andS; = V — S1. Include all the vertices it$1 as part of our cover, and mark the
edges incident on vertices §y as covered. Now independently for eagle S, round
xj to 1 with a probability ofo;f, and to 0 with a probability of - Ax;’f. Let W be the
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random variable denoting the number of covered edges at this pol#itdfk, we choose
anyk — W uncovered edges and cover them by arbitrarily choosing one end-point for each
of them.

We now introduce some notation to analyze the above process. Throughout, we let Pr
and E[-] denote probability and expectation, respectively. Letrepresent the optimal
objective function value of the LP, and defifg € S1 by So = {v;: x’; =1}. Lety} and
yp be the contribution to* of the vertices inSo andV — Sop respectively. Denote by, ;
the event that edgeg, j) is uncovered. Le€1 be the cost of the solution produced by our
randomized schemntgeforethe step of covering — W edges if necessary, and & be the
costincurred in covering thede— W edges, if any. The total coétis of courseCy + C>;
thus,E[C] = E[C1] 4 E[C2]. Now, it is easy to check th&[C1] < y} + Ay}, and that
E[C2] < E[maxk — W, 0}]. So we have

E[C] <y} + Ayp + E[maxk — W, 0}]. (4)

The following lemma on the statistics & will be useful. As usual, le€ denote the
complement of an eveigt.

Lemma4.1.

(i) E[W]> k(1 —¢&2).
(i) Suppose the grap&f has maximum degree Then, the varianc®ar[W] of W is at
most(2d — 1) - E[W].

Proof. (i) Consider any edgé, j). Now if x* > 1/ orx;.k > 1/x, PU; ;1= 0; otherwise,

PiU;j1=A—-xx/)(1—- Ax;.*). Consider the latter case. Sint;é—l—x;‘ > z;f j»Wecan check

that for any giverzj‘_j €[0,1], 1—Ax)(1— ij) is maximized when = x;‘ = zj‘_j/z.

Hence, ' ' '
PV < (1= 357,/2° = (1= A= o)) <127, (1 ¢2)

Thus, SinceE[W] =Y jck PrU; ;1, we get

EIW1> Y 2 (1—¢?) >k(1-¢?).
@i,j)eE

(i) We haveW =3, i)k U, ;. Itis also an easy calculation to see that if a random
variable W’ is the sum ofpairwise independentandom variables each of which lies in
[0, 1], then VafW’'] < E[W’]. However, the term@/; ; that constituteW do have some
dependent pairs: if edges, j) and (i’, j) share an endpoint, thetf; ; and (ﬁ are
dependent (positively correlated). Defipeto be the sum, over all unordered pairs of
distinct edgesi, j) and (i’, j’) that share an end-point, of % ; A Uy j/]. Using the
above observations and the definition of variance, a moment’s reflection shows {i¥&{ Var
is upper-bounded bi[W] + 2y. Now, for any eventst and B,

PA A B] < min{P{A], PB]} < (PA] + PrB])/2.
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Thus, the term “RU; j A Uy 17 in y is at most(P{U; ;1 + PU; ;1)/2. Finally, since
each edge has at mogi2— 1) other edges that share an end-point with it, we get that

y< Y (2d—1)/2)-P{U;;]=(d— DE[W].

(i,j)eE

So, VafW] < E[W]+2y <(2d —1)-E[W]. O
4.1. Vertex cover on expanders

Suppose we have a vertex cover problem; kepartial vertex cover wittk = m. The
LP relaxation here has “1” in place of;’;” in (2), and does not require the variables
and the constraint (3). We focus here on the case of expander graphs of constant average
degree. That is, for some constant@ndd, we are studying graphs where: (i) the number
of edgesn is at mostud, and (ii) for any setX of vertices with|X| < n/2, at least|X|
vertices outsid& have a neighbor itX .

Sincek = m, it is well-known that we can efficiently compute an optimal solutidn
to the LP with all entries lying in{0, 1/2,1}. Let H = {v; | x}* =1/2} and F = {v; |
x;‘ = 1}. Also, sinceW < k = m always holdsE[max(k — W, 0}] = E[k — W] < m&2, by
Lemma 4.1()). Thus, (4) shows thE{C] is at mosty}. + 2(1 — &)y}, + me?; following
the notation underlying (4)y}, is the total contribution to* from the vertices inH .
(The overall approach of: (i) conducting a randomized rounding and then doing a greedy
fixing of violated constraints, and (ii) using an equality such as &jimaxk — W, 0}] =
E[k — W]" here, is suggested in [34]. We next show how the expansion property is
useful in boundingz[C] well. However, in the context gbartial covering, an equality
such as E[max{k — W, 0}] = E[k — W]" does not hold; so, as discussed in Sections 4.2
and 4.3, new analysis approaches are employed there.) Chaosing, /m to minimize
Vi +2(1— &)y} +me?, we get

EICI<y;(2— yji/m) + v (5)
Case |. |H| <n/2.

Note that edges with exactly one end-pointinmust have their other end-point in;
otherwise the LP constraint on such edges will be violated. Sds an expander,
|F| > c - |H|. Also, y}. = |F| and y}, = |H|/2. So, sincey* =y}, + y}, we have
v =y*/(1+ a) for somea > 2c. We can now use (5) to get

EICI<2y; +yp=(2—a/A+a)y"

i.e., at most{2 — 2c¢/(1+ 2¢))y* sincea > 2c.
Case II. |H| > n/2.

So, we have};, > n/4. Bound (5) shows th&[C] < (2 — y};/m)y*, we haven < nd
by assumption. SE&[C] < (2— 1/(4d))y* in this case.
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Thus we see thaE[C] < [2— min{2¢/(1+ 2¢), 1/(4d)}] - y*. In other words, for the
family of expanders of constant average degree, we can get a constant-factor approximation
that is strictly better than 2.

4.2. Partial vertex cover: bounded-degree graphs

We now show that for any constadt k-partial vertex cover on graphs of maximum
degree at mosti can be approximated to within(2 — £2(1/d)), for any value of
the parametek. We also demonstrate that the integrality gap in this case is at most
2(1 — £2(1/d)). We start with a couple of tail bounds that will be of use now, as well
as in Section 4.3. First, supposeis a sum of independent random variabléseach
of which lies in[0, 1]; let E[X] = . Then for anys < [0, 1], the Chernoff bound shows
that PfX > n(1+68)] is at moste—"9°/3, We will also need tail bounds for certain non-
independent situations. Suppakeis a random variable with meagn and variancer?;
suppose: > 0. Then, the well-known Chebyshev’s inequality states thE&P+ w| > a]
is at mosto2/a2. We will need stronger tail bounds than this, but only s one-sided
deviations (say, below its mean). We will use the Chebyshev—Cantelli inequality (see, e.qg.,
[1]), which shows that RK — 1 < —a] < 62/(c% 4+ a?).

We now analyze the performance of our basic algorithm (of randomized rounding of
the LP solution followed by a simple covering of a sufficient number of edges), for the
k-partial vertex cover problem on graphs with maximum degree bounded by some given
constantd. The notation remains the same. The main problem in adopting the method
of Section 4.1 here is as follows. Sinéeequaledm there, we could use the equality
E[maxk — W, 0}] = E[k — W], thus substantially simplifying the analysis. Here, however,
such an equality is not true; furthermoEmax X, Y}] > maxE[X], E[Y]} for any pair
of random variables(, Y. (In fact, the two sides of this inequality may differ a lot. For
instance, suppos# is the sum ofn independent random variables, each of which is
uniformly distributed on{—1, 1}; let Y be the constant 0. Then the r.h.s. is zero, while
the L.h.s. is®(y/n).) Instead, we take recourse to the Chebyshev—Cantelli inequality, and
use Lemma 4.1(ii).

We now claim that

PW < (k(1- &%) — 2vkd) ] < 1/3. (6)
This is trivially true if k < 4d, since PfW > 0] = 1. So suppose > 4d. Lemma 4.1 and
the Chebyshev—Cantelli inequality show that= E[W] > k(1 — ¢2), and that AW <
w—2dp] < 1/3. Subject tqu > k(1 —£2) > 4d(1— £2), u — 2/du is minimized when
n =k(1— ). Thus we have (6).

Next, for a suitably large constang, we can assume that> cod®. (Any optimal
solution has size at mogt since in an optimal solution, every vertex should cover at least
one new edge. Sokfis bounded by a constant—suchrgg®>—then we can find an optimal
solution in polynomial time by exhaustive search.) Also, by adding all the constraints of
the LP and simplifying, we get that* > k/d. Let§ = 1/(3d). Assuming

£ <0.7, say, (7

a Chernoff bound shows thahimediately after the randdred rounding, the probability
of having more than 2*(1 — ¢)(1 + §) vertices in our initial cover is at most/%
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(if the constantcg is chosen large enough). Recall (o, with probability at least
1-(1/3+41/5) =7/15, the final cover we produce is of size at most

2y*(L—&)(L+8) + ke? + 2Vkd. (8)

We now choose = y*(1+ 8)/k. (We may assume that this choice satisfies (7) without
loss of generality. Indeed, if this choice efviolates (7), then we have* > 0.7k (1 +
1/(3d))~1 > 21k/40. However, since any partial cover problem can be trivially solved
usingk vertices, we can get a 4R1-approximation—i.e., a constant-factor approximation
strictly better than two—in this case.) Recalling thy&t> k/d > cod* with co sufficiently
large, let us see now that (8) is at most'2l — §2(1/d)). First, sinces = y*(1+ 8) /k, we
have

2y* (L= &)(1+8) +ke? = 2y* (1 — y*(1+6)%/(2k)) < 2y* (1 — (1+6)%/(2d))
< 2y*(1— 1/(2d)).
Next,
2v/kd =2,/k]d - d < 2,/5 - /v (Veod) = (2//e0) - ¥*/d.

So, if the constantg is chosen large enough, the size of the cover is at mg&t12—
£2(1/d)) with high probability.

4.3. Partial vertex cover: multiple criteria

We now briefly consider multi-criteri&-partial vertex cover problems on arbitrary
graphs. Here, we are given a graghand, as usual, have to cover at leagtdges. We
are also givert “weight functions”w;, and want a cover that is “good” w.r.t. all of these.
More precisely, suppose we are given vectors

w; = (w1, wi2,...,wi) €[0,1", i=12,...,¢,
and a fractional solution* to the k-partial vertex cover problem ot. Define y/ =
> jwijx; for 1<i < ¢ We aim for an integral solution such that foreach i,
yi = Zj w;,jz; is not “much above’y;. Multi-criteria optimization has recently received
much attention, since participating individuals/organizations may have differing objective

functions, and we may wish to (reasonably) simultaneously satisfy all of them if possible.
The result we show here is that if

Vi, y>c1log?(f+n), 9)

wherec is a sufficiently large constant, then we can efficiently find an integral solgtion

with y; <2(1+ 1/,/log(€ +n))y; for eachi.
We run our algorithm withe = 0. Lemma 4.1 and the Chebyshev—Cantelli inequality

show that
PI{W < (k-1 ] <2nm/(2nm +1)=1—-1/2nm + 1),

which, though large, is + £2(1/n°W). Also, for eachi, a Chernoff bound easily helps
show the following. Using the property (9): if the constams sufficiently large, then

Py; > 2(1+1/\/log(€ +n) )y} ] < (£C4nm +2)) ™.
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Therefore, the probability of existence of arfior which y; > 2(1 + 1/,/log(¢ + n) )y}
holds, is at most A(4nm + 2). Thus, with probability at least/12nm +1) — 1/(4nm +2) =
1/(4nm + 2) we will have our desired solution; this can be boosted to a high probability
by repeating this basic algorith®@(nm) times.

5. Geometric packing and covering

Problem. Given n points in a plane, find the smallest number of (identical) disks of
diameterD that would cover at leagt points.

A polynomial time approximation scheme exists for the case whem (full covering).

The algorithm uses a strategy, called sihéfting strategy The strategy is based on a divide
and conquer approach. The arégenclosing the set of given points is divided into strips of
width D. Let! be the shifting parameter. Groups/afonsecutive strips, resulting in strips
of width / D are considered. For any fixed subdivisiorvdhto strips of widthD, there are

[ different ways of partitioning into strips of width/ D. The! partitions are denoted by
S1,82,...,.8;.

The solution to cover all the points is obtained by finding the solution to cover the points
for each partitionS;, 1 < j <!, and then choosing a minimum cost solution. A solution
for each partition is obtained by finding a solution to cover the points in each strip (of width
[ D) of that partition and then taking the union of all such solutions. To obtain a solution
for each strip, the shifting strategy is re-applied to each strip. This results in the partition of
each strip into “squares” of side length. As will be shown later, there exists an optimal
covering for such squares.

We modify the use of the shifting strategy for the case whehn (partial covering).

The obstacle in directly using the shifting strategy for the partial covering case is that
we do not know the number of points that an optimal solution covers in each strip of a
partition. This is not a problem with the full covering case because we know that any
optimal solution would have to cover all the points within each strip of a partition. For
the partial covering, this problem is overcome by “guessing” the number of points covered
by an optimal solution in each strip. This is ddmefinding a solution for every possible
value for the number of points that can mvered in each strip and storing each solution.

A formal presentation is given below.

Let A be any algorithm that delivers a solution to cover the points in any strip of width
ID. Let A(S;) be the algorithm that applie$ to each strip of the partitio; and outputs
the union of all disks in a feasible solati. We will find such a solution for each of the
partitions and output the minimum.

Consider a partitior§; containingp strips of width/D. Letr; be the number of points
in strip j. Let n9PT be the number of points covered ®PT in strip j. Since we do
not knOWnIQPT, we will find feasible solutions to cover points for all possible values of
n9PT. Note that 0< n?PT <k, = min(k, n ;). We usedynamic programmingp solve our
problem. The recursive formulation is as follows:

C(x,y) =0m2"|k/ (Dlx +Ckx—-1y— i)),

gl\x
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whereC(x, y) denotes the number of disks needed to covpoints in strips 1..., x and
Dy is the number of disks needed to covguoints in stripx. ComputingC(p, k) gives us
the desired answer.

For each strips, for 0<i < kg, D; can be calculated by recursive application of the
algorithm to the stripr. We partition the strip into squares of side length We can find
optimal coverings of points in such a square by exhaustive search. With disks of
diameterD we can covetD x I D square compactly, thus we never need to consider more
disks for one square. Further, we can assume that any disk that covers at least two of the
given points has two of these points on its border. Since there are only two ways to draw a
circle of given diameter through two given points, we only have to consi@fé) [2ossible
disk positions where’ is the number of given points in the considered square. Thus, we
have to check for at mog? (n'2(~2?) arrangements of disks.

For any algorithmA, let Z4 be the value of the solution delivered by algoritdmThe
shift algorithmS 4 is defined for a local algorithm. Letrp denote the performance ratio
of an algorithma; that is,rp is defined as the supremum 8f /|OPT]| over all problem
instances.

Lemma 5.1. rs, < ra(1+ 1/1) where A is the local algorithm and is the shifting
parameter.

Proof. Consider a partitiors; with p strips of widthiD. Let Zj.‘ be the number of disks
chosen by Algorithm A in striy. We have that

ra>Z4/I0PTj],
wherej runs over all strips in partitio; and|OPT;,| is the number of disks in an optimal
cover ofn?FT points in strip;. It follows that
Z45) <ra Y |OPT;).
JESi

Let OPT be the set of disks in an optimal solution 28T, ..., OPTY the set of disks
in OPT covering points in two adjacehb stripsin 1 2, ..., shifts respectively. Thus we
have

> |OPT;| < |OPT] 4 |OPT®
JESi

I I
1 1
Sa— min ZAG) < = AS) T )
z% = min Z <l§ Z ger<§ » |0PTJ|)

""" i=1 i=1jes;

!
1 .
< 7rA(§ |OPT| + |0P1<’>|>.

i=1

bl

There can be no disk in the s&fPT that covers points in two adjacent strips in more
than one shift partition. Therefore, the s@®T™, ..., OPT? are disjoint and can add
up to at mosOPT. It follows that 3"/ (JOPT| + |OPT®|) < (/ + 1)|OPT|. Substituting
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this in the bound above forZS4 we get thatZ54 is at most(1/l)ra - (I + 1)|OPT| =
ra-(14+1/D|OPT|. O

Theorem 5.2. The above algorithm yields a PTAS with performance ratio at most
(1+1/1)2.

Proof. We use two nested applications of the shifting strategy to solve the problem. The
above lemma applied to the first application of the shifting strategy would relate the
performance ratio of the final solutiorg, , to that of the solution for each stripy .

rs, <ra(l+1/1) (10)

The lemma when applied to the second laggtion of shifting strategy relates, to the
performance ratio of the solution to each square,rsayThus,rq < ra(1+ 1/1). But
since we obtain an optimal solution for each squape,= 1. Bound (10) shows that
rs, <(A+1/D% 0O

6. k-partial vertex cover for planar graphs

Full vertex cover for planar graphs of bounded tree-width can be computed optimally in
linear time.This immediately leads to a PTAS for planar graphs by a combination of results
of Baker and Bodlaender [3,4]. Baker giveg@neral framework that constructs a PTAS
for any problem which can be solved optimally floouterplanar graphs—planar graphs
where all nodes have a path of lengthi to a node on the outermost face [3]. This method
is based on thehifting strategythat is similar to the method used for geometric covering
in the previous section. Bodlaender [4] proves that aoyterplanar graph has tree-width
at most 3 — 1. Vertex cover for graphs of bounded tree-width can be solved optimally in
polynomial time, thus implying such a solution for graphs that ematerplanar for a fixed
constant.

First we describe how to create a collection of decompositions of a planar Gragb a
set ofl-outerplanar graphs. Léi(v) = shortest path length fromto any node on the outer
face of G. Foreachvalue of =0, 1..., ({ — 1), we generate a decomposition as follows.
Let G; = (V;, E;) be theith [-outerplanar graph for a fixetl V; = {v |li + 6§ < d(v) <
i+ 1) +38andE; = {(u,v) |u € V; andv € V;}. There ard different ways of creating
these decompositions, one for edcihese correspond to thgartitionssSy, Sz, ..., S in
the geometric covering case. In the full camg case, the algorithm is to find a vertex
cover for each of thé decompositions and then to take the best solution. The vertex
cover for each decomposition is the union of the solutions to éamlterplanar graph
in the decomposition. As in the case of geometric covering the obstacle in directly using
the above algorithm for the partial covering case is that we do not know the number of
edges covered b®PT in each outerplanar graph. As in the previous section, we overcome
this obstacle by “guessing” the number of points covered by an optimal solution in each
[-outerplanar graph. The dynamic programming formulation in the previous section can be
used once the following correspondence betwbervarious entities is noted. The vertices
in our case correspond to the disks and the edges correspond to the points to be covered.
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An [-outerplanar graph corresponds to the strip of width As in the previous case, we
still have! such decompositions. In the geometravering problem the solution to each
strip is calculated by recursively applying tHefting strategy to each strip. In this case, an
optimal solution for the partial vertex cover fbouterplanar graphs is computed as shown
below.

We now give a linear-time algorithm for bounded tree-width graphs (if the graph has
tree-width/, then the time required for the algorithm to run will be exponentidl but
linear in the size of the graph). The following definition is standard (see, e.g., [4]).

Definition 6.1. Let G = (V, E) be a graph. Atree-decompositionf G is a pair({X; |
iel}, T=(,F)),where{X; |i € I}is afamily of subsets o¥ andT = (I, F) is a tree
with the following properties:

(1) Uyes Xi = V.
(2) Forevery edge = (v, w) € E, there is a subseX;,i € I, withv € X; andw € X;.
(3) Foralli, j,kel,if jlies onthe path fromtok in T, thenX; N X; € X;.

Thetree-widthof a tree-decompositio{ X; | i € I}, T) is max<;{|X;| — 1}. The tree-
width of a graph is the smallest valéesuch that the graph has a tree-decomposition with
tree-widthk.

Many problems are known to have linear time algorithms on graphs with constant tree-
width, and there are frameworks for automatically generating a linear time algorithm, given
a problem specification in a particular foatr{2,5]. The partial vertex cover problem can
be solved by successively using solutions to the problem of finding the maximum number
of edges that can be covered usimgertices. The value op can be selected by doing a
binary search on the set of vertices whicduees in half with every successive solution.
This problem can be expressed in the formalism of [5] as: BaVi C V A |V1| <
p A E1 =IncE(V1)], which states that we want to maximize the set of edges that can be
covered by any subséy of V such that the size df; is at mostp. Note that IncEV1) is
the set of edges incident to a vertexin

Theorem 6.2 follows from Lemma 5.1 and the fact that= 1.

Theorem 6.2. The above algorithm gives a PTAS with a performance ratid + 1/1).

7. Concluding remarks

We have presented improved approximation algorithms for a family of partial covering
problems. Since the publication of the preliminary version of this work [16], our results
of Section 4.2 have been built upon and improved. First, the work of [35] showed how
to obtain faster algorithms for the main result of Section 4.2, by applying a “level-sets”
distribution of [35] along with some ideas from Section 4.2. By building further upon
these ideas and by employing semidefinite programming, it has been shown in [22] that
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partial vertex cover in graphs with maximum degekecan be approximated to within
(2 — ©((loglogd)/logd)).
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