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Abstract

We study a generalization of covering problems calledpartial covering. Here we wish to cove
only a desired number of elements, rather than covering all elements as in standard c
problems. For example, ink-partial set cover, we wish to choose a minimum number of sets to c
at leastk elements. Fork-partial set cover, if each element occurs in at mostf sets, then we derive
primal-dualf -approximation algorithm (thus implying a 2-approximation fork-partial vertex cover)
in polynomial time. Without making any assumption about the number of sets an elemen
for instances where each set has cardinality at most three, we obtain an approximation of 4/3. We
also present better-than-2-approximation algorithms fork-partial vertex cover on bounded degr
graphs, and for vertex cover on expanders of boundedaveragedegree. We obtain a polynomial-tim
approximation scheme fork-partial vertex cover on planar graphs, and for coveringk points inRd

by disks.
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1. Introduction

Covering problems are widely studied in discrete optimization: basically, t
problems involve picking a least-cost collection of sets to cover elements. Classi
problems in this framework include the general set cover problem, of which a wide
studied special case is the vertex cover problem. (The vertex cover problem is a spec
case of set cover in which the edges correspond to elements and vertices corres
sets; in this set cover instance, each element is in exactly two sets.) Both these pr
are NP-hard and polynomial-time approximation algorithms for both are well studied
set cover see [12,28,30]. For vertex cover see [6,7,13,23,24,31].

In this paper we study a generalization of “covering” to “partial covering” [29,
Specifically, ink-partial set cover, we wish to find a minimum number (or, in the weigh
version, a minimum weight collection) of sets that cover at leastk elements. Whenk is the
total number of elements, we obtain the regular set cover problem; similarly fork-partial
vertex cover. (We sometimes refer tok-partial set cover as “partial set cover”, andk-partial
vertex cover as “partial vertex cover”; the case wherek equals the total number of elemen
is referred to as “full coverage”.) This generalization is motivated by the fact that re
data (in clustering for example) often has errors (also called outliers). Thus, discardi
(small) number of constraints posed by such errors/outliers is permissible.

Suppose we need to build facilities to provideservice within a fixed radius to a certain
fraction of the population. We can model this as a partial set cover problem. The
issue in partial covering is: whichk elements should we choose to cover? If such a ch
can be made judiciously, we can then invoke a set cover algorithm. Other facility loc
problems have recently been studied in this context by Charikar et al. [11].

We begin our discussion by focusing on vertex cover andk-partial vertex cover. A very
simple approximation algorithm for unweighted vertex cover (full coverage) is attrib
to Gavril and Yannakakis (see [14]): take a maximal matching and pick all the ma
vertices as part of the cover. The size of the matching (number of edges) is a lower
on the optimal vertex cover, and this yields a 2-approximation. This simple algo
fails for the partial covering problem, since the lower bound relies on the fact th
the edges have to be covered. The first approximation algorithm fork-partial vertex cove
was given by Bshouty and Burroughs [9]. Their 2-approximation algorithm is based
linear programming (LP) formulation: suitably modifying and rounding the LP’s opt
solution. A faster approximation algorithm achieving the same factor of 2 was give
Hochbaum [26] in which the key idea is to relax the constraint limiting the numbe
uncovered elements and searching for the dual penalty value. More recently, Bar-Yehud
[8] studied the same problem and gave a 2-approximation fork-partial vertex cover base
on the elegant “local ratio” method.

Our algorithm does not improve on the approximation factors of the prev
algorithms, but we derive a natural primal-dual algorithm. Burroughs [10] studied
primal-dual algorithm and showed that applying the primal-dual algorithm as it is,
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anO(n) approximation. In this work we show that the primal-dual algorithm along wi
thresholding approach gives us a 2-approximation for the partial vertex cover proble

1.1. Problem definitions and previous work

• k-partial set cover: Given a setT = {t1, t2, . . . , tn}, a collectionS of subsets ofT ,
S = {S1, S2, . . . , Sm}, a cost functionc :S → Q+, and an integerk, find a minimum
cost sub-collection ofS that covers at leastk elements ofT .
Previous results: For the full coverage version, a lnn+ 1 approximation was propose
by Johnson [28] and Lovász [30]. This analysis of the greedy algorithm ca
improved toH(∆) (see the proof in [14]) where∆ is the size of the largest set4

Chvátal [12] generalized this to the case when sets have costs. Slavík [33] sho
same bound for the partial cover problem. When∆ = 3, Duh and Fürer [15] gave
4/3-approximation for the full coverage version. They extended this result to
bound ofH(∆) − 1/2 for full coverage. When an element belongs to at mostf sets
Hochbaum [23] gives anf -approximation.

• k-partial vertex cover: Given a graphG = (V ,E), a cost functionc : V →Q+, and an
integerk, find a minimum cost subset ofV that covers at leastk edges ofG.
Previous results: For the partial coverage version several 2-approximation algori
are known (see [8,9,26]).

• Geometric covering problem: Givenn points in a plane, find a minimally sized set
disks of diameterD that covers at leastk points.
Previous results: The full coverage version is well-studied. This problem is motiva
by the location of emergency facilities as well as from image processing (see
for additional references). For the special case of geometric covering prob
Hochbaum and Maass [27] have developed a polynomial approximation schem

1.2. Methods and results

• k-partial set cover: For the special case when each element is in at mostf sets, we
combine a primal-dual algorithm [13,19] with a thresholding method to obtai
f -approximation whenf > 1.
Our general method is as follows: we first “guess” the cost of the maximum cost
the optimal solution. We then modify the original cost function by raising the cos
the sets having a higher cost than the guessed set, to infinity. This is to make su
these sets are never chosen in our solution. This leads to dual feasible solutions
instance with modified costs (which we use as a lower bound) that may beinfeasible
for the original problem. However, if we only raise the costs of sets that are guara
to not be in the optimal solution, we do not change the optimal IP solution. Henc
dual feasible solution for this modified instance is still a lower bound for the optim
IP.

4 H(k)
.= ∑k

i=1 1/i = ln k + Θ(1).
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For set cover where the sets have cardinality at most∆ there are results (starting fro
[17,20]) by Duh and Fürer [15] for set cover (full coverage) that improve theH(∆)

bound toH(∆) − 1/2. For example, for∆ = 3 they present a 4/3 (= H(3) − 1/2)

approximation using “semi-local” optimization rather than a 11/6-approximation
obtained by the simple greedy algorithm.
For the case∆ = 3, we can obtain a 4/3 bound for the partial coverage case. T
does suggest that perhaps theH(∆) − 1/2 bound can be obtained as well. This wou
improve Slavík’s result [33].

• k-partial vertex cover: By switching to a probabilistic approach for rounding t
LP relaxation of the problem, we obtain improved results fork-partial vertex cover
where we wish to choose a minimum number of vertices to cover at leak

edges. An outstanding open question for vertex cover (full coverage) is wheth
approximation ratio of 2 is best-possible; see, e.g., [18]. Thus, it has been an is
much interest to identify families of graphs for whichconstant-factor approximation
better than2 (which we denote by Property (P)) are possible. In the full cove
case, Property (P) is true for graphs of boundedmaximumdegree; see, e.g., [21]. Ho
can we extend such a result? Could Property (P) hold for graphs of constantaverage
degree? This is probably not the case, since this would imply that Property (P)
for all graphs. (Given a graphG with n vertices, suppose we add a star withΘ(n2)

vertices toG by connecting the center of the star by an edge to some vertex ofG. The
new graph has bounded average degree, and its vertex-cover number is one m
that of G.) However, we show that forexpandergraphs of bounded average degr
Property (P) is indeed true. We also show Property (P) fork-partial vertex cover in the
case of bounded maximum degree and arbitraryk; this is the first Property (P) result fo
k-partial vertex cover, to our knowledge. Our result on expanders uses an expe
analysis and the expansion property. Expectation analysis is insufficient for our
here onk-partial vertex cover, and we show that a random process behaves cl
its mean on bounded-degree graphs: the degree-boundedness helps us show th
sub-events related to the process are (pairwise) independent. We also presen
new results for multi-criteria versions ofk-partial vertex cover.

• Geometric covering: There is a polynomial approximation scheme based on dyn
programming for the full coverage version [27]. For the partial coverage version
we do not know whichk points to cover, we have to define a new dynamic progr
This makes the implementation of the approximation scheme due to Hochbau
Maass [27] more complex, although it is still a polynomial-time algorithm.

• k-partial vertex cover for planar graphs: We are able to use the dynamic programm
ideas developed for the geometric covering problem to design a polynomia
approximation scheme (PTAS) fork-partial vertex cover for planar graphs. This
based on Baker’s method for the full covering case [3].

2. k-partial set cover

Thek-partial set cover problem can be formulated as an integer program as follows. W
assign a binary variablexj ∈ {0,1} to eachSj ∈ S. In this formulation,xj = 1 iff set Sj
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belongs to the cover. A binary variableyi is assigned to each elementti ∈ T . yi = 1 iff ti
is not covered. Clearly, there could be at mostn − k such uncovered elements.

The corresponding LP relaxation, given below, is obtained by letting the domain ofxj

andyi be 0� xj , yi � 1. Notice that the upper bound onxj andyi is unnecessary and
thus dropped.

min
m∑

j=1

c(Sj ) · xj ,

subject toyi +
∑

j : ti∈Sj

xj � 1, i = 1,2, . . . , n,

n∑
i=1

yi � n − k,

xj � 0, j = 1,2, . . . ,m,

yi � 0, i = 1,2, . . . , n.

The dual LP contains a variableui (for each elementti ∈ T ) corresponding to each o
the firstn constraints in the above LP. The dual variablez corresponds to the(n + 1)th
constraint in the above LP formulation. The dual LP is as follows

max
n∑

i=1

ui − (n − k) · z,

subject to
∑

i:ti∈Sj

ui � c(Sj ), j = 1,2, . . . ,m,

ui � z, i = 1,2, . . . , n,

ui � 0, i = 1,2, . . . , n,

z � 0.

The algorithm SETCOVER in Fig. 1 does the following. The algorithm “guesses” t
set with the highest cost in the optimal solution by considering each set in turn to be t
highest cost set. For each set that is chosen, to be the highest cost set, saySj , Sj along
with all the elements it contains is removedfrom the instance and is included as part of
cover for this guess of the highest cost set. The cost of all sets having a higher co
c(Sj ) is raised to∞. Ij = (T j ,Sj , c′, kj ) is the modified instance. SETCOVER then calls
PRIMAL -DUAL on Ij which uses a primal dual approach [19] to return a set cover foIj .
In PRIMAL -DUAL , the dual variablesui are increased for allti ∈ T j until there exists a
setSa such that

∑
a: ti∈Sa

ui = c′(Sa). Sets are chosen this way until the cover is feasi
The algorithm then chooses the minimum cost solution among them solutions found. Fo
the purpose of clarity of exposition in the pseudo-code (Fig. 1), we assume that cost
sets inS are distinct.

Theorem 2.1. SETCOVER(T ,S, c, k) returns af -approximate solution, wheref > 1 is
the highest frequency of any element, i.e., an element appears in at mostf sets.
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PRIMAL -DUAL (T ′,S ′, c′, k′)
1 // Returns a subsetC of S ′ that is feasible,
2 // i.e.,C covers� k′ elements ofT ′
3 // z is maintained implicitly in the algorithm. At all timesz = maxi ui

4 C ← ∅
5 E ← T ′
6 Initialize allui to 0
7 while C is not feasible
8 // increase the dual variablesui for ti ∈ E.
9 // When selectingSa , sum

∑
a: ti∈Sa

ui

10 // is taken over all theti ∈ Sa before the start of the while loop.
11 do Increaseui uniformly for all ti ∈ E until ∃ a setSa s.t.

∑
a: ti∈Sa

ui = c′(Sa)

12 E ← E \ Sa

13 C ← C ∪ {Sa}
14 return C

SETCOVER(T ,S, c, k)

1 if (k � 0) return ∅
2 Sort the sets in increasing order of their cost
3 for j ← 1 to m

4 do c′(Sj ) ← ∞
5 for j ← 1 to m

6 // create a modified instanceIj = (T j ,Sj , c′, kj ).
7 // run PRIMAL -DUAL on this instance.
8 // SCj is the cover obtained in iterationj .
9 do c′(Sj ) ← c(Sj ) // Sj is the highest cost set inOPT

10 Sj ← S \ {Sj } // Sj is removed from the instance
11 T j ← T \ Sj // all elements ofSj are removed
12 kj ← k − |Sj |
13 cost(SCj ) = ∞
14 if (|S1 ∪ S2 ∪ · · · ∪ Sj | � k)

15 then SCj ← {Sj } ∪ PRIMAL -DUAL (T j ,Sj , c′, kj )

16 cost(SCj ) = ∑
Sx∈SCj

c(Sx)

17 SC= min{cost(SC1), cost(SC2), . . . , cost(SCm)}
18 return SC

Fig. 1. Algorithm fork-partial set cover.

Proof. Let OPT refer to an optimal solution. We will useOPT to mean either an optima
solution or the cost of an optimal solution. The meaning will be clear from the conte
which it is used. LetI be the given instance of the problem. LetIj refer to the modified
instance of the problem, i.e.,Ij = (T j ,Sj , c′, kj ). Let Sh be the set with the highes
cost in OPT. Let OPT(Ih) be the optimal integer solution for the instanceIh. OPT =
OPT(Ih)+c(Sh). LetDFS(Ih) refer to the dual feasible solution for the instanceIh. Again,
DFS(·) will be used to mean the dual feasible solution or the cost of the dual fea
solution.DFS(Ih) may not be a feasible solution5 to the instance(T h,Sh, c, kh) (note the
original cost function). However, sinceDFS(Ih) � OPT(Ih) andOPT= OPT(Ih)+c(Sh),

5 This is because we relax the constraints for the dual problem.
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we haveDFS(Ih) + c(Sh) � OPT. SCh is the set cover chosen by our algorithm during
iterationj = h. Let Sl be the last set chosen. LetASC= SCh \ {Sl} (ASCstands for almos
set cover). Note that sinceSh is the costliest set,c(Sl) � c(Sh). Let Tc represent the set o
points covered byASC. LetTu = T h \Tc represent the set of uncovered elements. Since
algorithm chooses a cover,SC, of the lowest cost, cost(SC) is upper bounded by cost(SCh).

cost(SC) � cost(SCh) =
∑

Sx∈SCh

c′(Sx) =
∑

Sx∈SCh

c(Sx)

=
∑

Sx∈ASC

c(Sx) + c(Sl) + c(Sh)

�
∑

Sx∈ASC

∑
i: ti∈Sx

ui + c(Sh) + c(Sh)

=
∑

i: ti∈Tc

ui.
∣∣{x | ti ∈ Sx ∧ Sx ∈ ASC

}∣∣ + 2 · c(Sh)

� f ·
∑

i: ti∈Tc

ui + 2 · c(Sh)

= f ·
(

n∑
i=1

ui −
∑

i: ti∈Tu

ui

)
+ 2 · c(Sh)

= f ·
(

n∑
i=1

ui − |Tu| · z
)

+ 2 · c(Sh)

� f ·
(

n∑
i=1

ui − (n − k) · z
)

+ 2 · c(Sh)

� f · (DFS(Ih) + c(Sh)
)
� f · OPT. �

Corollary 2.2. SETCOVER(E,V, c, k) gives a2-approximate solution fork-partial vertex
cover.

3. Set cover for small sets

Problem. Given a collectionC of small subsets of a base setU . Each small subset in th
collection has size at most∆, and their union isU . The objective is to find a minimum siz
sub-collection that covers at leastk elements.

Here we have the original partial set cover instance with the additional informatio
the sets are of “small” size, i.e.,∆ is small. We obtain an approximation factor of 4/3 for
the case when∆ = 3 using the idea of(s, t) semi-local optimization [15]. This techniqu
consists of inserting up tos 3-sets (sets of size 3) and deleting up tot 3-sets from the
current cover. Then the elements that are not covered by the 3-sets (already existin
plus the newly added) are covered optimally using 2-sets and 1-sets. This can be so
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polynomial time using maximum matching [17]. The vertices are the uncovered ele
of U and the edges are the admissible 2-sets. The 2-sets corresponding to the ma
matching edges and the 1-sets corresponding to the vertices not covered by the ma
matching form an optimum covering. We will order the quality of a solution by the num
of sets in the cover and among two covers of the same size we choose the one wit
1-sets and if the covers have the same size and neither cover has a 1-set we choos
that covers more elements. Without loss of generality, we assume that all subsets
set are available and hence all coverings are assumed to be disjoint.

The algorithm starts with any solution. One solution can be obtained as follows. C
a maximal collection of disjoint 3-sets. Cover the remaining elements (such that th
number of elements covered are at leastk) optimally using 2-sets and 1-sets. Perfo
semi-local(2,1) improvements until no improvement is possible.

The proof for the bound of 4/3 for full coverage does not extend to the partial cover
version. For the full coverage, to prove the lower bound on the optimal solution Du
Fürer [15] construct a graphG in which the vertices are the sets chosen byOPT and the
edges are 1-sets and 2-sets of the approximate solution. They prove thatG cannot have
more than one cycle and hence argue that the total number of 1-sets and 2-set
solution is a lower bound onOPT. This works well for the full coverage version but brea
down for the partial covering problem. For the partial covering case,G having at most one
cycle is a necessary but not a sufficient condition to prove the lower bound.

In the full coverage version of the problem, to bound the number of 1-sets in the so
they construct a bipartite graph with the twosets of vertices corresponding to the s
chosen by the approximate solution andOPT. If a set corresponding to the approxima
solution intersects a set corresponding toOPT in m elements then there arem edges
between their corresponding vertices in the graph. In each component of the graph th
show that the number of 1-sets of the solution in that component is at most the num
1-sets ofOPT in that component. This is clearly not the case in the partial covering
since our solution may have a 1-set that covers an element thatOPT may not cover. We
obtain a bound on the number of 1-sets as a side effect of the proof for the lower bou
OPT.

3.1. Analysis

Notation.

S: our solution.
OPT: optimal solution.

ai : number of sets of sizei (i = 1,2,3) in S.
bi : number of sets of sizei (i = 1,2,3) in OPT.
B: set of elements covered by 2-sets or 3-sets ofS and neither covered by 2-sets n

3-sets ofOPT, i.e.,B represents “bad” elements.
C: set of elements covered by 2-sets or 3-sets ofS and OPT, i.e., C represents th

elements common toS andOPT.
D: set of elements covered by 2-sets or 3-sets ofOPT and neither covered by 2-sets n

3-sets ofS, i.e.,D represents desirable elements.
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Fig. 2. (a) Example ofH . (b) Truncating a 3-set. (c)H cannot have aTCD covering two elements inD
(Lemma 3.2).

PCB (TCB): a 2-set (3-set) ofS that covers elements inB andC. P andT stand for pair
and triple respectively.

PCD (TCD): a 2-set (3-set) ofOPT that covers elements inC andD.

If S consists of only 3-sets then our solution is optimal, hence we will not conside
case. In order to upper bound the number of 1-sets and 2-sets inS we will construct a graph
G in which the vertices correspond to 2-sets and 3-sets ofOPTand the edges correspond
1-sets and 2-sets ofS. The terms vertices and sets ofOPT would be used interchangeab
This will be true even in expressions where symbols for vertices (lower case) may b
instead of symbols for sets. The reference will be clear from the context in which
used. Similarly, the terms edges and sets ofS will be used interchangeably. LetH be a
component ofG. Note that inH , a 1-set ofS would be represented as a 1-cycle (self loo
Also, if an edge covers two elements of a vertex of size 3 inOPT, it is represented as
self-loop on the vertex ofOPT. Figure 2(a) is an example ofH . In order to adhere to th
definition of graph, if an edge covers any element inB, the vertex on that end of the edge
a dummy vertex. Whenever we refer to the vertices of a graph, we do not include d
vertices.

Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, and 3.8 characterize the structure of any compoH

in G. In each of these lemmas, we try to prove thatH has a certain structure. The proof
each of the above lemmas is based on the following approach. We assume for contradict
that H does not have the structure in question. In that case we show that a sem
improvement is possible, a contradiction. We use figures to illustrate the proof of
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lemmas. In each of the figures, we will show the result when semi-local improvement
applied toH . The scenario before the improvement is shown on the left of each figur
on the right we show the improved partial cover. The improved partial cover consi
some sets that were part ofOPT and some sets that were part ofS before the improvemen
In the improved solution the sets ofOPT that we include are marked by solid boundar
and the sets ofS that we include are represented by solid edges.

We will now introduce some notation that will be used heavily in the proofs of
lemmas. Foranyvertexz in G, let zt denote truncatedz. We definezt as follows. Ifz is
a 2-set thezt = z, otherwisezt covers exactly two of the three elements ofz. Figure 2(b)
shows a 3-set that is truncated. LetP be a path inH between verticesu andw. Let Ip and
Ep denote the set ofinternalvertices and set of edges inP respectively. Thus,Ip contains
all vertices ofP other thanu andw. Hence,|Ip| = |Ep| − 1. LetFp denote the elemen
covered by edges inEp . Also, every 3-set,t , in Ip is truncated to contain the two elemen
in t ∩ Fp . ThusIp consists of only 2-sets. Ifu or w is aTCD , sayu, thenut consists of
an element inD and the element inu ∩ Ep . For any cycleC in H , let Vc andEc denote
the vertices and edges respectively ofC. For any vertexw ∈ C, let Icw = Vc \ {w}, where
again the 3-sets are truncated to contain itselements that are covered by the cycle. Th
Icw consists of only 2-sets. Note that∀w ∈ Vc, |Icw| = |Ec| − 1.

Lemma 3.1. The semi-local(2,1)-optimization algorithm produces a solution in whi
a1 + 2a2 + 3a3 � b1 + 2b2 + 3b3 + 1.

Proof. Note thatk � b1 + 2b2 + 3b3. If a1 > 0 thenS covers exactlyk elements. Ifa1 = 0
then it may cover an extra element and hence the 1 on the right hand side of the
inequality. Recall that ifa1 = 0, thena2 > 0 since we cannot have only 3-sets in o
solution. �

Recall thatS and OPT represent our solution and an optimal solution respectively
W.l.o.g. we can modifyS as follows. When we compute an optimal solution correspon
to a certain choice of 3-sets, we pick a solution that maximizes the number of
belonging toOPT. This does not affect the size ofS or the number of elements covere
The following lemmas apply to the graphH corresponding to the modifiedS.

Lemma 3.2. If H has aTCD that covers two elements inD then the third element must b
shared with a3-set ofS. If H has a triple with three elements inD then our solution is
optimal.

Proof. Consider the case whenH has a triplew that covers exactly two elements inD
and the third element is shared with a 1-set or a 2-set ofS. We will show that a(1,0)

optimization (insertingw) gives an improved solution, a contradiction. The new co
would beS ∪ {w} \ {ew}, whereew is the edge incident onw in H . The new solution
covers more elements and uses the same number of sets as before. Figure 2(c) il
this case. Now consider the case whenw is a triple that covers three elements inD. In this
case, our solution must contain all triples, i.e., our solution must be optimal. If not,
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we can cover at least one extra element using the same number of sets by swappingw with
some 2-set or 1-set inS. This is equivalent to a(1,0) semi-local improvement. �
Lemma 3.3. H has at most one set of OPT that covers elements inC andD.

Proof. Assume otherwise. Consider a pathP in H between two verticesw1 andw2 that
cover elements inC andD. By Lemma 3.2,w1 andw2 each cover exactly one eleme
in D. Let ei /∈ Ep represent an edge inH that is incident onwi . This happens only ifwi

is aTCD. We will consider the following three cases based on the sets representedw1
andw2.

Case I. w1 = TCD andw2 = TCD.

We will contradict our assumption by showing that we can obtain a better solutio
performing a(2,0) semi-local optimization (insertingw1 andw2). Let the new cover be
(S ∪ Ip ∪ {w1,w2}) \ (Ep ∪ {e1, e2}). The size of the new cover is(|S| + |Ep| − 1+ 2) −
(|Ep| + 2) = |S| − 1. The new solution covers all the elements inFp . Moreover, the new
solution covers 2 extra elements due tow1 andw2 and loses 2 elements due toe1 ande2.
All other edges ofS are included in the new solution. Thus we use one less set to cov
same number of elements. Figure 3(a) illustrates this case.

Case II. w1 = TCD andw2 = PCD .

We will show how to obtain a better solution by performing a(1,0) semi-local
optimization (insertingw1), a contradiction. Let the new cover be(S ∪ Ip ∪ {w1,w2}) \
(Ep ∪{e1}). The size of the new cover is(|S|+ |Ep|−1+2)− (|Ep|+1) = |S|. We cover
an extra element since we cover 2 extra elements due tow1 andw2 and lose 1 element
due toe1. Thus we have an improved solution that uses the same number of sets to
more elements. This case is illustrated in Fig. 3(b).

Case III. w1 = PCD andw2 = PCD .

This cannot happen asS maximizes the number of 2-sets belonging toOPT. Figure 3(c)
illustrates this case. This is an example where we use the assumption that all subsets
set are available. �
Lemma 3.4. If H has aTCD or PCD thenH is acyclic.

Proof. Assume otherwise. Letw denote the set ofOPT that covers elements inC andD.
Let u be the vertex of the cycle,L, that is closest tow. Consider the pathP between
w andu. Note that by Lemma 3.3,u cannot be aTCD or a PCD . We will consider the
following cases.

Case I. w = TCD or PCD andu is a 3-set.
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Fig. 3. Examples for Lemma 3.3. In each of the following cases an improved partial cover (represented by
on the right) contains the sets ofOPT marked by solid boundaries and the sets ofS corresponding to the soli
edges. (a) TwoTCD sets inH lead to a(2,0) semi-local improvement. (b) ATCD and PCD in H leads to
a (1,0) semi-local improvement. (c) TwoPCD sets inOPT is not possible as, w.l.o.g., our algorithm finds
solution maximizing the number of 2-sets belonging toOPT.

A (1,0) semi-local optimization (insertingu) will give us an improved solution. Th
new cover is(S ∪ Ip ∪ {wt ,u} ∪ Ilu) \ (Ep ∪El), where recall thatEl represents the edge
of the cycleL. Note that ifw = TCD then it is truncated tocover its element inD and the
element inw∩Fp . The size of the cover is(|S|+|Ep|−1+2+|El |−1)−(|Ep|+|El |) =
|S|. The new solution covers all elements inFp and it does not delete edges that are
in Ep. Moreover, by includingwt in the cover, the new solution covers an extra elem
Thus the new solution uses the same number of sets to cover an extra element and
is an improvement, a contradiction. Figures 4(a) and 4(b) illustrate this case.
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Fig. 4. Examples for Lemma 3.4. In each of the following cases an improved partial cover (represented by
on the right) contains the sets ofOPT marked by solid boundaries and the sets ofS corresponding to the soli
edges. (a),(b) A(1,0) optimization (insertingu) gives us an improved solution. (c),(d) Our algorithm finds
optimal 2-cover. The figure on the left shows a sub-optimal 2-cover.

Case II. w = TCD or PCD , u is a 2-set.

Sinceu is a 2-set, it must be part of a 1-cycle. We will prove that this can not ha
by showing that a better 2-cover is possible. Consider the 2-cover(S ∪ Ip ∪ {wt,u}) \
(Ep ∪ El). The size of the cover is(|S| + |Ep| + 1) − (|Ep| + 1) = |S|. Note that we
manage to cover all elements inFp and we do not delete any edge that is not inEp .
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Moreover, the new solution covers an extra element by includingwt in our cover. Thus
we get an improved 2-cover that uses the same number of sets to cover an extra ele
contradiction. Figures 4(c) and 4(d) illustrate this case.

Case III. w = u.

We will show that a(1,0) semi-local optimization (insertingw) gives an improved
solution, a contradiction. The new cover will be(S ∪{w} ∪ Ilw) \ (El). The size of the new
cover is(|S| + 1+ |El| − 1) − |El| = |S|. In addition to covering all the elements cover
by the cycle, the new solution covers an extra element due tow. Hence the new solutio
uses the same number of sets to cover more elements.�
Lemma 3.5. H does not have more than one cycle.

Proof. By Lemma 3.4, the claim is true whenH has aTCD or aPCD, sinceH is acyclic.
For the rest of the proof we will assume thatH does not contain aTCD or aPCD . Assume
for contradiction thatH has two cyclesC1 andC2. We will consider the following cases

Case I. C1 andC2 are disjoint.

Let u ∈ C1 and w ∈ C2 be the closest pair of vertices on the two cycles and leP

be the path betweenu and w. If both C1 and C2 are 1-cycles andu and w are 2-sets
then we can show that there exists a better 2-cover that uses fewer sets. Figu
illustrates this scenario. If bothC1 andC2 are 1-cycles andu or w (or both) is a 3-se
then by truncating the 3-sets corresponding tou and w and removing the edges
Ep, we can get an improved solution that uses fewer sets. IfC1 (C2) is a 1-cycle and
C2 (C1) is not thenw(u) is a 3-set. In this case a(1,0) improvement (insertingw(u))
is possible. Figure 5(b) illustrates this scenario. If neitherC1 nor C2 is a 1-cycle thenu
andw both are 3-sets. A(2,0) improvement (insertingu andw) is possible. Figure 5(c
shows an example of this scenario. In eachof the above cases the new solution wo
be (S ∪ {u,w} ∪ Ic1u ∪ Ic2w ∪ Ip) \ (Ec1 ∪ Ec2 ∪ Ep). The size of the new cover
(|S| + 2 + |Ec1| − 1 + |Ec2| − 1 + |Ep| − 1) − (|Ec1| + |Ec2| + |Ep|) = |S| − 1. Note
that the only edges deleted fromS are the edges inC1, C2 andP . The new solution cover
all the elements covered by these deleted edges. All other edges inS are part of the new
cover. Thus we use one set less to cover the same number of elements as S.

Case II. C1 andC2 are not disjoint.

Let u ∈ C1 and w ∈ C2 be some vertices shared byC1 and C2. If both C1 and C2
are 1-cycles thenu = w is either a 2-set or a 3-set. This is a trivial case in wh
(S ∪ {ut }) \ (Ec1 ∪ Ec2) is a better cover. If eitherC1 or C2 is a 1-cycle thenu = w is
a 3-set. In this case a(1,0) improvement (insertingu) is possible. If neitherC1 nor C2
is a 1-cycle then letu andw both be different 3-sets. A(2,0) improvement (insertingu
andw) is possible. This is illustrated in Fig. 5(d). The new solution in each of the a
scenarios is calculated as follows. LetV12 andE12 be the vertices and the edges that
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Fig. 5. Examples for Lemma 3.5. (a),(b),(c) Semi-local improvement in the case whenH has two disjoint cycles
(d) A (2,0) improvement leads to a better solution when neitherC1 andC2 are not disjoint and neither of them
are 1-cycles.

shared byC1 andC2. Let V1−2 andE1−2 be the vertices and edges that are inC1 and not
in C2. Let V2−1 andE2−1 be the vertices and edges that are inC2 and not inC1. Note
that |V12| = |E12| + 1, |V1−2| = |E1−2| − 1 and|V2−1| = |E2−1| − 1. The new solution
would be(S ∪ V1−2 ∪ V2−1 ∪ V12) \ (E1−2 ∪ E2−1 ∪ E12). The size of the new cover
(|S| + |E1−2| − 1+ |E2−1| − 1+ |E12| + 1) − (|E1−2| + |E2−1| + |E12|) = |S| − 1. Again
following the same argument as in Case I, the new solution covers the same num
elements asS, but using one set less.�
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Fig. 6. Examples for Lemma 3.6. In the above instances(0,1) semi-local improvement yields an improve
solution.

Lemma 3.6. If a1 > 0 and ifH contains aTCD or PCD thenH does not have a2-set or a
3-set of OPT that shares elements with a3-set ofS, i.e.,H does not have a2-set or a3-set
of OPT sayx, such thatx ∩ y 
= ∅, wherey is a 3-set ofS.

Proof. Let r be a 1-set ofS. Let u denote aTCD or PCD in H . Consider the case whe
u andx denote the same set. In that case a(0,1) semi-local improvement (removing th
3-sety) will cover the same number of elements using fewer 1-sets. Now we consid
case whenu andx denote different sets. Consider a pathP betweenu andx in H . In this
case a(0,1) semi-local improvement (removing the 3-sety) is possible, a contradiction
The new solution would be(S ∪ {xt , yt , ut } ∪ Ip) \ (y ∪ Ep ∪ r). The size of the cove
is (|S| + 3 + |Ep| − 1) − (1 + |Ep| + 1) = |S|. The new solution covers all the elemen
covered byy ∪Ep . The new solution covers an element inD by insertingut . This accounts
for the element covered byr that is not in the new solution. Thus the new cover is of
same size as the old one, however the new solution has one singleton less than inS. Hence
it is an improved solution. Figure 6 illustrates some of the cases.�

Lemma 3.7. The (2,1) semi-local optimization technique produces a solution in wh
a1 + a2 � b1 + b2 + b3 + 1.

Proof. The outline of our proof is as follows. In each componentH we will charge the
edges (sets ofS) to the vertices (sets ofOPT) of H . Our charging scheme satisfies t
following property. Each vertex is charged by at most one edge and an edgee is charged
to a vertexv only if |e ∩ B| � |v ∩ D|. We then argue that each edge that is not cha
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to any vertex must cover an element inB. Through careful arguments we then show t
these edges can be accounted for by vertices inOPT that are not yet charged.

We will now introduce some notation that will be used in the proof of this claim. LeOc

be the vertices inOPT that are charged by some edge. LetOu be the remaining vertices i
OPT. Let ou = |Ou| andoc = |Oc|. Let au

i , i ∈ {1,2}, be the number of sets of sizei that
are not charged to any set inOPT. Let ac

i be the number of sets of sizei that are charge
to some set ofOPT.

Below are the details of the proof. Our proof considers the following two cases.

Case I. a1 > 0.

In this case,OPT cannot contain a set with two elements inD; otherwise, we can use
2-set to cover the two elements inD and drop a singleton thereby covering an extra elem
using the same number of sets. In each componentH , we will charge an edgee to a vertex
v using the charging scheme described below. LetHs be the subgraph ofH that consists
of all the vertices ofH and all edges ofH that do not cover any element inB. Consider
the following two cases.

Case I(a). All elements covered by the vertices ofH are inC.

By Lemma 3.5,H has at most one cycle. Thus,Hs is a tree or contains just one cyc
Hence, inHs the number of vertices is at least equal to the number of edges. This m
that each edge inHs can be charged to a vertex inHs . The edges ofH that are not charge
to any vertex cover an element inB.

Case I(b). H consists of vertices that cover elements inD.

By Lemma 3.3,H has exactly one such vertex, sayw. By Lemma 3.4,H can not have
any cycles. In this case,Hs is a tree. We can charge all the edges inHs to all the vertices
in Hs , exceptw. Thus all the edges inH that do not cover any element inB are charged
to some vertex inH . By Lemma 3.6, the number of edges incident on every vertex iH

exceptw must be equal to the size of the vertex. This means thatH must have at leas
onePCB . We charge one suchPCB to w. As in the previous case, the edges ofH that are
not charged to any vertex must cover an element inB. Below we show how to account fo
these edges.

Note thatau
1 is the number of singleton sets ofS that cover an element inB. All other

1-sets ofS cover elements inC and hence are charged to some set ofOPT. We have
ac

1 + ac
2 = oc. Recall thatOPT cannot have a set with two elements inD. Also, since

a1 > 0, S and OPT cover exactly the same number of elements. Thus the numb
uncharged vertices together with the singletons inOPTmust be at least equal to the numb
of elements inB covered by the edges that are not charged to any vertex. Thus we h

au
1 + au

2 � b1,

au
1 + au

2 + ac
1 + ac

2 � b1 + oc,

a1 + a2 � b1 + b2 + b3. (1)
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Case II. a1 = 0.

We analyze this case by again considering two cases.

Case II(a). H contains a3-setw that does not share elements with any3-set inS.

In this case there can be at most one set inOPT that covers two elements inD.
Otherwise, a(1,0) improvement (insertingw) is possible as follows. By Lemma 3.2,w

cannot have two elements inD. If w is a TCD then we can swapw with the two edges
incident on it and use a 2-set to cover two elements inD. If all elements ofw are inC then
we can includew in our cover along with two 2-sets to cover the four elements inD and
delete the three edges incident onw. In both the cases we use the same number of se
cover one extra element. For the remainder of the argument we will assume that t
at most one set covering two elements inD. We denote this set byt . We analyze this sub
case by using the same charging scheme as in Case I. As in Case I(a), whenH consists of
vertices that only cover elements inC, we can show that the edges that are not charge
any vertex contain an element inB. Now consider the case whenH has a vertex, sayd , that
covers an element inD. In this case, one vertex ofH may not be charged by any edge. L
this vertex bed . The vertexd may cover two elements inD and by our charging rule it wil
not be charged. Recall thatau

2 denotes the number of edges of size two that are not cha
to any vertex. Note that each edge that is not charged to any vertex covers an element inB.
First, we will boundau

2 for the case whent does not exist. In this case our solution m
coverk + 1 elements. Hence,au

2 � ou + b1 + 1. If t exists thenS covers the same numb
of elements asOPT. If not, then a(1,0) improvement (insertingw) is possible. This is
because ifw is aTCD then we can swapw for the two edges incident on it and ifw is not
a TCD then we can includew andt and delete the three edges incident onw. In both the
cases we use one set less to cover one less element. Also, note thatt is not charged by an
edge and belongs to the setOu. Hence, we haveau

2 � (ou + 1) + b1 = ou + b1 + 1. Thus,
whethert exists or not the bound onau

2 is the same.

au
2 � ou + b1 + 1,

au
2 + ac

2 � ou + b1 + 1+ oc,

a2 � b1 + b2 + b3 + 1,

a1 + a2 � b1 + b2 + b3 + 1.

Case II(b). H does not containw.

In this case, ifH contains a vertex of size three then it shares an element with a
of S. Hence, at most two elements of any vertex can be covered by edges inH . Hence,H
is either a cycle or a path. InH , if the number of edges is less than or equal to the num
of vertices then each edge is charged to some vertex. Now consider the case w
number of edges inH is greater than the number of vertices inH . In this case,H has two
elements inB and none inD. Since the number of edges is one more than the numb
vertices, exactly one edge inH is not charged to any vertex inH . Observe that the numbe
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Fig. 7. Examples for Lemma 3.8. In the above instances(0,1) semi-local improvement yields a cover whose s
is same as before but has one less singleton.

of elements covered by the edges is two more than the number of elements cove
vertices inOPT. Thus even ifOu contains only 2-sets with both elements inD, we have
ou � au

2. Taking into account singletons inOPT and thatS may coverk + 1 elements we
get

au
2 � b1 + ou + 1,

ac
2 + au

2 � b1 + oc + ou + 1,

a2 � b1 + b2 + b3 + 1. �
Lemma 3.8. If H contains a1-cycle thenH does not have a2-set or a3-set of OPT, say
x, such thatx ∩ y 
= ∅, wherey is a 3-set ofS.

Proof. Assume otherwise. Letu be the vertex in the 1-cycle,l. Let P be the path betwee
x andu. We will show that a semi-local(0,1) improvement is possible by discardingy.
The resulting solution will be(S ∪{xt , ut }∪ Ip)\ (Ep ∪ l). In the new solutionxt contains
an element inx ∩y and an element inx ∩Fp andut contains an element ofl and an elemen
of u ∩ Fp . The size of the new cover will be(|S| + 2+ |Ep| − 1) − (|Ep| + 1) = |S|. The
new solution covers all the elements covered byEp ∪ l. Since we retain every other set
S, the new solution covers at least as many elements asS while using one less singleto
Figure 7 illustrates this case.�

Lemma 3.9. The semi-local(2,1)-optimization technique produces a solution in wh
a1 � b1

Proof. If a1 = 0 the condition holds trivially. Hence assumea1 > 0. We havea1 = au
1 +ac

1.
From inequality(1) we haveau

1 + au
2 � b1. Thus, if we proveac

1 � au
2 then we are done

We will prove this by showing that ifH has a 1-set then there is some edge inH that
is not charged to any vertex. Consider aH that has a 1-set ofS. This 1-set correspond
to a 1-cycle inH . By Lemma 3.5,H does not have a cycle other than the 1-cycle.
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Lemma 3.4,H does not have aTCD or PCD , i.e., all elements covered by the vertices ofH

are inC. By Lemma 3.8, there can not be a 3-set,y, of S such thatx ∩ y 
= ∅, wherex is
a set ofOPT in H . Hence,H must have aPCB , saye. Consider the subgraph ofH , Hs as
constructed in Lemma 3.7.Hs contains all the vertices ofH and contains edges that ha
both its endpoints inC. Thus,e is not part ofHs . SinceH has a 1-cycle,Hs has an equa
number of vertices and edges. Each vertex inHs and henceH get charged by some edg
in Hs . Hence, edgee does not get charged to any vertex. This completes the proof.�
Theorem 3.10. The semi-local(2,1)-optimization algorithm for the3-set partial covering
problem produces a solution that is within43OPT+ 1.

Proof. Adding up the inequalities in Lemmas 3.1, 3.7 and 3.9, we get

3(a1 + a2 + a3) � 4(b1 + b2 + b3) − b1 − b2 + 2,

c(S) = a1 + a2 + a3 � 4

3
OPT+ 2

3
. �

4. Probabilistic approaches for partial vertex cover

We now present a randomized rounding approach to the natural LP relaxat
k-partial vertex cover. Analyzed in three different ways, this leads to three new ap
mation results mentioned in Section 1: relating to vertex cover (full coverage) for exp
graphs of constant average degree,k-partial vertex cover on bounded-degree graphs,
multi-criteriak-partial vertex cover problems. We first describe the basic method and
some probabilistic properties thereof, and then consider the three applications.

The k-partial vertex cover problem on a graphG = (V ,E) can be formulated as a
integer program as follows. We assign binary variablesxj for eachvj ∈ V andzi,j for
each(i, j) ∈ E. In this formulation,xj = 1 iff vertexvj belongs to the cover, andzi,j = 1
iff edge(i, j) is covered. The corresponding LP relaxation can be obtained by letting ea
xj andzi,j lie in [0,1].

min
n∑

j=1

xj ,

subject toxi + xj � zi,j , (i, j) ∈ E, (2)∑
(i,j)∈E

zi,j � k, (3)

xj , zi,j ∈ [0,1], ∀i, j.

Our basic approximation recipe will be as follows. The LP relaxation is so
optimally. Let {x∗

i }, {z∗
i,j } denote an optimal LP solution, and letλ = 2(1 − ε), where

ε ∈ [0,1] is a parameter that will be chosen based on the application. LetS1 = {vj | x∗
j �

1/λ}, andS2 = V − S1. Include all the vertices inS1 as part of our cover, and mark th
edges incident on vertices inS1 as covered. Now independently for eachj ∈ S2, round
xj to 1 with a probability ofλx∗, and to 0 with a probability of 1− λx∗. Let W be the
j j
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random variable denoting the number of covered edges at this point. IfW < k, we choose
anyk −W uncovered edges and cover them by arbitrarily choosing one end-point fo
of them.

We now introduce some notation to analyze the above process. Throughout, we l[·]
and E[·] denote probability and expectation, respectively. Lety∗ represent the optima
objective function value of the LP, and defineS0 ⊆ S1 by S0 = {vj : x∗

j = 1}. Let y∗
F and

y∗
P be the contribution toy∗ of the vertices inS0 andV − S0 respectively. Denote byUi,j

the event that edge(i, j) is uncovered. LetC1 be the cost of the solution produced by o
randomized schemebeforethe step of coveringk −W edges if necessary, and letC2 be the
cost incurred in covering thesek − W edges, if any. The total costC is of courseC1 + C2;
thus,E[C] = E[C1] + E[C2]. Now, it is easy to check thatE[C1] � y∗

F + λy∗
P , and that

E[C2] � E[max{k − W,0}]. So we have

E[C] � y∗
F + λy∗

P + E
[
max{k − W,0}]. (4)

The following lemma on the statistics ofW will be useful. As usual, letE denote the
complement of an eventE .

Lemma 4.1.

(i) E[W ] � k(1− ε2).
(ii) Suppose the graphG has maximum degreed . Then, the varianceVar[W ] of W is at

most(2d − 1) · E[W ].

Proof. (i) Consider any edge(i, j). Now if x∗
i � 1/λ or x∗

j � 1/λ, Pr[Ui,j ] = 0; otherwise,
Pr[Ui,j ] = (1−λx∗

i )(1−λx∗
j ). Consider the latter case. Sincex∗

i +x∗
j � z∗

i,j , we can check
that for any givenz∗

i,j ∈ [0,1], (1 − λx∗
i )(1 − λx∗

j ) is maximized whenx∗
i = x∗

j = z∗
i,j /2.

Hence,

Pr[Ui,j ] �
(
1− λz∗

i,j /2
)2 = (

1− (1− ε)z∗
i,j

)2 � 1− z∗
i,j

(
1− ε2).

Thus, sinceE[W ] = ∑
(i,j)∈E Pr[Ui,j ], we get

E[W ] �
∑

(i,j)∈E

z∗
i,j

(
1− ε2) � k

(
1− ε2).

(ii) We haveW = ∑
(i,j)∈E Ui,j . It is also an easy calculation to see that if a rand

variableW ′ is the sum ofpairwise independentrandom variables each of which lies
[0,1], then Var[W ′] � E[W ′]. However, the termsUi,j that constituteW do have some
dependent pairs: if edges(i, j) and (i ′, j ′) share an endpoint, thenUi,j and Ui′,j ′ are
dependent (positively correlated). Defineγ to be the sum, over all unordered pairs
distinct edges(i, j) and (i ′, j ′) that share an end-point, of Pr[Ui,j ∧ Ui′,j ′ ]. Using the
above observations and the definition of variance, a moment’s reflection shows that V[W ]
is upper-bounded byE[W ] + 2γ . Now, for any eventsA andB,

Pr[A ∧ B] � min
{
Pr[A],Pr[B]} �

(
Pr[A] + Pr[B])/2.
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Thus, the term “Pr[Ui,j ∧ Ui′,j ′ ]” in γ is at most(Pr[Ui,j ] + Pr[Ui′,j ′ ])/2. Finally, since
each edge has at most 2(d − 1) other edges that share an end-point with it, we get tha

γ �
∑

(i,j)∈E

(
2(d − 1)/2

) · Pr
[
Ui,j

] = (d − 1)E[W ].

So, Var[W ] � E[W ] + 2γ � (2d − 1) · E[W ]. �
4.1. Vertex cover on expanders

Suppose we have a vertex cover problem; i.e.,k-partial vertex cover withk = m. The
LP relaxation here has “1” in place of “zi,j ” in (2), and does not require the variableszi,j

and the constraint (3). We focus here on the case of expander graphs of constant
degree. That is, for some constantsc andd , we are studying graphs where: (i) the num
of edgesm is at mostnd , and (ii) for any setX of vertices with|X| � n/2, at leastc|X|
vertices outsideX have a neighbor inX.

Sincek = m, it is well-known that we can efficiently compute an optimal solutionx∗
to the LP with all entries lying in{0,1/2,1}. Let H = {vj | x∗

j = 1/2} and F = {vj |
x∗
j = 1}. Also, sinceW � k = m always holds,E[max{k − W,0}] = E[k − W ] � mε2, by

Lemma 4.1(i). Thus, (4) shows thatE[C] is at mosty∗
F + 2(1 − ε)y∗

H + mε2; following
the notation underlying (4),y∗

H is the total contribution toy∗ from the vertices inH .
(The overall approach of: (i) conducting a randomized rounding and then doing a g
fixing of violated constraints, and (ii) using an equality such as our “E[max{k − W,0}] =
E[k − W ]” here, is suggested in [34]. We next show how the expansion prope
useful in boundingE[C] well. However, in the context ofpartial covering, an equality
such as “E[max{k − W,0}] = E[k − W ]” does not hold; so, as discussed in Sections
and 4.3, new analysis approaches are employed there.) Choosingε = y∗

H/m to minimize
y∗
F + 2(1− ε)y∗

H + mε2, we get

E[C] � y∗
H

(
2− y∗

H/m
) + y∗

F . (5)

Case I. |H | � n/2.

Note that edges with exactly one end-point inH must have their other end-point inF ;
otherwise the LP constraint on such edges will be violated. SinceG is an expander
|F | � c · |H |. Also, y∗

F = |F | and y∗
H = |H |/2. So, sincey∗ = y∗

H + y∗
F , we have

y∗
H = y∗/(1+ a) for somea � 2c. We can now use (5) to get

E[C] � 2y∗
H + y∗

F = (
2− a/(1+ a)

)
y∗;

i.e., at most(2− 2c/(1+ 2c))y∗ sincea � 2c.

Case II. |H | > n/2.

So, we havey∗
H � n/4. Bound (5) shows thatE[C] � (2− y∗

H/m)y∗; we havem � nd

by assumption. So,E[C] � (2− 1/(4d))y∗ in this case.



R. Gandhi et al. / Journal of Algorithms 53 (2004) 55–84 77

imation

m

most
ell

s
n-

, e.g.,

ng of
r the
given

ethod
ty
ver,

or
is

hile
, and

east
l
ts of

y

Thus we see thatE[C] � [2 − min{2c/(1 + 2c),1/(4d)}] · y∗. In other words, for the
family of expanders of constant average degree, we can get a constant-factor approx
that is strictly better than 2.

4.2. Partial vertex cover: bounded-degree graphs

We now show that for any constantd , k-partial vertex cover on graphs of maximu
degree at mostd can be approximated to within 2(1 − Ω(1/d)), for any value of
the parameterk. We also demonstrate that the integrality gap in this case is at
2(1 − Ω(1/d)). We start with a couple of tail bounds that will be of use now, as w
as in Section 4.3. First, supposeX is a sum of independent random variablesXi each
of which lies in[0,1]; let E[X] = µ. Then for anyδ ∈ [0,1], the Chernoff bound show
that Pr[X � µ(1 + δ)] is at moste−µδ2/3. We will also need tail bounds for certain no
independent situations. SupposeX is a random variable with meanµ and varianceσ 2;
supposea > 0. Then, the well-known Chebyshev’s inequality states that Pr[|X − µ| � a]
is at mostσ 2/a2. We will need stronger tail bounds than this, but only onX’s one-sided
deviations (say, below its mean). We will use the Chebyshev–Cantelli inequality (see
[1]), which shows that Pr[X − µ � −a] � σ 2/(σ 2 + a2).

We now analyze the performance of our basic algorithm (of randomized roundi
the LP solution followed by a simple covering of a sufficient number of edges), fo
k-partial vertex cover problem on graphs with maximum degree bounded by some
constantd . The notation remains the same. The main problem in adopting the m
of Section 4.1 here is as follows. Sincek equaledm there, we could use the equali
E[max{k −W,0}] = E[k −W ], thus substantially simplifying the analysis. Here, howe
such an equality is not true; furthermore,E[max{X,Y }] � max{E[X],E[Y ]} for any pair
of random variablesX,Y . (In fact, the two sides of this inequality may differ a lot. F
instance, supposeX is the sum ofn independent random variables, each of which
uniformly distributed on{−1,1}; let Y be the constant 0. Then the r.h.s. is zero, w
the l.h.s. isΘ(

√
n).) Instead, we take recourse to the Chebyshev–Cantelli inequality

use Lemma 4.1(ii).
We now claim that

Pr
[
W �

(
k
(
1− ε2) − 2

√
kd

) ]
� 1/3. (6)

This is trivially true if k < 4d , since Pr[W � 0] = 1. So supposek � 4d . Lemma 4.1 and
the Chebyshev–Cantelli inequality show thatµ

.= E[W ] � k(1 − ε2), and that Pr[W �
µ− 2

√
dµ] � 1/3. Subject toµ � k(1− ε2) � 4d(1− ε2), µ− 2

√
dµ is minimized when

µ = k(1− ε2). Thus we have (6).
Next, for a suitably large constantc0, we can assume thatk � c0d

5. (Any optimal
solution has size at mostk, since in an optimal solution, every vertex should cover at l
one new edge. So ifk is bounded by a constant—such asc0d

5—then we can find an optima
solution in polynomial time by exhaustive search.) Also, by adding all the constrain
the LP and simplifying, we get thaty∗ � k/d . Let δ = 1/(3d). Assuming

ε � 0.7, say, (7)

a Chernoff bound shows that immediately after the randomized rounding, the probabilit
of having more than 2y∗(1 − ε)(1 + δ) vertices in our initial cover is at most 1/5
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(if the constantc0 is chosen large enough). Recall (6). So, with probability at leas
1− (1/3+ 1/5) = 7/15, the final cover we produce is of size at most

2y∗(1− ε)(1+ δ) + kε2 + 2
√

kd. (8)

We now chooseε = y∗(1 + δ)/k. (We may assume that this choice satisfies (7) with
loss of generality. Indeed, if this choice ofε violates (7), then we havey∗ � 0.7k(1 +
1/(3d))−1 � 21k/40. However, since any partial cover problem can be trivially so
usingk vertices, we can get a 40/21-approximation—i.e., a constant-factor approximat
strictly better than two—in this case.) Recalling thaty∗ � k/d � c0d

4 with c0 sufficiently
large, let us see now that (8) is at most 2y∗(1− Ω(1/d)). First, sinceε = y∗(1+ δ)/k, we
have

2y∗(1− ε)(1+ δ) + kε2 = 2y∗(1− y∗(1+ δ)2/(2k)
)
� 2y∗(1− (1+ δ)2/(2d)

)
� 2y∗(1− 1/(2d)

)
.

Next,

2
√

kd = 2
√

k/d · d � 2
√

y∗ · √y∗/(√
c0d

) = (
2/

√
c0

) · y∗/d.

So, if the constantc0 is chosen large enough, the size of the cover is at most 2y∗(1 −
Ω(1/d)) with high probability.

4.3. Partial vertex cover: multiple criteria

We now briefly consider multi-criteriak-partial vertex cover problems on arbitra
graphs. Here, we are given a graphG and, as usual, have to cover at leastk edges. We
are also given	 “weight functions”wi , and want a cover that is “good” w.r.t. all of thes
More precisely, suppose we are given vectors

wi = (wi,1,wi,2, . . . ,wi,n) ∈ [0,1]n, i = 1,2, . . . , 	,

and a fractional solutionx∗ to the k-partial vertex cover problem onG. Define y∗
i =∑

j wi,j x
∗
j for 1 � i � 	. We aim for an integral solutionz such that foreach i,

yi = ∑
j wi,j zj is not “much above”y∗

i . Multi-criteria optimization has recently receive
much attention, since participating individuals/organizations may have differing obje
functions, and we may wish to (reasonably) simultaneously satisfy all of them if pos
The result we show here is that if

∀i, y∗
i � c1 log2(	 + n), (9)

wherec is a sufficiently large constant, then we can efficiently find an integral solutiz

with yi � 2(1+ 1/
√

log(	 + n) )y∗
i for eachi.

We run our algorithm withε = 0. Lemma 4.1 and the Chebyshev–Cantelli inequa
show that

Pr
[
W � (k − 1)

]
� 2nm/(2nm + 1) = 1− 1/(2nm + 1),

which, though large, is 1− Ω(1/nO(1)). Also, for eachi, a Chernoff bound easily help
show the following. Using the property (9): if the constantc is sufficiently large, then

Pr
[
yi > 2

(
1+ 1/

√
log(	 + n)

)
y∗
i

]
�

(
	(4nm + 2)

)−1
.
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Therefore, the probability of existence of ani for which yi > 2(1 + 1/
√

log(	 + n) )y∗
i

holds, is at most 1/(4nm+2). Thus, with probability at least 1/(2nm+1)−1/(4nm+2) =
1/(4nm + 2) we will have our desired solution; this can be boosted to a high proba
by repeating this basic algorithmO(nm) times.

5. Geometric packing and covering

Problem. Given n points in a plane, find the smallest number of (identical) disks
diameterD that would cover at leastk points.

A polynomial time approximation scheme exists for the case whenk = n (full covering).
The algorithm uses a strategy, called theshifting strategy. The strategy is based on a divi
and conquer approach. The area,I , enclosing the set of given points is divided into strips
width D. Let l be the shifting parameter. Groups ofl consecutive strips, resulting in strip
of width lD are considered. For any fixed subdivision ofI into strips of widthD, there are
l different ways of partitioningI into strips of widthlD. The l partitions are denoted b
S1, S2, . . . , Sl .

The solution to cover all the points is obtained by finding the solution to cover the p
for each partition,Sj ,1 � j � l, and then choosing a minimum cost solution. A solut
for each partition is obtained by finding a solution to cover the points in each strip (of
lD) of that partition and then taking the union of all such solutions. To obtain a sol
for each strip, the shifting strategy is re-applied to each strip. This results in the partit
each strip into “squares” of side lengthlD. As will be shown later, there exists an optim
covering for such squares.

We modify the use of the shifting strategy for the case whenk � n (partial covering).
The obstacle in directly using the shifting strategy for the partial covering case is
we do not know the number of points that an optimal solution covers in each strip
partition. This is not a problem with the full covering case because we know tha
optimal solution would have to cover all the points within each strip of a partition.
the partial covering, this problem is overcome by “guessing” the number of points co
by an optimal solution in each strip. This is doneby finding a solution for every possib
value for the number of points that can be covered in each strip and storing each soluti
A formal presentation is given below.

Let A be any algorithm that delivers a solution to cover the points in any strip of w
lD. Let A(Si) be the algorithm that appliesA to each strip of the partitionSi and outputs
the union of all disks in a feasible solution. We will find such a solution for each of thel
partitions and output the minimum.

Consider a partitionSi containingp strips of widthlD. Let nj be the number of point
in strip j . Let nOPT

j be the number of points covered byOPT in strip j . Since we do
not knownOPT

j , we will find feasible solutions to cover points for all possible values

nOPT
j . Note that 0� nOPT

j � k′
j = min(k, nj ). We usedynamic programmingto solve our

problem. The recursive formulation is as follows:

C(x, y) = min
0�i�k′

(
Dx

i + C(x − 1, y − i)
)
,

x
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whereC(x, y) denotes the number of disks needed to covery points in strips 1, . . . , x and
Dx

i is the number of disks needed to coveri points in stripx. ComputingC(p, k) gives us
the desired answer.

For each strips, for 0 � i � k′
s,D

s
i can be calculated by recursive application of

algorithm to the strips. We partition the strip into squares of side lengthlD. We can find
optimal coverings of points in such a square by exhaustive search. WithO(l2) disks of
diameterD we can coverlD × lD square compactly, thus we never need to consider m
disks for one square. Further, we can assume that any disk that covers at least tw
given points has two of these points on its border. Since there are only two ways to
circle of given diameter through two given points, we only have to consider 2

(
n′
2

)
possible

disk positions wheren′ is the number of given points in the considered square. Thus

have to check for at mostO(n′2(l
√

2)2
) arrangements of disks.

For any algorithmA, let ZA be the value of the solution delivered by algorithmA. The
shift algorithmSA is defined for a local algorithmA. Let rB denote the performance rat
of an algorithmB; that is,rB is defined as the supremum ofZB/|OPT| over all problem
instances.

Lemma 5.1. rSA � rA(1 + 1/l) where A is the local algorithm andl is the shifting
parameter.

Proof. Consider a partitionSi with p strips of widthlD. Let ZA
j be the number of disk

chosen by Algorithm A in stripj . We have that

rA � ZA
j /|OPTj |,

wherej runs over all strips in partitionSi and|OPTj | is the number of disks in an optim
cover ofnOPT

j points in stripj . It follows that

ZA(Si) � rA
∑
j∈Si

|OPTj |.

Let OPT be the set of disks in an optimal solution andOPT(1), . . . ,OPT(l) the set of disks
in OPT covering points in two adjacentlD strips in 1,2, . . . , l shifts respectively. Thus w
have ∑

j∈Si

|OPTj | � |OPT| + ∣∣OPT(i)
∣∣,

ZSA = min
i=1,...,l

ZA(Si) � 1

l

l∑
i=1

ZA(Si) � 1

l
rA

(
l∑

i=1

∑
j∈Si

|OPTj |
)

� 1

l
rA

(
l∑

i=1

|OPT| + ∣∣OPT(i)
∣∣).

There can be no disk in the setOPT that covers points in two adjacent strips in mo
than one shift partition. Therefore, the setsOPT(1), . . . ,OPT(l) are disjoint and can ad
up to at mostOPT. It follows that

∑l
i=1(|OPT| + |OPT(i)|) � (l + 1)|OPT|. Substituting
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this in the bound above forZSA we get thatZSA is at most(1/l)rA · (l + 1)|OPT| =
rA · (1+ 1/l)|OPT|. �
Theorem 5.2. The above algorithm yields a PTAS with performance ratio at m
(1+ 1/l)2.

Proof. We use two nested applications of the shifting strategy to solve the problem
above lemma applied to the first application of the shifting strategy would relat
performance ratio of the final solution,rSA , to that of the solution for each strip,rA.

rSA � rA(1+ 1/l) (10)

The lemma when applied to the second application of shifting strategy relatesrA to the
performance ratio of the solution to each square, sayrA′ . Thus,rA � rA′(1 + 1/l). But
since we obtain an optimal solution for each square,rA′ = 1. Bound (10) shows tha
rSA � (1+ 1/l)2. �

6. k-partial vertex cover for planar graphs

Full vertex cover for planar graphs of bounded tree-width can be computed optim
linear time.This immediately leads to a PTAS for planar graphs by a combination of r
of Baker and Bodlaender [3,4]. Baker gives ageneral framework that constructs a PTA
for any problem which can be solved optimally forl-outerplanar graphs—planar grap
where all nodes have a path of length� l to a node on the outermost face [3]. This meth
is based on theshifting strategythat is similar to the method used for geometric cover
in the previous section. Bodlaender [4] proves that anyl-outerplanar graph has tree-wid
at most 3l − 1. Vertex cover for graphs of bounded tree-width can be solved optima
polynomial time, thus implying such a solution for graphs that arel-outerplanar for a fixed
constantl.

First we describe how to create a collection of decompositions of a planar graphG into a
set ofl-outerplanar graphs. Letd(v) = shortest path length fromv to any node on the oute
face ofG. For each value ofδ = 0,1 . . . , (l − 1), we generate a decomposition as follow
Let Gi = (Vi,Ei) be theith l-outerplanar graph for a fixedδ. Vi = {v | li + δ � d(v) �
l(i + 1) + δ andEi = {(u, v) | u ∈ Vi andv ∈ Vi}. There arel different ways of creating
these decompositions, one for eachδ. These correspond to thel partitionsS1, S2, . . . , Sl in
the geometric covering case. In the full covering case, the algorithm is to find a vert
cover for each of thel decompositions and then to take the best solution. The ve
cover for each decomposition is the union of the solutions to eachl-outerplanar graph
in the decomposition. As in the case of geometric covering the obstacle in directly
the above algorithm for the partial covering case is that we do not know the numb
edges covered byOPT in each outerplanar graph. As in the previous section, we overc
this obstacle by “guessing” the number of points covered by an optimal solution in
l-outerplanar graph. The dynamic programming formulation in the previous section c
used once the following correspondence betweenthe various entities is noted. The vertic
in our case correspond to the disks and the edges correspond to the points to be c
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An l-outerplanar graph corresponds to the strip of widthlD. As in the previous case, w
still have l such decompositions. In the geometric covering problem the solution to eac
strip is calculated by recursively applying the shifting strategy to each strip. In this case,
optimal solution for the partial vertex cover forl-outerplanar graphs is computed as sho
below.

We now give a linear-time algorithm for bounded tree-width graphs (if the graph
tree-widthl, then the time required for the algorithm to run will be exponential inl but
linear in the size of the graph). The following definition is standard (see, e.g., [4]).

Definition 6.1. Let G = (V ,E) be a graph. Atree-decompositionof G is a pair({Xi |
i ∈ I }, T = (I,F )), where{Xi | i ∈ I } is a family of subsets ofV andT = (I,F ) is a tree
with the following properties:

(1)
⋃

i∈I Xi = V .
(2) For every edgee = (v,w) ∈ E, there is a subsetXi , i ∈ I , with v ∈ Xi andw ∈ Xi .
(3) For alli, j, k ∈ I , if j lies on the path fromi to k in T , thenXi ∩ Xk ⊆ Xj .

Thetree-widthof a tree-decomposition({Xi | i ∈ I }, T ) is maxi∈I {|Xi | − 1}. The tree-
width of a graph is the smallest valuek such that the graph has a tree-decomposition w
tree-widthk.

Many problems are known to have linear time algorithms on graphs with constan
width, and there are frameworks for automatically generating a linear time algorithm,
a problem specification in a particular format [2,5]. The partial vertex cover problem c
be solved by successively using solutions to the problem of finding the maximum nu
of edges that can be covered usingp vertices. The value ofp can be selected by doing
binary search on the set of vertices which reduces in half with every successive solutio
This problem can be expressed in the formalism of [5] as: max|E1|[V1 ⊂ V ∧ |V1| �
p ∧ E1 = IncE(V1)], which states that we want to maximize the set of edges that ca
covered by any subsetV1 of V such that the size ofV1 is at mostp. Note that IncE(V1) is
the set of edges incident to a vertex inV1.

Theorem 6.2 follows from Lemma 5.1 and the fact thatrA = 1.

Theorem 6.2. The above algorithm gives a PTAS with a performance ratio� (1+ 1/l).

7. Concluding remarks

We have presented improved approximation algorithms for a family of partial cov
problems. Since the publication of the preliminary version of this work [16], our re
of Section 4.2 have been built upon and improved. First, the work of [35] showed
to obtain faster algorithms for the main result of Section 4.2, by applying a “level-
distribution of [35] along with some ideas from Section 4.2. By building further u
these ideas and by employing semidefinite programming, it has been shown in [2
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partial vertex cover in graphs with maximum degreed , can be approximated to withi
(2− Θ((log logd)/ logd)).
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