
When the Network of a Smart City Is Not So Smart

Ali Tabaja Reuven Cohen∗

Technion - Israel Institute of Technology
Haifa, Israel

Abstract—In this paper we show that a simple repeated (ON-
OFF) jamming attack on a wireless distance vector protocol can
have a global effect on the network and be as harmful as a
sophisticated Network layer attack. This attack takes advantage
of the nodes’ limited awareness of topological changes when
distance vector routing is used. To present the attack in a specific
context, we consider the new RPL protocol, which plays an
important role in the context of Smart City and Smart Utility
networks. We describe the RPL approach to recover from link
failures and show that this protocol is susceptible to the proposed
attack. We also present a remedy technique and show that it can
significantly alleviate the impact of the proposed attack.

I. INTRODUCTION

Intra-autonomous system routing protocols have tradition-
ally been classified into two categories: those that use distance
vectors and those that use link state. The main advantage
of distance vector protocols is their simplicity and efficient
bandwidth utilization. Link state protocols, on the other hand,
are known to enable fast convergence after topological changes
due to each node being fully aware of the network topology.

In today’s wireline networks, link state protocols, such as
OSPF and IS-IS, are much more popular than distance vector
protocols because the efficient bandwidth utilization provided
by the latter is no longer important. However, in wireless
networks, where bandwidth is always a scarce resource, dis-
tance vector routing protocols are very popular, especially
for proactive routing and for networks where the nodes are
stationary and constrained. For example, RPL [1] is a relatively
new IETF protocol for low power and lossy networks (LLNs)
[2], and it is based solely on distance vector routing.

Wireless mesh networks are known to be vulnerable to
numerous attacks that may be launched on any layer [3],
[4]. Most of the attacks on wireless networks are conducted
either on the Phy/MAC layer or on the Network layer. These
attacks differ mainly in that the former is much easier to
conduct. A Phy/MAC layer attack can be conducted simply by
transmitting radio signals over the channel, a process known as
jamming [5], whereas conducting an effective Network layer
attack usually requires the attacker to gain a full control of at
least one legitimate node in the network and change the code
executed by this node. However, the impact of Phy/MAC layer
attacks is usually limited to a certain area, whereas Network
layer attacks have the potential to sabotage the entire network.

∗The present work has been partially funded by NATO Science for Peace
and Security (SPS) Programme, in the framework of the project SPS G5428
”Dynamic Architecture based on UAVs Monitoring for Border Security and
Safety”

(a) (b)

Fig. 1: (a) A 2-node loop may be formed; (b) A 3-node loop
may be formed when “split horizon” is used.

In this paper we show that a simple repeated (ON-OFF)
jamming attack on a wireless distance vector protocol can
have a global effect on the network and be as harmful as a
sophisticated Network layer attack. This attack takes advantage
of the nodes’ limited awareness of topological changes when
distance vector routing is used. As an example, consider Figure
1(a), which shows routing from three nodes to Net1. The figure
also shows the cost/weight associated with every wireless link.
Initially, nodes w and v route through w − v − u and v − u
respectively. Now suppose that a jamming attack takes link
v − u down. One would expect the nodes to then use the
costly link w − u instead of v − u. However, with distance
vector routing, a routing loop might be formed, and it might
take a long time before the network recovers from the loop
and converges to the correct routing. The reason is that node
w is not aware of the failure of v − u and it thus informs v
that it can route to Net1 with cost 2. Node v chooses w as its
next hop towards Net1 with cost 3. Then, it informs w that it
has a route with this cost, and node w believes that it can still
route through v, but with cost 4 rather than 2. This process is
repeated until the cost of the path from w through v is 102, in
which case w prefers to route through u, with cost 100. Only
then, does the network stabilize and packets reach Net1.

Most distance vector routing protocols use “split horizon” to
prevent such 2-hop loops. With “split horizon” a node w never
informs its neighbor v about its route to a given destination
if this neighbor v is its next hop towards this destination. But
“split horizon” does not work when more nodes are involved
in the loop, as in Figure 1(b). In this example, in the worst
case, about 100 exchanges of distance vectors between nodes
v, k and w are needed before all nodes understand that the
only option to route to Net1 is the expensive link w − u.
This problem of oscillating between non-existing routes until
stabilizing on the correct-but-expensive route is also known as

1

“count-to-infinity”.
Consider again Figure 1(b). When the attacker stops jam-

ming, node v realizes that it is again connected to u, and it
informs w and k. Then, w and k change their route to Net1
such that it goes via v rather than via w. This implies that
when the jamming stops, the network will rapidly converge to
the correct state. But if the attacker starts jamming again, it
takes again a very long time for v, w and k to converge on
the correct route via the link w−u. The attack is summarized
in Figure 2.

“Split horizon” is not the only way to mitigate the “count-
to-infinity” problem. However, past works considered the
problem only in the context of legitimate topological changes
and thus do not provide a solution for the proposed attack.
In this paper we show that a repeated (ON-OFF) jamming
attack on a distance vector routing protocol, which repeatedly
takes down one or several links temporarily, can take down
a significant part of the network for as long as the attack
continues.

The proposed jamming attack is actually a Network layer
attack not because it (obviously) affects routing, but because
it is so difficult for the routing protocol to converge to the new
(inefficient) routes. In particular, packets are routed in loops
for a long time, wasting a lot of bandwidth but not reaching
their destinations.

In other words, any jamming attack that takes one or
more links down is likely to make routing less efficient. The
difference between the cost of efficient routing (when all the
links are up) and the cost of less efficient routing (when
some links are down due to the jamming) is a straightforward
penalty of the jamming. We call it a routing penalty. This is,
however, not a penalty of a Network layer attack, because there
is nothing the Network layer can do except than routing over
the best routes available after the topological changes. To be
considered as a Network layer attack, the penalty of the attack
must exceed the penalty of the less efficient routing, and this
extra penalty must be attributed to bad design of the Network
layer. As shown in this paper, this is the case when the network
layer is based on the concept of distance vector routing. We
call this Network layer penalty a convergence penalty.

As an example of this convergence penalty, consider the pro-
posed repeated (ON-OFF) jamming attack, whose ON period
is 60 seconds and whose OFF period is 10 seconds. We now
estimate the convergence penalty of link state routing com-
pared to the convergence penalty of distance vector routing.
With link state wireless routing protocols, such as OLSR [6],
the network will stabilize within a short time, about 5 seconds,
after the ON period starts. Thus, the convergence penalty is
5/60 = 8% of the ON period during which routing is unstable
or impossible. With distance vector routing, the convergence
time during the jamming ON period is very long, e.g., 50
seconds. Thus, the convergence penalty is 50/60 = 83% of
the ON period, which is 10 times larger than the previous case.

To present the attack in a specific context, we consider
the new RPL protocol, which plays an important role in the
context of Smart City and Smart Utility networks. We describe

Fig. 2: High level description of the proposed attack.

the RPL approach to recover from link failures and show that
this protocol is susceptible to the proposed attack.

The contribution of this paper is three-fold.
• We show that a simple Phy layer jamming attack can

sabotage the functionality of the network layer, and it
is therefore as harmful as sophisticated Network layer
attacks that usually require the attacker to gain control of
a legitimate node.

• We show that RPL is susceptible to the proposed attack
despite its built-in mechanism (called Local Repair) for
coping with the “count-to-infinity” problem of distance
vector routing.

• We present a remedy technique, and show that it can
significantly alleviate the impact of the proposed attack.

The rest of the paper is organized as follows. Section
II discusses related work. Section III summarizes the major
RPL features that are relevant to the presented attack and the
protocol’s repair mechanisms. Section IV introduces the new
attack in the specific context of RPL and proposes a mitigation
technique. Section V discusses how to plan the most effective
attack. Section VI presents simulation results, and Section VII
concludes the paper.

II. RELATED WORK

Many works discuss jamming attacks in wireless networks
and possible detection and mitigation techniques. In [5], the
authors distinguish between four different jamming attacks:
constant, deceptive, random and reactive. They discuss a
detection system that uses only one measurement, such as
calculating the packet sent ratio and using a signal strength
spectral discrimination technique. They show that such a
system can only distinguish between some normal and ab-
normal scenarios. Then, they show that only a combination of
different techniques is useful for detecting a jamming attack.
An example of such a combination is measuring the packet
delivery ratio and performing a signal strength consistency
check. The takeaway is that jamming detection is not a simple
task, and it requires significant network resources.

In [7], the authors evaluate the effectiveness of jamming
according to the attacker’s energy, the probability to be
detected, the extent of the denial of service and more. In
addition, detection techniques are introduced and discussed.
One of them is a technique proposed in [5], which offers
consistency checks. The authors state that when the distance,
the effectiveness of the technique is harmed. The authors also
propose a punishment-based approach against internal nodes

that use the channel too heavily. However, this technique is
problematic since it requires a modification to the MAC layer
protocol.

The authors of [8] introduce selective jamming and selective
dropping attacks. Selective jamming targets either a specific
channel or specific data packets. Replication of control packets
over all control channels, or changing channels dynamically
are proactive approaches to alleviate the damage of this attack.
In data selective jamming, the attacker spoofs and analyzes
packets to determine if it is beneficial to trigger a MAC layer
collision.

In [9], several RPL attacks are discussed. These attacks
are classified according to the CIAA model (Confidentiality,
Integrity, Authentication and Availability). The authors first
define routing assets and points of access that an attacker
may want to sabotage. Then, they provide different attack
schemes for each category. For example, under integrity, they
mention routing information manipulation and node identity
misappropriation attacks.

In [3], attacks on RPL are classified according to the
attacker’s goals and means. This is the first work that discusses
well-known attacks in the specific context of RPL. The various
attacks are classified to those aimed at resources, at network
topology and at traffic. For each attack, it is indicated whether
the attack does or does not require a node, whether the attack
is passive or active, the possible mitigation, and so on. Two
main observations from the analysis in this paper are that many
attacks require a node, and that further research is required in
order to cope with many RPL attacks.

Other RPL security studies discuss attacks that require
control of a node, or present high level security issues. In
[10], several attacks are simulated to explore the protocol’s
self-healing ability. One such attack is selective-forwarding
[11], in which a malicious node selectively filters the network
messages. The authors show that RPL alone cannot recover
from this attack.

III. RPL AND LOCAL REPAIR

RPL builds a collection of Destination Oriented Directed
Acyclic Graphs (DODAGs), through which every node is
connected to one gateway. Every node in a DODAG has one
or more parents through which it can reach the gateway. A
tree is a special case of a DODAG, where every node has at
most one parent.

RPL is a quite complicated protocol whose RFC contains
more than 150 pages. In what follows we summarize the main
rules according which a node chooses a parent, a gateway and
a default route:

1) Each gateway is configured to be a root of a tree. When it
wakes up, it periodically broadcasts DODAG Information
Object messages (DIOs) to invite nearby nodes to choose
it as a parent.

2) When a node wants to join the network, it waits to hear
DIO messages from nearby nodes that have already joined
one of the trees, or from a gateway. The best path is
selected according to an Objective Function (OF).

3) A node that already belongs to a certain tree advertises
DIOs, to invite its neighbors to join its tree as its children.

4) After a node chooses a parent and joins the tree of
its parent, it continues listening to DIO messages. If it
receives a more attractive DIO (with respect to the OF),
it can switch to a new parent, regardless of whether this
parent is in the same or in a different tree.

Each RPL network associates a metric (cost) with every
link and path. The metric is supposed to reflect the property
of the link/path according which each node decides which
of its neighbors to choose as a parent. A metric of a link
can represent the link quality, the link throughput, the link
robustness, etc. It can also represent any combination of
several properties. A RPL network is also associated with an
Objective Function (OF), which dictates how the metric is
processed. Each node v that receives a DIO message from a
neighbor, say u, finds in this message the metric (cost) of the
path from the root to u. Using this metric, as well as the metric
of the link v−u and the OF, node v determines the cost of the
path to the root through node u. Examples of common OFs
are:

1) Minimize the hop distance from the gateway.
2) Maximize the minimum link quality on the path to the

gateway.

An important difference between the two OFs described
above is that the first is additive and the second is not. As a
distance vector protocol, RPL works much better with additive
OFs, mainly because they make it easier to prevent routing
loops. When the chosen OF is additive, the metric computed
by a parent and announced in its DIOs is always smaller than
the metric computed by its descendants, whereas with a non-
additive OF this is not necessarily the case.

RPL uses an additive metric, called rank, whose main role
is preventing routing loops. When the OF is additive, it can
also be used as a rank. A node that loses its parent is allowed
to switch to a new parent while keeping its entire subtree only
if this will not increase its rank. This guarantees that selecting
the new parent will not create loops. If such a new parent is
not found, node v must first dismiss its children, as part of
the Local Repair procedure described later, and then choose a
new parent regardless of the rank.

To simplify the discussion in this paper, we assume that the
network uses an additive OF. Thus, the metric of a path from
a gateway to any node also represents the rank of this node.
The additive OF we choose is a generalization of shortest path:
each node assigns to each outgoing wireless link an integer
between 1 and 5, which represents the quality of the link
(1=high, 5=low); the metric of a path is then the sum of the
metrics of the links that it uses. This concrete assumption does
not affect the generality of our results.

RPL proposes two different techniques to cope with topol-
ogy changes: Global Repair and Local Repair. Global Repair
is simple but very costly. The idea is that from time to time the
root nodes (gateways) initiate the creation of a “new version”
of the trees. A decision to initiate a new version can follow a

(a) (b)

Fig. 3: Routing loops created when nodes choose new parents
after a failure.

constant schedule (e.g, once an hour), or can be made when
the network operator believes that the trees are not stable. A
new sequence number is assigned to each new version, and it
is attached to the DIOs broadcast by the gateways.

To address topological changes without invoking Global
Repair too often, RPL also uses Local Repair. In Local
Repair, when a node v loses its parent, it first searches for
an alternative parent, namely, a neighbor that can replace the
old parent without increasing the rank of v before the failure.
If such a neighbor is found, node v can switch to the new
parent without risking the creation of a routing loop. If such
neighbor is not found, there are 3 possible cases:
(a) Node v has no connectivity to any gateway.
(b) The only way for node v to reconnect to the network is

by choosing as a new parent a node in its subtree, thereby
increasing its rank.

(c) The only way for node v to reconnect to the network
is by choosing as a new parent a node that is not in its
subtree, thereby increasing its rank.

In case (b), a loop would be created as depicted in Figure
3(a). In case (c), a loop might be created as shown in Figure
3(b). In this Figure, node v5 goes down, leaving v6 and v7

without a parent. When a DIO from v8 arrives to v7 with cost
= 5 (the cost of the path from v8 before it knows that its path
is down), v7 chooses v8 as its new parent since this offer is
better than the one advertised by v4 (6 vs. 22). For the same
reason, v6 chooses v9 as a parent, and a loop is created.

To prevent such loops, Local Repair dictates that when a
node v loses its parent and has no alternative parent that does
not increase node v’s rank, it dismisses its children, waits
for a while, and only then tries to rejoin the network even if
this would increase its previous rank. In Figure 3(a), after v1

decides that it cannot choose a new parent without increasing
its rank, it broadcasts DIOs that dismiss v3 from its subtree.
Then, v3 broadcasts similar DIOs and dismisses v4 and v5.
Algorithm 1 summarizes the Local Repair procedure.

IV. ATTACKING LOCAL REPAIR

As explained in Section III, when a node v discovers that
the connectivity to its parent u is lost, it invokes Local Repair.

Algorithm 1 Local Repair

1: if there is a node that can be chosen as a parent without
increasing your rank then

2: choose it as your new parent
3: else
4: dismiss your children by advertising an infinite metric
5: wait for a predefined period
6: choose as a parent the neighbor with the best offer

If node v has an alternative parent, namely a parent through
which its rank does not increase, it immediately switches to
this parent. If not, it dismisses its children. Consequently,
many nodes in its subtree might have to invoke Local Repair as
well, and it may take a long time until the tree is re-stabilized.
Suppose that when the whole tree is stabilized, node v has a
new parent w. It is very likely that its path cost in the new
tree is higher than in the old tree; if not, node v would have
chosen w as a parent before the failure.

Now suppose that the wireless link between v and its
previous parent u is up again. If the quality of this link is
similar to what it was earlier, it is better for v to choose u as
a parent once again. Switching to a better parent is relatively
fast and easy because it requires node v to leave w and to
associate with u without invoking Local Repair. But if the
connectivity between node v and u is lost again, Local Repair
needs to be reinvoked by v and by most of the nodes in its
subtree.

The attack is described in Figure 4. The various steps are
as follows:

• Step 1(a): A jamming attack takes place close to the root
r. As a result, both v1 and v9 lose their connectivity to
their parent r.

• Step 1(b): Node v1 invokes Local Repair. Since it does
not have an alternative parent, namely, a neighbor that can
be selected as a new parent without increasing node v1’s
current rank, v1 must dismiss its children. This process
is likely to be repeated recursively, because it is invoked
by each descendant that is dismissed by its parent and
does not have an alternative parent. Node v9 also invokes
Local Repair, but it neither has an alternative parent nor
children to dismiss.

• Step 1(c): Node v1 and all the nodes in its previous
subtree try to choose new parents, even if this requires
increasing their previous ranks. In this example, some
of the compromised nodes (v1, v3, v4, v7 and v8) are
able to reconnect to the tree, while others (v9) remain
disconnected.

• Step 2: The attacker stops jamming. Consequently, the
wireless links that were affected by the jamming are up
again. Node v1 chooses r as its parent. This decreases
the rank of v1, and Local Repair is not invoked. Node
v9, which was not able to find a new parent while the
jamming was on, can now reconnect to the tree. After a
while, the original tree is reconstructed.

Fig. 4: The proposed jamming attack in RPL.

• The attacker starts jamming again.

The attack has a significant negative impact on the network
for the following reasons:

(a) Both upstream traffic (from the nodes to a gateway) and
downstream traffic (from a gateway to the nodes) are
lost. Downstream traffic is lost because it is misrouted.
Upstream traffic is lost because a node that changes its
parent must reset the Layer 2 buffers associated with its
previous parent.

(b) The process of finding a new parent in Local Repair
requires significant time and bandwidth. Each node that
invokes Local Repair must wait until all the nodes in its
subtree either dismiss their children or find alternative
parents. Then, such a node must scan several channels
and search for the most attractive parent. Then, it must
associate with the new parent.

(c) In many systems, if a node connects to a new parent, it
must inform the gateway or even a remote central office.
This is required for authentication, registration and for
managing the node application. Registration requires the
exchange of several end-to-end messages, which are very
costly in a multi-hop wireless network.

As shown in Section VI, the most effective location for the
attack is very close to a gateway. When a node close to the
gateway loses its parent, it is likely that this node has a subtree
with many descendants. Thus, many nodes would invoke Local
Repair, and the tree reconstruction is likely to be costly and
long.

In terms of the jamming power, the attacker has two
contradictory goals: using maximum power in order to force
as many nodes as possible to lose their parents and dismiss
their children vs. minimizing the power so as not to be easily
discovered. In the proposed attack the transmission power
of the attacker can be significantly lower than that of a
legitimate user, since it is sufficient to destroy one wireless
link in order to affect tens or even hundreds of nodes.

The proposed attack is very effective and there is no easy
way to handle it. If the attacker chooses a random location
to jam, and then – during the OFF period – it moves to a
new location before it hits again, we see no remedy technique
except to find and stop the attacker, which is hard to do in a

city (outdoor) network, especially if the attacker uses normal
transmission power.

We now introduce a back-off scheme to mitigate the nega-
tive impact caused by parent nodes that become disconnected
very often. We call these parents “non-persistent”. In the
proposed scheme, a node v ignores a specific non-persistent
parent u for a time period B(u), whose length is determined
by the following parameters:

1) The length of the last alive period of this parent, denoted
∆1. A parent is considered alive if its BEACONS are
heard.

2) The length of the last non-alive period of this parent,
denoted ∆2. A parent is considered non-alive if, after it
became alive, β consecutive BEACONS it was supposed
to send were not received.

3) A moving average of the recent alive and non-alive
periods of this parent, denoted ∆1 and ∆2 respectively.
A moving average of ∆1 is defined as ∆1 = α ∗ ∆1 +
(1 − α) ∗ ∆1, where 0 < α < 1. ∆2 is computed in
the same way. These averages are updated every time a
parent moves from being alive to non-alive or vice versa.

Non-persistent parents differ on how often they fluctuate
between alive and non-alive periods and in the percentage of
time during which they are non-alive. The two parameters are
approximated as follows:

1) Fluctuation frequency is p1 = 1
∆1+∆2

.

2) Non-alive period is p2 = ∆2

∆1+∆2
.

The value of p1 is then normalized by dividing it by the
sum of p1 of all neighbors. From here on, we use p1 to refer
to the normalized version of this property.

The Non-Persistence (NP) rank of each parent is defined as:

NP = γ ∗ p1 + (1− γ) ∗ p2, (1)

where 0 ≤ γ ≤ 1. NP is used for comparing the non-
persistence level of potential parents. A more persistent parent
has a lower NP value.

if NP(u) is the NP rank of u, the amount of time during
which u is banned, denoted B(u), is:

B(u) = A ∗∆2 ∗ NP(u), (2)

C
o

n
v
e

rg
e

n
c
e

 p
e

n
a

lt
y

Jamming period

A long subtree
A short subtree

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450

f
(δ

,T
)

Jamming period

T=50
T=25
T=10

(a) (b)

Fig. 5: (a) The convergence penalty as a function of the
jamming period length; (b) The convergence penalty as a
function of the jamming period length δ in the formal model
(K = 5).

where 1 ≤ A is a multiplication factor that reflects the
degree of amplification of the banning. When A is smaller,
the algorithm is more tolerant toward non-persistent parents.

This technique serves to maintain stability in the network.
In Section VI, we show that the remedy technique can sig-
nificantly alleviate the impact of the proposed attack, even
in a special case of this algorithm where B(u) is a constant
function.

V. PLANNING THE MOST EFFECTIVE ATTACK

In Section I we distinguished between the following two
impacts of the attack:
• Convergence penalty: incurred from the beginning of

the jamming period till the routing tables converge.
• Routing penalty: incurred during the entire jamming

period due to routing on a network that cannot use the
links in the jammed area.

We also said that the routing penalty is not unique to the
proposed attack, because it is a direct consequence of jamming
under any Network layer design. What makes the proposed
attack very effective is the convergence penalty, which is
unique to networks that use distance vector routing, such as
RPL.

In order to maximize the impact of the attack, the attacker’s
goal is to maximize the fraction of jamming period during
which the convergence penalty is incurred. For example, if the
convergence time is 10 seconds, the attacker strategy should
be to stop the jamming after 10 seconds, let the network to
stabilize again on a topology that includes all the links, and
then restarts jamming for 10 seconds. If the attacker does not
stop jamming after 10 seconds, but after 20, then the network
incurs the convergence penalty during only 50%, rather than
100%, of the jamming time.

Therefore, to maximize the effect of the attack, the attacker
should estimate how long time it would take for the network to
converge after the jamming starts. In RPL, this time depends
on the depth of the subtree rooted in the area affected by
jamming. For example, an attack near v3 in Figure 3(b) should
last longer than an attack near v6, because the convergence
time in the first case is longer than in the second.

This idea is depicted in Figure 5(a), which illustrates the
relationship we expect to find between the length of the
jamming period and the total convergence penalty for the case
where the affected subtree is long and for the case where it
is short (this graph is used for illustration only, and it was
not obtained through simulations). We expect the jamming
period for the short subtree to be smaller. We also expect
the total convergence penalty to increase till it reaches a
maximum (when the routing tables are converged), and that
this maximum will be bigger when the affected subtree is
longer.

To summarize, the attacker needs to jam as close to the
gateway as possible, and it needs to estimate the convergence
time in order to decide when to stop jamming. We now present
a mathematical model to determine the length of the jamming
period for maximizing the convergence penalty. We start with
a few definitions:
• A time unit is the time to deliver one message.
• A convergence round is a time unit during which at

least one node either receives a release message from
its parent or receives an offer from a better parent and
switches parents during the ON period. If the node is
disconnected, the new offer is always considered a better
one for this definition.

• The subtree release threshold, denoted by K, is the
number of time units a node waits to determine that
its parent does no longer offer connectivity. A node
understands that this is the case either by receiving a
release message from its parent and then waiting for K
time units, or by waiting K time units after receiving the
last DIO message from its parent.

We can now define the convergence penalty of an attack
more formally. For a subtree whose depth is T , and for an
attack whose jamming period is δ time units, the convergence
penalty is the number of convergence rounds that take place
due to the attack, and it is denoted f(δ, T).

Claim 1: It takes (i+ 1)∗K time units for a node in depth
i to disconnect from its parent after an attack starts. Recall
that K is the subtree release threshold.

Proof. Denote by h(i) the number of time units it takes for a
node in depth i to disconnect from its parent. h(0) = K by
definition. Node v understands that its parent u does no longer
offer connectivity if the following two events occur consecu-
tively: 1) u loses its parent and sends v a release message m
that indicates that u does no longer provide connectivity to the
root; 2) v waits K time units after m arrives and then decides
that u is no longer a suitable parent. Thus h(i) = h(i−1)+K,
which yields that h(i) = i ∗K +K = (i+ 1) ∗K.

Claim 2: The jamming period length required to release the
first i layers of the attacked subtree is at least K ∗ (i + 1) −
(i+ 1) + 1 = (K − 1) ∗ (i+ 1) + 1 time units.

Proof. Following Claim 1, node vi at depth i needs (i+ 1) ∗
K time units to determine that its parent is lost. When the
jamming period stops, it takes (i+1) time units for vi to hear

from its parent vi−1 again, since the information propagates
from v0 (the “root” of the attacked subtree) to vi through the
path v0, ..., vi (v0 also needs one time unit to hear from its
original parent). If the jamming period lasts K∗(i+1)−(i+1)
time units, vi receives a message from its original parent vi−1

exactly when vi is about to determine that vi−1 is lost. Thus,
an extra time unit is used to avoid this race.

Denote (K − 1) ∗ (i+ 1) + 1 by ri, the time units required
to release the subtree until the ith layer. Let T be the depth
of the affected subtree. The shortest time needed to release
the whole subtree is therefore rT . As a result, if the jamming
period length, denoted by δ, fulfills that ri ≤ δ < ri+1 holds
for some 0 ≤ i ≤ (T −1), the subtree is released exactly until
layer i. Therefore, the convergence penalty is (i + 1), which
is the number of convergence rounds for releasing the subtree
until the ith layer. We now discuss what happens after the
release of the subtree.

Claim 3: In the worst case, it takes 2T + 1 time units after
the subtree is released until it converges to the new topology
(the original topology without the nodes/links taken down by
the jamming).

Proof. If the depth of the attacked subtree is T , the maximum
distance between two leaves is 2T . If one of these leaves finds
a new parent, it takes 2T + 1 time units before the other leaf
is informed.

From Claim 2 and Claim 3 follows that, if the jamming
period δ is longer than rT but is shorter than rT + (2T + 1)
(i.e. long enough to release the entire subtree, but not long
enough to enable the subtree to complete its convergence to the
new topology), the convergence penalty is (T + 1) + (δ− rT),
where (T + 1) rounds are needed for releasing all the nodes,
and (δ − rT) rounds are needed for re-connecting the nodes
(the convergence is not necessarily completed).

To maximize the convergence penalty, the attacker must stop
jamming after t′ = rT +(2T +1) time units. The convergence
penalty in this case is (T+1)+(2T+1) = 3T+2 convergence
rounds: (T + 1) rounds are required for releasing the entire
subtree, and (2T+1) rounds are required to enable the subtree
to fully converge to the new topology.

To summarize, for a release threshold K, an attack whose
jamming period is δ on a subtree whose depth is T , yields the
following convergence penalty:

f(δ, T) =

i+ 1 ∃i ∈ {0, ..., (T − 1)}:
ri ≤ δ < ri+1

(T + 1) + (δ − tT) rT ≤ δ < t′

(T + 1) + (2T + 1) t′ ≤ δ
0 Otherwise

Figure 5(b) depicts this function for three values of T (depth
of the affected subtree), when the release threshold K = 5.
We use the formal model to determine the jamming period
length of the attacks simulated in Section VI.

If the attacker knows the depth T of the affected subtree, it
can use the formal model to determine the optimal jamming

period length. However, it is very likely that the attacker does
not know the value of T . A possible way to estimate T is to
listen to the channel and count the number of unique IP source
addresses heard. In this way, the attacker can determine how
many nodes send packets upward, and can estimate the depth
of the subtree.

We now discuss the length of the OFF period. When the
OFF period starts, the network rapidly converges to the new
topology, because “count-to-infinity” plays a role only when
links/nodes fail, not when they recover. Thus, the attacker may
use one of the following two strategies. The first strategy is
to choose the length of the OFF period randomly. This will
make the detection of the attack very difficult, but it will
allow the network to function normally immediately after the
convergence to the new topology (with all the links active).
The second strategy is to minimize the OFF period, namely,
to wait until the network converges and then to start jamming
again. In RPL, this waiting time depends on how fast a node
broadcasts a DIO message after it is informed that a new link is
up. As a heuristic, the attacker can simply wait a few seconds
after the OFF period starts, and then to start jamming again.

VI. SIMULATION STUDY

In this section we present simulation results for the proposed
attack. Our node placement model is based on the Node
Placement Algorithm for Realistic Topologies (NPART) [12],
which creates high quality wireless multi-hop networks that
share many graph features with real networks. The authors of
[12] considered almost 1,500 topological samples from real
networks for designing their algorithm. The algorithm also
ensures that each created topology is connected.

For the sake of our simulation study, we classify the nodes
affected by the attack into three classes:
• Class-A nodes are those that remain disconnected during

the entire ON period. This may happen if a node loses its
parent but does not find a new parent during step 2 and
step 6 of Algorithm 1. A node may lose its parent either
because the link to the parent is directly affected by the
jamming, or because its parent dismisses all its children
during step 4 of Algorithm 1.

• Class-B nodes are those that lose their previous parent,
but are able to find a new parent during the ON period,
either in step 2 or step 6 of Algorithm 1. These nodes lose
upstream and downstream messages during the process of
switching their parents. Moreover, they impose a lot of
management burden due to the need to associate with a
new parent, and maybe to register again at the gateway.

• Class-C nodes are those that do not leave their parent,
but one of their ancestors changes its parent in step 2
of Algorithm 1 without dismissing its children. Conse-
quently, the path between such nodes and their gateways
is modified, and these nodes are likely to lose most of
their upstream and downstream messages.

Each point in our graphs is calculated as the average
of 5,000 independent simulation instances conducted in the
following way:

• Draw 20 different topologies using NPART, each with
250 nodes

• For each of the 20 topologies do
– Repeat 250 times:

1) Choose the locations of gateways randomly
2) Choose the location of the attack randomly
3) Run simulation

• Calculate the average of all 5,000 instances
The impact of the attack might be reduced by installing

more gateways. This would allow a smaller average size for
each tree and shorter average routing paths. Thus, fewer nodes
are likely to be affected by an attack. However, installing a
gateway is costly because it requires physical connectivity
to the backbone. Because of the trade-off between cost and
performance involved in adding more gateways, the x-axis in
most of our graphs represents the number of gateways in the
network.

We consider the periodicity of the DIO messages, i.e., the
time during which every parent sends one such message, as 1
time unit. Each simulated attack consists of 200 time units of
the ON period, during which the jamming is on, followed by
400 time units of OFF period, during which jamming is off.
We choose the ON period length such that it maximizes the
damage proposed in Section V.

In addition to the number of gateways in the network, the
impact of the attack depends on the following two important
parameters:

1) The network density, as reflected by the average node
degree.

2) The jamming power.
To cover many possibilities, we use 4 combinations of

network density and jamming power, each representing a
different scenario:

Sparse network
average node degree

∼4

Dense network
average node degree

∼14

Low jamming Scenario-1 Scenario-3
0.25*TP

High jamming Scenario-2 Scenario-4
0.5*TP

In this table, TP refers to the transmission power of a
legitimate node. The average degree of a node in a network,
i.e., the number of neighbors it has, defines the network
density. A neighbor of node v is a node that can hear the DIOs
of v and can therefore consider v as a parent. Due to lack of
space, in some graphs we omit the results of Scenario-4.

Figure 6 shows the fraction of affected nodes from each
class, and the total number of affected nodes, as a function of
the number of gateways for the various scenarios. The graphs
clearly show that the fraction of affected nodes decreases
sharply when the number of gateways varies from 1 to 8. This
indicates that increasing the number of gateways is important
not only for the performance of the network in general, but also

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-B nodes
Class-A nodes
Class-C nodes

(a) Scenario-1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-B nodes
Class-A nodes
Class-C nodes

(b) Scenario-2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-B nodes
Class-C nodes
Class-A nodes

(c) Scenario-3

Fig. 6: The fraction of affected nodes in various scenarios.

as a remedy for the proposed attack. For Scenario-1 (Figure
6(a)), we see that despite the random location of the attack
and the light jamming (it takes down only two wireless links
on the average), almost 40% of these nodes are from Class-A.
Recall that these nodes are completely disconnected from any
gateway during the entire ON period.

When comparing Figure 6(a) to Figure 6(b), we see that the
number of affected nodes increases by 50%: e.g., from 10%
to 15% for 1 gateway, and from 5% to 8% for 4 gateways. We
can also see that the number of Class-A and Class-B nodes is
closer in Scenario-2 than in Scenario-1. This is because when
the jamming power increases, more nodes are likely to remain
without an alternative parent.

When the network density increases, the impact of the
attack decreases. This is evident from comparing the results
of Scenario-1 to those of Scenario-3. We can also see that this
decrease is mainly attributed to Class-A nodes. This is because
when the network is denser, each node has more paths towards
the gateways, and is less likely to have nodes that cannot find
an alternative parent.

Figure 7(a) compares the total fractions of affected nodes

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Scenario-2
Scenario-4
Scenario-1
Scenario-3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Distance in hops from a gateway

Scenario-1
Scenario-3

(a) (b)

Fig. 7: (a) The total fraction of affected nodes; (b) The impact
of the jamming location on the number of affected nodes.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-A nodes
Class-B nodes
Class-C nodes

(a) Scenario-1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-A nodes
Class-B nodes
Class-C nodes

(b) Scenario-2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 o

f
a
ff
e
c
te

d
 n

o
d
e
s

Number of gateways

Total fraction of affected nodes
Class-B nodes
Class-A nodes
Class-C nodes

(c) Scenario-3

Fig. 8: The fraction of affected nodes in the various scenarios
when the remedy technique is used.

in the four scenarios. We can clearly see that increasing
the jamming power and decreasing the network density both
increase the impact of the attack. Thus, Scenario-2 yields the
maximum number of affected nodes and Scenario-3 yields the
minimum number.

In the previous graphs we chose a random location for the
jamming. Nevertheless, we found that a significant fraction of
the nodes are affected by the attack. An attacker who knows
where the gateways are located can significantly increase

the damage to the network (of course, jamming the area of
the gateway would affect 100% of the nodes). This is evident
from Figure 7(b), which considers a network with only one
gateway, and shows the total fraction of affected nodes as a
function of the distance between the jamming location and
the gateway for Scenario-1 and Scenario-3. A distance of 1
indicates that the attack is 1-hop away from the gateway. We
can see the dramatic increase in the number of affected nodes.
In Scenario-1 for example, the increase is from 0.1 when the
location is random to 0.55 when the distance is 1 or 0.35 when
the distance is 2. In Scenario-3, the increase is from 0.06 when
the location is random to 0.25 when the distance is 1.

Finally, Figure 8 shows simulation results when the remedy
technique proposed in Section IV is implemented. The remedy
works when the attack is repeated, by significantly reducing
the number of Class-B and Class-C nodes. To produce these
graphs, each attack is repeated 3 times, namely, 3 ON periods,
each followed by an OFF period.

VII. CONCLUSIONS

This paper presented a novel attack on wireless mesh net-
works that use distance vector protocols, when the new IETF
protocol RPL is used to demonstrate the effect of the attack.
The proposed attack is as easy to conduct as a Phy/MAC layer
attack yet is as effective as a Network layer attack. We also
proposed a remedy technique and studied the attack and the
remedy technique using simulations.

REFERENCES

[1] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert,
P. Levis, R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” RFC 6550, 2012.

[2] G. Montenegro, C. Schumacher, and N. Kushalnagar, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals,” RFC 4919, 2007.

[3] A. Mayzaud, R. Badonnel, and I. Chrisment, “A taxonomy of attacks
in RPL-based internet of things,” International Journal of Network
Security, vol. 18, no. 3, 2016.

[4] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor
networks: Attacks and defenses,” IEEE Pervasive Computing, vol. 7,
no. 1, 2008.

[5] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in ”Proceedings
of the 6th ACM International Symposium on Mobile Ad Hoc Networking
and Computing”. ACM, 2005.

[6] C. Dearlove and T. H. Clausen, “Multi-Topology Extension for the
Optimized Link State Routing Protocol Version 2 (OLSRv2),” RFC
7722, 2015.

[7] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of
service attacks in wireless networks: The case of jammers,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 2, 2011.

[8] L. Lazos and M. Krunz, “Selective jamming/dropping insider attacks in
wireless mesh networks,” IEEE network, vol. 25, no. 1, 2011.

[9] T. Tsao, R. Alexander, M. Dohler, V. Daza, A. Lozano, and M. Richard-
son, “A Security Threat Analysis for the Routing Protocol for Low-
Power and Lossy Networks (RPLs),” RFC 7416, 2015.

[10] L. Wallgren, S. Raza, and T. Voigt, “Routing attacks and countermea-
sures in the RPL-based internet of things,” International Journal of
Distributed Sensor Networks, vol. 9, no. 8, 2013.

[11] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” ”Ad Hoc Networks”, vol. 1, no. 2, 2003.

[12] B. Milic and M. Malek, “NPART-node placement algorithm for realistic
topologies in wireless multihop network simulation,” in ”Proceedings of
the 2nd International Conference on Simulation Tools and Techniques”.
ICST, 2009.

