
Efficient Service Chain Verification Using Sketches

and Small Samples

Reuven Cohen Liran Katzir Aviv Yehezkel

Department of Computer Science

Technion, Haifa, Israel

Abstract—A service function chain defines an ordered or
partially ordered set of abstract service functions and ordering
constraints that must be applied to packet flows as a result of
classification. Service chain verification is an important logic,
which should verify that each flow indeed traverses the intended
set of services, and in the desired order. In this paper we address
this service chain verification problem in a new way. The main
idea is to convert each service chain verification instance to
its “equivalent set-expression cardinality equation,” and to use
statistical algorithms to verify that each equation is satisfied.

I. INTRODUCTION

The delivery of end-to-end services often requires various

service functions, such as firewalls and load balancers. Each

service function can act at various layers of a protocol stack. It

can be a virtual element or be embedded in a physical network

element [18].

Service chaining [16] is the idea of routing a data flow

through a sequence of network functions. When it is combined

with SDN (Software Defined Networking), flow-based service

chaining can be implemented without changing the physical

topology. A service function chain defines an ordered or

partially ordered set of abstract service functions and ordering

constraints that must be applied to packet flows as a result

of classification [18]. For example (Figure 1), the datacenter

operator may decide to route all HTTP traffic through a service

chain that consists of a firewall, an IDS (Intrusion Detection

Server), and a proxy server, and to route all non-HTTP traffic

through a different service chain that contains a firewall and

an IDS.

With service chaining, incomplete or inconsistent software

configuration could cause significant network and security

problems. For example, due to misconfiguration, some flows

that should traverse the firewall might not traverse it at all, or

they might traverse it before, rather than after, traversing the

IDS. Service chain verification is an important logic, which

should verify that each flow indeed traverses the intended set

of services, and in the desired order.

In traditional networks, there were very few possible data

paths and very few possible service chains. Thus, service chain

errors were rare. For example, all traffic is usually forwarded

from the egress router to a nearby firewall. The traffic is then

forwarded to an IDS, co-located with the firewall. However,

with the virtualization of network functions, and in particular

when it is combined with SDN, the problem of service chain

verification is exacerbated by the ability to route every flow

Fig. 1. An example of two service chains

through any sequence of services. It is exacerbated even more

by the requirement to have many copies of the same service in

many servers that are located in different places of the network,

due to load balancing considerations.

One of the most challenging service chain verification prob-

lems is whether each flows is indeed routed along its intended

sequence of services and in the intended order. Existing ap-

proaches for addressing this problem [3] are based on a small

meta-data, referred to as “proof of transit,” which is added

to every packet. This meta-data should be updated by every

service node along the path. It is finally received by a verifying

controller, typically in the egress of the network, which verifies

that each packet has indeed traversed its intended service

chain. Cryptographic mechanisms are used to protect the meta-

data from configuration mistakes and malicious attacks.

The above mentioned approach requires complex and ex-

pensive computations in every service node; it likewise re-

quires that all the packets be forwarded to the verifying con-

troller. Moreover, as indicated before, the datacenter operator

does not always care whether a flow passes through a specific

server, but whether it passes through one of many servers

that perform the same function. Thus, we define the service

chain verification problem as the problem of ensuring that

each flow that enters the network through one of a given set of

ingress nodes, traverses afterwards one of a given set of egress

nodes. For example, verifying that every flow that enters the

datacenter through router R1 or R2 or R3 traverses afterwards

one of the firewalls F1 or F2. By reapplying a procedure that

solves this problem, we can verify that a subset of the flows

that traverse one of the firewalls continues to one of the load

balancers, and that another subset continues to one of the IDSs,

and so on.

In this paper we address this service chain verification

problem in a new way. The main idea is to convert each service

chain verification instance to its “equivalent set-expression

cardinality equation,” and to use statistical algorithms to verify

that each equation is satisfied. The following example illus-

trates this idea. Suppose again that flows enter the datacenter

via three routers, R1, R2 and R3. Suppose also that the

datacenter has two firewalls, F1 and F2, and that each flow

must traverse one of them. Translating this requirement into a

set-expression cardinality equation means that |R \ F | should

be equal to 0, where R = R1 ∪ R2 ∪ R3 is the set of all

incoming flows, F = F1 ∪F2 is the set of all flows traversing

the firewalls, R \F is the set of flows that are in R but not in

F (i.e., enter the datacenter but do not traverse any firewall),

and |R \ F | is the number of flows (cardinality) in this set.

Our verification scheme is briefly described in Figure

2. The datacenter operator determines a set of require-

ments to be verified. Each requirement is then translated

into its “equivalent set-expression cardinality equation” (e.g.,

|{R1 ∪ R2 ∪ R3} \ {F1 ∪ F2}| = 0). Each participating net-

work device (router, switch, server, etc.) samples a small

number of the packets it receives. Its CPU periodically creates

from the samples a sketch and sends it to the network

controller. A sketch is a small fixed-size data structure, which

summarizes the relevant information on the traversing data

flows. For example, a max sketch maps each packet to a

flow ID, and maintains the max flow ID of all the packets.

From this information, the number of flows can be accurately

approximated [4]. The network controller receives sketches

from all relevant network devices, and verifies that the various

set-expression cardinality equations indeed hold.

The main problem with sketch-based algorithms is their re-

quirement for hardware support, because each received packet

must be compared against the sketch [15]. However, since

our scheme requires that each participating device will run

the sketch only against sampled packets (e.g., 0.1% of the

packets), this can be done by a CPU or a DPU1, with no

hardware support.

The rest of this paper is organized as follows. Section

II discusses previous work. Section III presents the main

framework of the proposed service chain verification schemes.

Section IV presents the proposed scheme. Section V presents

simulation results. Section VI discusses implementation issues

and Section VII concludes the paper.

II. RELATED WORK

The problem of service chain verification is known for

several years [18]. In [11], a platform for service chain

verification is proposed. This platform makes use of the virtual

switches that are placed on physical cloud nodes. Service

1A DPU (Data Processing Unit) is a new class of programmable processor
that can be found today in smart network interface cards (NICs).

Fig. 2. The proposed verification scheme: the host’s CPU or NIC’s processes
of every participating device processes only packet samples, and it sends to
the controller only a sketch (summary) of these samples

function chaining rules are stored within the flow tables of

these virtual switches to gather the actual “Overlay and Traffic

Steering” (SOTS) snapshot of the cloud environment, and

model it as property-based graphs. Subsequently, these graphs

can be used to verify if the actual SOTS is conform to the

targeted service function chain specification.

In [19], the authors study the problem of verifying that cer-

tain performance guarantees, such as latency, packet loss rate

and bandwidth, are satisfied when service function chaining is

used.

Recently, [14] proposes the design and implementation of

AuditBox, which (1) enables what you see is what you get

auditing practices, and (2) enforces at runtime that the system

operates correctly. To ensure that the correct network function

software is running, AuditBox runs them atop hardware en-

claves. By changing the trust model, verified routing is refor-

mulated to audit actions between trusted network functions,

with an untrusted network in between. To tackle dynamic

packet modifications, immutable packetIDs are carried by

an AuditBox packet trailer. This enables to logically bind

modified packets to incoming packets when creating audit

trails. Given trusted network functions, a simplified path

attestation protocol is defined. The protocol focuses on the

packets at individual network function hops. The use of trusted

NFs inside enclaves enables a number of simple-yet-effective

cryptographic optimizations such as the use of symmetric keys

and updatable MAC computations to significantly improve

data plane performance.

Network management requires accurate on-line estimation

of various stream statistics, such as the number of flows

(“cardinality”), flow size distribution, entropy, heavy hitters,

etc. Finding the number n of distinct flows in a long stream

of IP packets, known as “the cardinality estimation problem,”

is useful in numerous network monitoring and security ap-

plications. Several works address the cardinality estimation

problem of a single stream [4], [7], [10] and propose min/max

sketches for solving it. These algorithms are efficient because

they make only one pass on the data stream, and because they

use a fixed and small amount of storage.

Sketch-based algorithms are also useful for multiple streams

[2], [6], [9]. An estimation of |A ∪ B|, namely, the cardinality

of A ∪ B, can be easily found using any min/max sketch

estimator for the cardinality estimation problem [12]. Such an

estimator considers A∪B as a single stream and estimates its

cardinality. An estimation of |A ∩ B| can be found using the

inclusion-exclusion principle [8]. In [2], [6], [9], it is proposed

to estimate the Jaccard similarity and then use it to estimate the

intersection cardinality. In [2] the estimators are generalized

to set expressions between more than two streams.

III. SERVICE CHAIN VERIFICATION USING MAX

SKETCHES

The challenge of processing large volumes of data that

arrive at high speed has led the research community to

develop new families of algorithms that work over continuous

streams and produce accurate real-time estimations while

guaranteeing: (a) low processing time per element, (b) fixed-

size memory, which is sub-linear in the length of the stream,

and (c) high estimation quality. The two main families are:

• Sub-linear space algorithms, also known as sketch-based

streaming algorithms. These algorithms typically use a

sketch, namely, a small fixed-size storage that stores

a summary of the input data. Then, they employ a

probabilistic algorithm on the sketch, which estimates the

desired quantity.

• Sub-linear time algorithms. These algorithms are allowed

to see only a small portion of the input. A common

practice is to use sampling and process only the sampled

stream elements.

The scheme presented in this paper satisfies both, i.e., it

requires both sub-linear space and sub-linear time.

A. General Description

We start with a high-level description of the proposed

scheme, as depicted in Figure 2. Let V1, V2, . . . , Vk denote

the various service nodes (switches, routers, servers, etc.)

in a service chain. The datacenter operator determines a

set of requirements on the flows traversing these nodes and

translates them into their “equivalent set-expression cardinal-

ity equations”. Each participating node continuously samples

packets traversing through it and copies these packets to a

network processor, which periodically creates sketches and

sends them to a centralized entity (a “service chain verification

controller”). The controller uses the algorithm proposed in this

paper to verify that the various cardinality equations indeed

hold.

The basic building block in our scheme is to verify that all

the flows that traverse V1 also traverse V2. To simplify the pre-

sentation, we start by assuming that V1 is a single device and

so is V2. But we later show that each of them can be a set of

devices as well (e.g., V1 can be a set of ingress routers and V2

a set of firewalls). Suppose that at the considered time interval,

the packets seen by V1 are: a1, b1, b2, a2, c1, d1, d2, c2, a3, b3,

where “ai” represents the ith packet of flow a. Thus, the flows

traversing V1 are {a, b, c, d}. Our goal is to verify that all these

flows2 also traverse V2. This is equivalent to verifying that

|V1 \ V2| = 0.

2To reduce the number of notations, we use the name of a device, e.g., Vi,
to indicate also the set of flows traversing it.

An impractical approach to verify that |V1 \ V2| = 0 is to

send all the packets of V1 and V2 to the verifying controller. It

is even impractical to sample the packets traversing V1 and V2,

and send only the sampled packets to the verifying controller.

Therefore, in our scheme, sample packets are forwarded to

the local processor. This processor periodically creates a

sketch (“summary”) of the sampled packets, and sends to

the verifying controller only these sketches. Thus, as already

indicated, our scheme takes advantage of both sketching

and sampling and it is therefore very efficient.

The whole verification process is illustrated in Figure 3. As

described in Section V, we found that sending a sketch of only

3, 200 bits by each participating device is sufficiently accurate

for detecting service chain violations. Sketches are sent to the

controller periodically, according to the required monitoring

resolution.

B. A Building Block for the Proposed Service Chain Verifica-

tion Scheme

We now show how to convert each service verification

problem into its “equivalent set-expression cardinality equa-

tion”. Consider again the general scenario from Section I:

verifying that all the flows that enter through a given set

I = {I1, I2, . . . , Ip} of ingress devices afterwards traverse

one of multiple copies of egress devices from a set E =
{E1, E2, . . . , Eq}. Examples of this scenario include verifying

that all the flows that enter the datacenter through routers in I
traverse one of the firewalls in E, or verifying that after leaving

the firewalls (now the set I), all the HTTP flows traverse one

of the load balancers (E).

Proving that all the flows that traverse one of the devices in I
also traverse one of the devices in E is equivalent to verifying

that I \ E = ∅, and the latter is equivalent to verifying that

|∪Ij \ ∪Ek| = 0. The verifier of |∪Ij \ ∪Ek| = 0 is used as a

building-block of our scheme, and it is denoted ESD(I → E)
(ESD stands for “empty set difference”).

C. The Min/Max Sketch for Cardinality Estimation

A min/max sketch for cardinality estimation stores only

the minimum/maximum hashed value of a packet header.

When a packet of flow ej is received, a hash function h
is used in order to associate ej with a uniform random

variable, h(ej) ∼ U(0, 1). The expected minimum value of

h(e1), h(e2), . . . , h(en) is 1/(n + 1). When only one hash

function is used, the variance of the estimator is infinite. Thus,

multiple different hash functions are usually used in parallel.

In this case the estimator keeps the minimum/maximum value

for each hash function, and then averages the results. The

HyperLogLog algorithm [10] is the most practical approach

today for solving the cardinality estimation problem. Its rel-

ative standard error is 1.04/
√

m, where m is the number of

hash functions (and sketches).

To minimize the number of packets that have to be pro-

cessed, the proposed verification scheme processes only a

small sample of the stream, compute their max sketches

(or min sketch) and sends these sketches to the verifying

Fig. 3. The proposed verification scheme: each device samples the various packets, continuously creates sketches from the recently sampled packets, and
sends these sketches to the controller. The controller receives sketches from all participating devices and verifies that the various cardinality equations indeed
hold

controller. This is done in the following way. When a device

receives a packet, it determines whether or not to sample it,

according to the sampling rate. The header(s) of every sampled

packet, which uniquely identify a flow ID, is copied to the

host’s or NIC’s processor for local processing. The processor

hashes the flow ID of each sampled packet to a uniformly

distributed ∼ U(0, 1) random variable. It then computes the m
max sketch of the received sampled packets, and continuously

send these sketches, over a reliable (TCP) connection, to the

verifying controller.

The following example illustrates the process of generating

a max sketch. Suppose that the following packets are sampled

and forwarded to the processor:

a1, b1, b2, a2, c1, d1, d2, c2, a3, b3,

where “ai” represents the ith packet of flow a. Suppose also

that m = 2. Suppose that for the first hash function h1, we get

that h1(a) = 0.11, h1(b) = 0.82, h1(c) = 0.64, h1(d) = 0.55.

Thus, the max sketch for h1, to be sent to the controller, is

0.82. Suppose that for the second hash function h2, we get

that h2(a) = 0.74, h1(b) = 0.38, h1(c) = 0.41, h1(d) = 0.44.

Thus, the max sketch for h2, to be sent to the controller, is

0.74.

IV. THE PROPOSED SCHEME

Suppose that we want to verify that all the flows that enter

the datacenter through a set A of devices continue to one of

the devices in set B, and that the flows that enter B continue

to one of the devices in set C. This is translated into two

instances of ESD(I → E) verification. In the first instance,

I ≡ A and E ≡ B, while in the second instance, I ≡ B and

E ≡ C. In this way, we handle a service chain of any length.

To verify ESD(I → E), namely that |I \ E| = 0, the

following steps are taken:

(a) The nodes in I perform sampling, and compute the

m sketches as explained above.

(b) The nodes in E compute the m sketches only on

packets that traversed and were sampled by a node

in I . These sketches must not consider packets that

did not traverse a node in E or packets that traversed

a node in E but were not sampled by that node.

(c) The sketches from the nodes in I and from the nodes

in E are sent to the controller.

(d) For each of the m sketches, the controller views the

maximum received from all the nodes in I as the

sketch of the whole I set. Similarly, it views the

maximum received from all the nodes in E as the

sketch of the E set. For each of the m I sketches: (i)
it estimates the number of flows that have traversed

the I set and were sampled; (ii) it estimates the

number of flows that have traversed the I set, were

sampled and then traversed the E set; (iii) compare

the two numbers. There is a violation if for any

sketch, the two numbers are different.

There are several ways to enforce the requirements in (b)

using Network Service Header (NSH)[17]. The simplest way

is to use a bitmap in the NSH with a bit allocated to each

set of devices that implement the same function (A, B and

C in our example). For the verification of ESD(A → B),
when a packet traverse a node in A and it is sampled by that

node, the node sets the A-bit in the packet’s header bitmap.

When the packet traverses a node in B, that node samples

every packet whose A-bit is set. This concept is known as

coordinated sampling [5].

Consider m hash functions3, and let hI
j denote the maximal

hash values of all the nodes in I for the jth hash function.

We use h
(E,I)
j to denote the maximal hash value in the sketch

maintained by all the E nodes for the traffic received from I
and for the jth hash function.

Observation 1:

If there is no ESD(I → E) violation, hI
j = h

(E,I)
j holds for

each hash function j.

This observation leads to the following detection algorithm:

Algorithm 1:

1) Let the m max sketches of I be: hI
1, h

I
2, . . . , h

I
m.

2) Let the m max sketches of E with respect to the packets

received from I be:

h
(E,I)
1 , h

(E,I)
2 , . . . , h

(E,I)
m .

3) Return Violation if there exists j such that hI
j 6= h

(E,I)
j .

By Observation 1, each violation of the j’th maximum in-

dicates that the flow associated with hI
j does not traverse

E. A direct conclusion is that Algorithm 1 makes no false

detections.

We now analyze the number of violating flows required for

Algorithm 1 to detect the violation with a given probability,

and also derive the required number m of sketches. Let n be

the total number of flows traversing I , and let b be the number

of violating flows, namely, flows that traverse I but not E. In

addition, let ns be the sample cardinality and bs be the number

of violating flows in the sample. For the analysis, we make

the following assumption:

Assumption 1: The fact that f is a violating flow does not

affect the probability that it will be sampled.

Note that this assumption does not require all the flows to

have the same probability of being sampled, but that bs/ns is

highly concentrated around b/n.

Lemma 2:

In order for Algorithm 1 to detect an ESD(I → E) violation

with probability 1−A, the number b of violating flows needs

to satisfy

b > n · (1 − A1/m).

Proof:

For the jth hash function, recall that hI
j and h

(E,I)
j are the

maximal hash values in I and E respectively. Also, let eI
j and

e
(E,I)
j be the flows associated with these maximal hash values,

respectively. Assume that eI
j is a violating flow, namely, a flow

that traversed I but did not traverse E. From Observation 1

we obtain that hI
j 6= h

(E,I)
j . Thus, the violation is detected by

3We show later how m sketches can be computed using only 2 hash
functions, for every m.

Algorithm 1. The probability that eI
j will be a violating flow

is bs/ns. Thus, the detection probability is

Pr (detection probability) =

= Pr
(

∃eI
j such that eI

j is a violating flow
)

= 1 − Pr
(

all eI
j are not violating flows

)

= 1 − (1 − bs

ns
)m. (1)

For the detection probability to be larger than 1−A, we require

that

1 − (1 − bs

ns
)m > 1 − A,

or, equivalently, that

A > (1 − bs

ns
)m.

This yields that

bs/ns > 1 − A1/m,

which, by Assumption 1, can be approximated by

b/n > 1 − A1/m.

From Lemma 2 follows that in order to detect violation of

b violating flows with probability > 1 − A, the number of

maximal hash values should satisfy:

m =
1

logA (1 − b
n)

. (2)

V. SIMULATION STUDY

In this section we validate the presented schemes. We use 2

real traffic traces taken from [1]. These traces were collected

at the border router of the UCLA CS Department, and are

summarized in Table I.

Trace Number Number of Packets Number of Flows (n)

Trace 1 283,063 8,396

Trace 2 553,361 173,014

TABLE I
REAL TRACES USED FOR OUR SIMULATIONS

We want to verify that all the flows that enter through

a given set I = {I1, I2, . . . , Ip} traverse afterwards one of

multiple copies of another set E = {E1, E2, . . . , Eq}. We

use the traces to represent the entire incoming traffic received

via the p ingress devices. The total traffic represents n flows.

These n flows are divided into p subflows, each representing

the traffic entering through one ingress device. The division

of n flows to p ingress devices is made randomly.

In each simulation test we choose b ≥ 0 of the total n
received flows to be violating flows; i.e., flows that do not

traverse any egress device. When b = 0, there is no violation.

The goal of the verifying controller is to detect with high

probability and with minimal false detection probability all

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows

%
 d

e
te

c
ti
o
n

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows
%

 d
e
te

c
ti
o
n

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows

%
 d

e
te

c
ti
o
n

(a) m = 10, P = 0.001 (b) m = 100, P = 0.001 (c) m = 1000, P = 0.001

Fig. 4. Detection percentages for Trace 1

the cases where b > 0. A false detection occurs when the

verifying controller detects a violation although b = 0.

We start our study with p = 5 ingress and q = 3 egress

devices. In each simulation test we first set the value of m.

We then use 100 different values of b, equally spaced between

0 and n, i.e., b ∈ {0, n/100, 2n/100, . . . , n}. For each value

of b, we randomly choose b violating flows and apply the

detection algorithm. We repeat this process 100 times, each

with a different, randomly chosen, set of b violating flows.

For each value of b we get a vector: r
(b)
1 , r

(b)
2 , . . . , r

(b)
100, where

r
(b)
j = 1 if the algorithm detects a violation in the j’th run, and

r
(b)
j = 0 if not. We then average the results to obtain the de-

tection probability for this value of b: d(b) =
∑100

j=1 r
(b)
j /100.

For the case where b = 0, the detection probability d(0) is

actually the probability of false detection.

As expected, the false detection percentage is always 0, so

it is not discussed any more. Figure 4(a)-(c) show the results

of 1 for the first trace, and for three values of m: 10, 100 or

1000. For all these graphs, the sampling rate is P = 0.001.

It is evident that m = 10 is not enough for a good detection

probability. For example, for 20% violating flows and m = 10,

the violation is detected with ≈ 90%. Increasing m to 100
brings the detection probability to ≈ 100%. We can also see

that it is not needed to increase m beyond 100.

We repeated the same simulation with a sampling rate of

P = 0.01, and obtain almost the same detection percentages as

for P = 0.001. The results are not shown due to lack of space.

This indicates that Algorithm 1 is only negligibly affected by

the sampling rate.

Figure 5 shows the detection percentages for the second

trace. As before, we use P = 0.001 and consider three value of

m: 10, 100 and 1000. We see again that m = 10 is insufficient.

Increasing m to 100 yields excellent results, and it is not

needed to increase it further.

Table II compares the lower bound values of Algorithm 1

from the analysis (Lemma 2) to those obtained by the simula-

tions. Recall that the lower bound is the minimal percentage of

violating flows needed for Algorithm 1 to detect the violation

m accuracy analysis Trace 1 Trace 2

10
0.9 20.6 18 20

0.99 36.9 33 34

100
0.9 2.27 3 3

0.99 4.5 5 5

1000
0.9 0.22 1 1

0.99 0.46 1 2

TABLE II
COMPARING OUR LOWER BOUND’S ANALYSIS TO THE SIMULATIONS

RESULTS OF ALGORITHM 1

with a given accuracy (probability of success). In the table we

use P = 0.001. Two values of detection accuracy are used:

0.9 and 0.99, and three values of m: 10, 100 and 1000. We can

see that the lower bounds found by our analysis are always

very close to the actual values. We also obtain similar results

for P = 0.01. Thus, we conclude that Lemma 2 can be used

to determine the value of m required for obtaining a certain

detection accuracy.

VI. IMPLEMENTATION NOTES

It was shown that in order to get good accuracy, the

algorithm needs to use m sketches, where m ≈ 100. It is very

expensive for the processor to implement each sketch using

a different hash function and to hash every sampled packet

100 times. But in practice, the m sketches can be maintained

using only two hash functions, h1 and h2. When a sampled

packet is received by the processor, the first function is used

for hashing the relevant header fields (e.g., source/destination

IP addresses and source/destination port numbers) into a

uniformly distributed variable that represents the flow ID.

Then, the second hash function is used for splitting the flow

ID into one of m buckets. These m buckets replace the need

for m different hash functions. In addition, in order to increase

computation speed, the estimator does not keep the value of

the maximal sketch for each bucket, but rather only the highest

position of the leftmost 1-bit of each sketch, i.e., the largest

i ≥ 0 such that the i − 1 leftmost bits are all 0.

Today, many virtualized servers are connected to the net-

work by means of a new generation of intelligent network

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows

%
 d

e
te

c
ti
o
n

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows
%

 d
e
te

c
ti
o
n

0 20 40 60 80 100

0
2
0

6
0

1
0
0

% violating flows

%
 d

e
te

c
ti
o
n

(a) m = 10, P = 0.001 (b) m = 100, P = 0.001 (c) m = 1000, P = 0.001

Fig. 5. Detection percentages for Trace 2

interface cards (NICs), also known as smartNICs. These smart-

NICs can be implemented in many flexible ways to perform

complex actions that save host’s CPU cycles. A SmartNIC

hosts a programmable engine that allows for the implementa-

tion and extension of the NICs functions, e.g., for offloading

expensive operations from the host’s CPU to the NIC. The

core of the SmartNIC is a programmable element that can be

a multicore system-on-chip (SoC), based on general-purpose

CPU cores (mainly ARM cores)[13].

When a smartNIC is used by the considered network

function, the proposed scheme can be implemented in the

following way. The NIC samples the packets and forwards the

headers of the sampled packets to the NIC’s cores. The cores

compute the 2 hash functions and the sketch for each sampled

packet. The m sketches are maintained on the NIC’s memory,

and are periodically transferred to the controller, using RDMA.

We believe that RDMA Unreliable Datagram (UD) is the best

service type for these messages. Using this implementation,

the proposed scheme does not impose any processing burden

on the host’s general purpose CPU.

VII. CONCLUSION

In this paper we studied the problem of service chain verifi-

cation, namely, verifying that all the traffic that should traverse

a specific service chain indeed follows the intended path. We

presented a novel scheme for efficiently and accurately solving

many aspects of service chain verification using a statistical

algorithm that needs to observe only a small fraction of the

traffic. The proposed scheme takes advantage of both sketching

and sampling and is therefore very efficient in terms of its

processing and bandwidth requirements. Simulation results,

using real traffic traces, showed that the proposed scheme can

detect chain violation with very good accuracy.

REFERENCES

[1] UCLA traffic traces. https://lasr.cs.ucla.edu/ddos/traces/.

[2] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla.
On synopses for distinct-value estimation under multiset operations. In
SIGMOD 2007.

[3] F. Brockners et al. Proof of transit. IETF Internet-Draft, 2020.

[4] P. Clifford and I. A. Cosma. A statistical analysis of probabilistic
counting algorithms. Scandinavian Journal of Statistics, 2011.

[5] E. Cohen and H. Kaplan. What you can do with coordinated samples.
In Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, 2013.
[6] R. Cohen, L. Katzir, and A. Yehezkel. A minimal variance estimator

for the cardinality of big data set intersection. In KDD 2017.
[7] R. Cohen, L. Katzir, and A. Yehezkel. A unified scheme for gener-

alizing cardinality estimators to sum aggregation. Inf. Process. Lett.,
115(2):336–342, 2015.

[8] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations

and Trends in Databases, 4(1-3):1–294, 2012.
[9] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining

database structure; or, how to build a data quality browser. In SIGMOD

Conference, pages 240–251, 2002.
[10] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the

analysis of a near-optimal cardinality estimation algorithm. In Analysis

of Algorithms (AofA) 2007.
[11] M. Flittner, J. M. Scheuermann, and R. Bauer. Chainguard: Controller-

independent verification of service function chaining in cloud comput-
ing. In ”IEEE NFV-SDN 2017”, 2017.

[12] P. B. Gibbons. Distinct-values estimation over data streams. In Data

Stream Management - Processing High-Speed Data Streams, pages 121–
147. 2016.

[13] L. Linguaglossa et al. Survey of performance acceleration techniques
for network function virtualization. Proceedings of the IEEE, 107(4),
2019.

[14] G. Liu et al. Don’t yank my chain: Auditable NF service chaining. In
NSDI 2021.

[15] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. SCREAM: sketch
resource allocation for software-defined measurement. In CoNEXT 2015.

[16] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-
fying middlebox policy enforcement using SDN. In SIGCOMM 2013.

[17] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
RFC 8300, Jan. 2018.

[18] P. Quinn and T. Nadeau. Problem Statement for Service Function
Chaining. RFC 7498, Apr. 2015.

[19] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez. Sla-
verifier: Stateful and quantitative verification for service chaining. In
IEEE INFOCOM 2017.

