
Hardware SYN Attack Protection For High Performance Load Balancers

Reuven Cohen1, Matty Kadosh2, Alan Lo2, and Qasem Sayah1

1Department of Computer Science, Technion, Israel
2Nvidia

Abstract
SYN flooding is a simple and effective denial-of-service at-
tack, in which an attacker sends many SYN requests to a
target’s server in an attempt to consume server resources and
make it unresponsive to legitimate traffic. While SYN attacks
have traditionally targeted web servers, they are also known to
be very harmful to intermediate cloud devices, and in particu-
lar to stateful load balancers (LBs). Fighting against a SYN
attack without negatively affecting legitimate connections is
not easy, especially if the LB needs to perform frequent server
pool updates during the attack, which is very likely since
attacks can often last for many hours or even days.

We are the first to propose LB schemes that guarantee high
throughput of one million connections per second, while sup-
porting a high pool update rate without breaking connections,
and fighting against a high rate SYN attack, of up to 10 million
fake SYNs per second.

1 Introduction

A SYN flood attack is an easy, effective, and popular form of a
distributed denial of service (DDoS) attack, which exploits the
TCP three-way handshake connection establishment process
[24]. This process starts when the client sends a SYN packet
to the server. The server creates a new state for the to-be-
established connection, sets this state to "half-open" and sends
a SYN of its own to the client. Upon receiving an ACK to its
SYN, the server changes the connection’s state to active.

Servers have limited resources for half-open connections,
and they place a threshold on the maximum number of such
connections. When this threshold is reached, new SYNs are
dropped. In a SYN flood attack, the attacker sends many fake
SYN packets to the victim server, without completing the
three-way handshake for these SYNs. These fake SYNs may
consume all of the resources allocated by the server for half-
open connections, and the server must then drop new SYNs,
including those of legitimate connections.

SYN flood attacks have been known about for many years.
Their popularity stems from their capacity to be performed

distributedly, using spoofed source IP addresses, and how
difficult it is to mitigate them. In this paper, we study the im-
pact of this attack on state-of-the-art hardware load balancers
employed by cloud operators.

In a cloud network, a cloud service can be identified by a
virtual IP (VIP) address. Each VIP is mapped to a pool of
servers, and each server is uniquely identified using a direct
IP (DIP) address. Since there can be many DIPs associated
with the same VIP, a load balancer (LB) is needed. The LB
distributes the connections destined for a certain VIP to the
various DIPs associated with this VIP. For each TCP connec-
tion, a "connection key" is calculated using a hash function
on the packet header’s 5-tuple. The key is identical for all the
packets of the same connection, and the LB must ensure that
all the packets with the same key are forwarded to the same
DIP, as long as this DIP does not malfunction. This is known
as per-connection consistency (PCC) [11].

PCC must be guaranteed even if the DIP pool changes.
Such a change happens when more DIPs are added to the
pool, when some DIPs have to be gracefully taken down, or
when the assignment function has to be changed.

While SYN attacks have traditionally targeted web servers,
they are known today to be very harmful also to intermediate
cloud devices, and in particular to LBs. Most of the hardware
load balancers known in the literature [10, 19] are suscep-
tible to such attacks. SilkRoad [19] addresses SYN attacks
by associating a rate-limiter to the SYNs forwarded to each
VIP for detecting and dropping excessive traffic. If an upper
rate threshold is crossed, SYN packets for the given VIP are
dropped. A similar approach is used by firewall and proxy
devices [6, 23]. However, with this approach, the LB does
not distinguish between real SYNs and fake SYNs, and
drops them together. This creates a huge negative impact on
the setup time of real connections. In this paper, we propose
schemes that use the LB’s hardware to discard fake SYNs
only, with no impact on real connections.

Fighting against a SYN attack without negatively affecting
legitimate connections is not easy. But it is even more difficult
if the LB needs to perform a pool update for a server under
attack, which is very likely since attacks can often last for

1

many hours or even days. This is mainly because the same
hardware resources needed for guaranteeing PCC during a
pool update are also needed to fight SYN attacks.

This paper is the first to propose LB schemes that guaran-
tee (a) a high connection rates of one million connections per
second, and up to 100 million total connections, while (b) sup-
porting a high pool update rate (more than 1 VIP per second)
without breaking connections, and (c) fighting against a high
rate SYN attacks (up to 10 million fake SYNs per second)
without affecting real connections.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents background infor-
mation. Section 4 discusses the challenges imposed by SYN
attacks on the LB. Section 5 presents our cookie hardware
table (CHT), which allows us to distinguish between real and
fake connections. Section 6 discusses pool updates during a
SYN attack. Section 7 presents a proof of concept. Section 8
describes how to mitigate almost any SYN attack rate using
switch cryptography support, and Section 9 concludes the
paper.

2 Related Work

SYN attack mitigation using SYN cookies was shown to
perform better than other solutions [15, 17]. While it was
believed that with SYN cookies, the server must reject all
TCP options, some solutions were proposed to address this
problem [17, 25].

SYN cache [15] is another technique that can be used to
defend against SYN flood attacks. In contrast to using SYN
cookies, which do not require the server to keep any state
following the receipt of a SYN1 packet, SYN cache aims
to reduce the size of a connection state. The idea is that
instead of a per-socket queue, a global hash table is used for
holding connection states. The hash table is implemented
using a limited number of hash buckets. A new connection
state is inserted into a specific hash bucket according to the
connection 5-tuple and a secret hash key. This prevents the
attacker from targeting a specific hash bucket.

Another approach for fighting against SYN attacks in data-
centers is using a SYN proxy [6] – an intermediate network
device that verifies the completion of the three-way hand-
shake before the connection is forwarded to a server. This
concept can be used by modern LBs, but its scalability is in
no way comparable to the schemes presented in this paper.

Beamer [21] is a stateless software LB, which argues that
stateful LBs are unable to cope with SYN flood attacks. In
[21], it is shown that under a SYN flood attack of one million
SYNs per second, Beamer is not affected, while stateful LBs
start breaking connections.

Ananta [22] is Microsoft’s software LB, deployed in the
Azure public cloud. Ananta handles SYN flood attacks by iso-
lating inbound traffic to the attacked VIP. The attack detection
time can be more than 120 seconds for a busy VIP. Moreover,

this solution completely shuts down the VIP service, unlike
the solutions proposed in this paper.

Finally, SilkRoad [19] is a hardware stateful LB that ad-
dresses SYN attacks by associating a rate-limiter to the SYNs
forwarded to each VIP. This rate-limiter is used for detecting
excessive SYN rate. Like in Ananta, upon detecting an attack,
SYNs received for the attacked VIP are dropped. Thus, the
attacked VIP cannot serve legitimate connections until the
attack stops.

3 Background

In TCP, connection establishment is a three-way handshake,
which requires a SYN from the client, a SYN from the server,
and an ACK from the client for the server’s SYN. For the rest
of this paper, these packets are referred to as SYN1, SYN2,
and ACK3, respectively.

3.1 Prism LB

While the schemes proposed in this paper are applicable to
many LB technologies, it is easier to present them in the
context of a specific architecture. Prism is a newly proposed
LB architecture that can handle an arrival rate of one million
new connections per second, and a total number of more than
100 million simultaneous connections, while supporting more
than one pool change per second and guaranteeing PCC [5].

Standard hardware LBs use a hardware equal-cost multi-
path (ECMP) table, which forwards packets destined for the
same logical address to different "next hops".1 Each VIP has
its own ECMP table, which holds the next hop information
for each DIP in this pool. Packets are mapped based on their
connection’s signature to one of the ECMP table entries (also
known as "bins"). For example, the ECMP table in Figure 1
holds the pool {DIP1, DIP2, DIP3, DIP4} for VIP1. This
specific table aims to balance the load between the four DIPs
evenly, and therefore 1/4 of the entries are allocated to each
of the four DIPs.

Prism’s main contribution is guaranteeing PCC while main-
taining a hardware state only for connections affected by a
pool update. These connections are inserted into a special
hardware table, called MCT (migrated connection table). For
example, suppose that the content of bin 3 in Figure 1 changes
from DIP3 to DIP4. Every connection whose packets were
forwarded to bin 3 before the change is added into the MCT,
and its MCT entry indicates that packets of this connection
must be forwarded to DIP3. Packets received by Prism from
the clients are first checked against the MCT for a hit (Figure
1). If there is an MCT hit, the identity of the DIP to which the
packet should be forwarded is taken from the corresponding
MCT entry. If there is no MCT hit, the packet continues to

1A "next hop" can be a switch port, a tunnel, a MAC address, or an IP
address.

2

SYN,
FIN or
RST?

packet

MCT
connection signature DIP

conn1-signature DIP1
conn2-signature DIP2

Hash

ECMP Table
of VIP1
1. DIP1
2. DIP2
3. DIP3
4. DIP4

...
125. DIP1
126. DIP2
127. DIP3
128. DIP4FIB(SYN/FIN/RST)

VIP connection signature
VIP3 conn3-signature
VIP4 conn4-signature

forward packet

no

yes

miss

hit

Figure 1: Packet flow for a specific VIP (VIP1) in Prism

the ECMP table, where it finds the default DIP corresponding
to its connection signature.

The length of the ECMP table for each VIP is determined
according to the expected traffic distribution, such that the
number of connections routed through the same bin does not
exceed a certain threshold. This is important because during
a server pool update, all the connections associated with the
same bin might have to be added into the MCT within a short
time period.

When a SYN is received by Prism, the signature of the
packet’s 5-tuple is recorded by a hardware learning table,
called FIB(SYN1). To make sure that the server agrees to
establish the connection, Prism also records signatures of the
SYN2 packets, coming from the servers, in a FIB(SYN2)
table. The software periodically fetches these FIB tables, and
inserts the learned signatures into the software connection
table (SCT).

While the MCT maintains a state only for connections
whose default bin has changed, the SCT is used for tracking
the status of all open connections. Each signature fetched
from FIB(SYN1) is inserted into the SCT with a pending
(half-open) state. The state is updated to active upon capturing
a corresponding server SYN2 in FIB(SYN2). Prism also uses
a FIB(FIN1) table to learn about FIN packets sent by the
clients, and a FIB(FIN2) table to learn about FIN packets sent
by the servers. Upon receiving two FINs for a connection,
Prism removes the connection signature from the SCT and
from the MCT, if applicable.

Prism hashes the connection 5-tuple key into a shorter
connection signature, because the 5-tuple is too long to be
used in the hardware tables. Using signatures introduces col-
lisions, i.e., connections with different 5-tuple keys, but with
the same signature. In Prism, signatures are designed such
that if two different connections have the same signature, they
must have the same VIP. Thus, Prism deals with hash colli-
sions by maintaining a counter that indicates the number of
different connections currently mapped to the same SCT (and
MCT, when applicable) entry.

3.2 SYN Cookies

SYN cookies [3, 7, 24] represent a technique used by servers
to protect against SYN flood attacks. Without this technique,
a server that receives a SYN packet constructs a SYN queue
entry for the connection state, and sends a SYN packet back
to the client. This SYN packet has a random initial sequence
number. When the server receives an ACK for its SYN, it
removes the connection from the pending connection queue,
and creates an active regular connection.

With SYN cookies, the server does not maintain a state
for pending connections. Rather, upon receiving a SYN1, it
creates a SYN2 of its own, with a special initial sequence
number known as a cookie. When the server receives an ACK
that fits no existing connection, it checks if this ACK con-
tains a sequence number that can be considered a legitimate
cookie, and therefore could have been sent as a response to a
SYN2. If this is the case, the server considers this ACK as a
legitimate ACK3, and creates a new corresponding connec-
tion in the SCT. If the server uses SYN cookies whenever
its queue of pending connections reaches a certain threshold,
and in particular during a SYN attack, it can continue accept-
ing new connections without allocating resources to pending
connections.

A SYN cookie is a 32-bit number that consists of (see Fig-
ure 2): (a) a 5-bit timestamp with a resolution of 64 seconds,
used for preventing replay attacks; (b) three bits derived from
the maximum segment size (MSS) of the connection; (c) a
24-bit hash of the connection 5-tuple and a secret key. A SYN
cookie is verified as follows. First, the timestamp is checked
to make sure that this ACK falls into the correct time interval.
Then, the packet’s 5-tuple is hashed and checked against the
first 24 bits of the cookie. If there is no match, the ACK is
dropped. Otherwise, the cookie is considered legitimate and a
corresponding connection is established. The MSS value for
the established connection is derived from the the cookie’s
MSS 3-bit field.

0 . . . 23 24 25 26 27 . . . 31

hash (5-tuple, key) MSS timestamp

Figure 2: A standard 32-bit SYN cookie

4 Challenges Imposed by SYN Attacks on the
LB

As explained in Section 3.1, Prism creates a connection state
in the SCT when the client’s SYN is fetched by the software
from the FIB(SYN1) table. Then, the software inserts the
connection’s signature as a new SCT entry whose state is
pending. Later, when the software fetches the corresponding

3

server’s SYN from the FIB(SYN2) table, Prism updates the
signature’s state in the SCT to active.2

From the above description follows that there is a signif-
icant difference between Prism and the server when a new
connection is established. Prism needs only SYN1 and SYN2
packets to set a connection as active, while the server also
needs the ACK3 packet. This implies that Prism may consider
fake connections as real, and will have to spend expensive
MCT resources to get rid of them. This is a problem of all
hardware-based LBs. For example, SilkRoad [19] inserts all
fake connections into its hardware table and removes them
only after a timeout.

Prism was designed to address the following challenges
using standard, programmable, switch hardware:

• Challenge-1 Performance: supporting an arrival rate of
one million connections per second, and up to 100 mil-
lion simultaneous active connections. This requires that
all packets, including SYNs, be processed by the hard-
ware.

• Challenge-2 PCC: ensuring per-connection consistency
under a heavy pool update rate of more than 1 VIP per
second.

SYN attacks introduce a new challenge as follows:

• Challenge-3 Coping with a very high rate of fake SYNs,
while preventing any impact on real connections. When
we started this research, we hoped to mitigate an attack
of one million SYNs per second on a single VIP, while
not affecting the one million connections per second
received for all VIPs. But eventually we were able to
mitigate a much higher rate, of 10 million fake SYNs
per second.

With respect to Challenge-3, the following switch con-
straints play a critical role:

• FIB-constraint Keeping the size of the FIB tables small
not only during normal operation but also during a SYN
attack, without missing real SYNs. This constraint
arises because the FIB(SYN1) and FIB(SYN2) tables
record all SYN packets, including those of fake connec-
tions. Since these hardware tables have limited length
and the software is limited to fetching only a few mil-
lions FIB entries per second, fake SYNs may prevent
real SYNs from being recorded.

• MCT-constraint The MCT is used for guaranteeing
PCC following a pool update. Like the FIB learning

2If a signature remains in the SCT "too long", namely, longer than N
times the average lifetime of a connection with the corresponding VIP (N is
a per-VIP parameter whose default value is 2), the signature is copied into
the MCT to verify that it is active. If it is found to be active, i.e., a packet
from the client is received for this signature within a short timeout period,
the signature is removed from the MCT and kept only in the SCT. Otherwise,
it is removed from both tables.

Symbol Meaning Value
rreal arrival rate of real SYNs 1 million/s
rfake arrival rate of fake SYNs to be maximized

rpolling polling rate of the FIB 100/s

|pool| number of servers (DIPs)
in the pool of a VIP

up to a few
thousands

#bin
number of ECMP entries
(bins) allocated to a VIP

up to a few
thousands

#binTotal
total number of bins
allocated to all VIPs

up to 100,000

|CHT| number of cookies in CHT up to 100,000
RTTmax maximum tolerable RTT 10–50ms

TRST
the time a server waits for

ACK3 before sending a RST
5s

TCHT
the timeout for removing a

cookie from CHT
RTTmax

Tconnection average connection lifetime 100s

Tsuspected

time after which an active
signature is suspected to be

inactive

N·Tconnection

(default N=2)

TMCT

the time a signature stays in
the MCT for activity

detection
5s

Texposed

the time between inserting a
fake signature into the SCT

and removing it
TCHT

Table 1: Notations

tables, the MCT is also very limited: it is designed for
holding only a small fraction of the connections (up to
0.1%), and the rate of adding new connections into it is
also limited.3 If these scarce MCT resources are used
for fake connections, the LB will not be able to use them
for real connections during a pool update, and these real
connections will be broken.

For the rest of the paper, the scheme described in Section
3.1 is referred to as Scheme-1. This scheme can work un-
der a SYN attack if the server does not use SYN cookies,
in the following way. When a server receives a fake SYN,
it waits a short configurable timeout for the client to send
an ACK3, and then resets the connection by sending a RST
packet. Prism records RST packets coming from the servers
in a FIB(RST) hardware table. It periodically reads this table
and removes the corresponding connections from the SCT
and, when applicable, also from the MCT.

However, Scheme-1 has the following problems (Table 1
presents notations used throughout the paper for analysis):

1. The scheme does not work when the servers use SYN
cookies. This is because in such a case the servers do
not send a RST packet for unestablished connections.

2. Violation of Challenges 1, 2, and 3: Under a heavy SYN

3In our prototype switch, this rate is ≈ 25,000 per second.

4

attack, the LB is unable to accommodate a rate of one
million real connections per second, and it cannot sup-
port a high rate of pool update while ensuring PCC. Our
prototype shows that the LB is not even close to achiev-
ing these challenges.

Scheme-1 does not address Challenges 1, 2, and 3 due
to hardware limitations. With respect to the FIB-constraint,
under a SYN attack, the length of the FIB tables significantly
increases. With no attack, FIB(SYN1) needs to maintain rreal

rpolling

entries, where rreal is the arrival rate from real clients and rpolling

is the FIB polling rate. Under a SYN attack, FIB(SYN1)
needs to maintain rreal+rfake

rpolling
entries – an increase by a factor of

rreal+rfake

rreal
. For example, if rreal = 1 million per second, rfake = 10

million per second, and rpolling = 100 per second, the number of
entries needed to be recorded by FIB(SYN1) and FIB(SYN2)
increases by a factor of 11, from 10,000 to 110,000.

With respect to the MCT-constraint, under a SYN attack,
the length of the MCT during a pool update also significantly
increases. Using Scheme-1, a VIP under attack requires the
MCT to maintain additional [1

|pool| · rfake · Texposed] fake signa-

tures4, where |pool| is the number of servers in the pool of
the attacked VIP. As shown in [5], the MCT holds at most
70,000 entries during the most aggressive update rate (1 bin
per second, each holding ≈ 1,000 connections). With Texposed

= 5 seconds, |pool| = 100, and a SYN attack rate of rfake = 10
million per second, the MCT would need an additional 500K
entries – an increase by a factor of 8.

State-of-the-art LB architectures address SYN attacks us-
ing two thresholds for the number of pending connections
associated with each VIP [19]. When the upper threshold is
crossed, the LB drops SYN1 packets that are destined for the
given VIP until the number of pending connections reaches
the lower threshold. But this approach does not distinguish
between real and fake connections, and it therefore violates
Challenge-1 and Challenge-3. It also violates PCC (Challenge-
2), because fake SYNs consume the MCT resources that are
needed during pool updates.

5 Using a Cookie Hardware Table (CHT)

5.1 Procedure-2a
We now introduce a new LB procedure, called Procedure-2a,
whose most important property is that connection signatures
are added into the SCT only when their ACK3 packet is
received. Using Procedure-2a, SYN1 packets are completely
ignored by the LB, and SYN2 packets are only processed
by the hardware. Thus, the software and the SCT are never
exposed to fake SYNs.

4Upon adding or removing a DIP, approximately 1
|pool| of the bins of

the given VIP are modified. Thus, 1
|pool| of the signatures of this VIP are

expected to be added into the MCT.

Procedure-2a
is enabled?

SYN1 packet

FIB(SYN1)
VIP connection signature
VIP3 conn3-signature
VIP4 conn4-signature

forward packet

no

(use Scheme-1)

yes

(a) SYNs coming from the clients (SYN1)

Procedure-2a
is enabled?

SYN2 packet

FIB(SYN2)
VIP connection signature
VIP1 conn1-signature
VIP2 conn2-signature

CHT
VIP cookie

VIP3 cookie3
VIP4 cookie4

forward packet

no

(use Scheme-1)

yes

(b) SYNs coming from the servers (SYN2)

Figure 3: The flow of SYNs for Procedure-2a

When Prism suspects that there is a SYN attack on some
VIP5, it executes Procedure-2a rather than Scheme-1 on pack-
ets sent to and received from this VIP. In Procedure-2a, Prism
uses a new hardware table called a CHT (Cookie Hardware
Table) for recording SYN cookies from the SYN2 packets
coming from the servers of the attacked VIP’s pool.

Figure 3 shows the packet flow for Procedure-2a. As al-
ready said, this procedure completely ignores SYN1 packets
(Figure 3(a)). When a SYN2 packet is received, the sequence
number field of this packet plus 1 is considered as a SYN
cookie and is recorded by the CHT (Figure 3(b)). If Prism
does not consider a VIP to be under attack, it runs Scheme-1
on all the packets sent and received for this VIP.

Figure 4 presents the flow of every ACK packet coming
from the clients in Procedure-2a. When Prism receives such
a packet, it does not know if this is an ACK for a server’s
SYN, namely, ACK3, or an ACK for a "regular" non-SYN
packet. Thus, it must process all ACKs in the same way. It first
checks the acknowledgment sequence number field against
the CHT. If there is no match, the packet is considered a regu-
lar ACK (not ACK3), and is forwarded to the server. If there is
a match, the packet is considered an ACK3 and its signature is
recorded by a FIB(ACK3) table. This is a new table, not used
by Scheme-1. When FIB(ACK3) is fetched by the software,
a new SCT entry is created for this signature, and its state is
set to "active”. Thus, the FIB(ACK3) table of Procedure-2a

5When exactly to start running Procedure-2a is an important question,
addressed in Section 6.4.

5

Procedure-2a
is enabled?

ACK packet

MCT
connection signature DIP

conn1-signature DIP1
conn2-signature DIP2

Hash

ECMP Table
of VIP1
1. DIP1
2. DIP2
3. DIP3
4. DIP4

...
125. DIP1
126. DIP2
127. DIP3
128. DIP4FIB(ACK3)

VIP connection signature
VIP3 conn3-signature
VIP4 conn4-signature

CHT
VIP cookie
VIP3 cookie3
VIP4 cookie4

forward packet

no

(use Scheme-1)

yes

miss

hit

miss

hit

Figure 4: The flow of ACK packets coming from the clients
in Procedure-2a

actually replaces the FIB(SYN1) and FIB(SYN2) tables of
Scheme-1.

The CHT is implemented as a hardware-based cuckoo hash
table [14, 16]. Every ACK packet sent to a VIP for which
Procedure-2a is enabled is checked in O(1) against every CHT
entry associated with this VIP. Each cookie is maintained by
the CHT for a timeout period, whose value is equal to RT Tmax,
a constant that indicates the maximum tolerable RTT in the
system. After the timeout period, the entry is removed by the
hardware.

Prism’s algorithm for Procedure-2a can be summarized as
follows:

– Ignore SYN1 packets.

– Upon receiving a SYN2 packet, insert the packet’s
cookie into the CHT.

– Upon receiving a client ACK packet, check its acknowl-
edgment number against the CHT. If there is a hit (this is
an ACK3), add the ACK’s signature into the FIB(ACK3)
table and forward the packet to the server. If there is no
hit, forward the packet to the server.

– Read FIB(ACK3) periodically. Consider all signatures
as new active connections and add them into the SCT.

Procedure-2a has two important properties:

1. SYN2 packets for which no ACK3 is received are never
considered as pending or active connections and are
never added to the SCT. Moreover, the cookies of such
SYNs are quickly removed from Prism. This makes
Prism completely transparent to fake SYNs.

2. Procedure-2a works correctly also for a VIP whose
servers do not use SYN cookies. This is because re-
gardless of whether a server uses or does not use SYN

rfake

TCHT 10ms 20ms 50ms

0/s 10K 20K 50K
1 million/s 20K 40K 100K

10 million/s 110K 220K 550K

Table 2: The maximum number of CHT entries needed for
Procedure-2a, as a function of rfake and TCHT

cookies, the client is always required to send an ACK3
with a legitimate acknowledgment number.

Procedure-2a addresses Challenges 1 and 3 by processing
all packets in hardware and not dropping legitimate SYN1
packets. However, as shown in Section 6, it does not guarantee
PCC when a VIP’s pool is updated during a SYN attack, and
it therefore violates Challenge-2. Section 6 also shows how
to solve this problem.

In Procedure-2a, the length of the CHT grows linearly with
rfake and TCHT, namely, the rate of the attack, and the timeout
after which a cookie is removed from the table. Table 2 shows
the number of entries needed for certain rfake and TCHT values.
Not all these combinations can be supported by today’s off-
the-shelf switches. For example, in Spectrum 2 [18], there are
only 512K available hardware entries, which must be shared
between all tables.

Thus, with today’s hardware, Procedure-2a can handle 10
million fake SYNs per second only if TCHT = RTTmax = 10ms.
But, RTTmax can be 10ms only if the cloud uses regional data-
centers that are located close to the users [1, 20].

5.2 False Positive Analysis
Procedure-2a may introduce false positive CHT hits. A false
positive here is an ACK that hits a CHT entry not because
it was sent as a response to a SYN2, but because it acciden-
tally contains an acknowledgment number that appears in the
CHT. False positives can be divided into two categories: (1)
an ACK of an active connection that hits a real cookie or
(2) an ACK of an active connection that hits a fake cookie
(a cookie generated from a fake SYN1). In both cases, the
ACK’s connection signature is learned by FIB(ACK3), and
then fetched by the software and added into the SCT as active.
Such an anomaly, where the SCT contains a connection that
does not actually exist, may happen not only due to CHT false
positives, but also due to other exceptions, such as a failure
of a client before sending a FIN. Prism knows to handle such
exceptions with a small overhead [5].

Since the length of a SYN cookie is 32 bits, the probabil-
ity for a "regular ACK" (not ACK3) to falsely hit a cookie
is |CHT|

232 . Assuming that at most 100 million normal ACKs
pass through Prism every second6, the expected number of

6 The switch can forward tens of millions of ACKs per second, depending

6

false positive signatures per second is 2,328, assuming that
the CHT holds 100,000 cookies at any time. Each of these
signatures stays in the SCT for Tsuspected seconds, after which the
signature is copied into the MCT for activity detection. This
means that the total number of false positive signatures held
by the SCT is 2,328 ·(Tsuspected +TMCT) = 710,000, an overhead
of only 0.71%. After TMCT seconds in the MCT, a false positive
signature is considered inactive and removed from the MCT
and SCT. This means that approximately 5 · 2,328 = 11,640
false positive signatures are expected to be in the MCT simul-
taneously for activity detection. Since the maximum MCT
length (with a pool update rate of 1 per second) is ≈ 70,000
[5], false positive signatures impose an overhead of ≈ 16%
on the MCT.

To reduce this overhead, we add an extra 16-bit field to
each CHT entry (Figure 5). These bits store a hash of the
SYN2 packet’s 5-tuple.7 Using this "extended cookie", the
probability for a regular ACK to falsely hit an extended cookie
is only |CHT|

248 . With a rate of 100 million regular ACKs per
second, the expected false positive rate drops to approximately
one every 28.15 seconds, which is translated into at most 1
false positive signature in the MCT at any given time.

0 . . . 15 16 . . . 47

hash (5-tuple) SYN cookie

Figure 5: A 48-bit extended CHT entry for reducing false
positive probability

6 Pool Updates During a SYN Attack

6.1 Procedure-2a May Violate PCC

The importance of PCC during pool updates has been a well-
known issue for years [8, 11, 12]. Performing a pool update
during a SYN attack is even more important than performing
an update during regular operation, because the VIP operator
may wish to mitigate the attack by adding more DIPs, or by
taking down some DIPs for software update.

When Scheme-1 is used, Prism can support up to one
million new connections per second, while accommodating
a high pool update and guaranteeing PCC [5]. To explain
how Scheme-1 guarantees PCC, we define "affected bins" as
ECMP bins whose content should be modified during the con-
sidered pool update, and "affected signatures" as connection
signatures that have been mapped to affected bins.

on its throughput and on the packet MTU. For example, with a throughput of
1Tb/s and an MTU of 1,500 bytes, the number of ACKs is ≈ 92 million per
second.

7This is similar to the connection signature, except that the full signature
contains 64 bits and not only 16.

Scheme-1’s pool update algorithm is separately invoked
for each affected bin in the following way. First, all signatures
of the given bin are copied into the MCT in one or more
iterations. Iteration i+ 1 is needed only if new SYNs are
received for the given affected bin during iteration i. In most
cases, this process converges after 1-2 iterations [5]. Only
then can the bin’s content be updated. In a system with 1,000
VIPs, each with 100 DIPs serving roughly the same number of
active connections, Prism can perform at least 20 bin updates
per second, each with 1,000 signatures on average. This is
roughly equivalent to adding or removing one DIP per second.

We have seen that in Procedure-2a, the SYN1 and SYN2
packets are not recorded, and only ACK3 packets trigger the
insertion of a connection into the SCT. While this allows
Prism to address Challenges 1 and 3, it violates PCC during a
pool update. To understand why, consider a connection whose
SYN1 is directed to bini at tSYN1, and its ACK3 is received by
the LB at tACK3. Let t be the time when the content of bini is
updated, say from DIP1 to DIP2, and consider the following
possible relationships between t, tSYN1 and tACK3:

1. t < tSYN1: in this case PCC is guaranteed, since both SYN1
and ACK3 are forwarded to DIP2.

2. t > tACK3: in this case PCC is guaranteed in the following
way. First, both SYN1 and ACK3 are forwarded to DIP1.
Then, between tACK3 and t, the connection’s signature is
added to the MCT. This guarantees that all future packets
of this connection continue to be forwarded to DIP1 until
the connection ends.

3. tSYN1 < t < tACK3: this is a faulty case. First, the SYN1
packet is forwarded to DIP1. Then, the content of bini is
modified while Prism is unaware of this connection, and
has no entry for this connection in the MCT or the SCT.
Finally, the ACK3 is sent to DIP2 and the connection is
broken.

6.2 Procedure-2b
From the previous discussion, we can conclude that to guar-
antee PCC, we must make Prism aware of SYN1 packets.
We now present Procedure-2b. The new procedure is similar
to Procedure-2a, except that the signatures of SYN1 packets
are also recorded by FIB(SYN1). The software periodically
fetches these signatures, adds them into the SCT, and sets the
state of each signature to pending. This state is later modi-
fied to active upon receiving the corresponding ACK3 packet.
An SCT entry that remains pending for a timeout period is
considered fake and is removed.

The pool update algorithm for Procedure-2b is the same as
for Scheme-1. For each affected bin, all affected signatures are
copied into the MCT, including those whose state is pending.
Some of these pending signatures are fake, but their timeout
has not yet expired, so they cannot yet be distinguished from
real ones.

7

Like in Scheme-1, the SCT in Procedure-2b needs to hold
approximately [rfake ·Texposed] fake pending signatures. However,
while in Scheme-1 Texposed is equal to TRST = 5s, in Procedure-
2b, it is equal to TCHT = RTTmax. This reduces the overhead
of fake signatures on SCT by a factor of 100-500, as shown
in Table 3. For example, with rfake = 10 million SYNs per
second and RTTmax = 10ms, the overhead in Scheme-1 is 50%,
as discussed in Section 4, while the overhead in Procedure-2b
is [rfake ·TCHT] = 100K entries from 100 million, namely, 0.1%.

rfake

LB algorithm
Scheme-1 Procedure-2b

(RTTmax= 10ms)
Procedure-2b

(RTTmax= 50ms)

1 million/s 5% 0.01% 0.05%
5 million/s 25% 0.05% 0.25%

10 million/s 50% 0.1% 0.5%

Table 3: The expected overhead of fake signatures in the SCT
as a function of rfake and RTTmax

To analyze Procedure-2b with respect to the MCT-
constraint, we note that upon adding or removing a server
from the pool of a VIP under attack, the MCT holds approxi-
mately [1

|pool| · rfake ·Texposed] fake signatures. This is also true for
Scheme-1, but in Scheme-1 Texposed = TRST while in Procedure-
2b Texposed = TCHT. This implies that the number of MCT entries
in Procedure-2b is smaller by a factor of TRST

TCHT
= 500 than in

Scheme-1. Table 4 compares the two schemes for the case
where |pool| = 10.

rfake

Scheme
Scheme-1 Procedure-2b

1 million/s 714% 1.42%
5 million/s 3570% 7.1%

10 million/s 7140% 14.2%

Table 4: The expected overhead of fake signatures copied
into the MCT during an update of a VIP, for |pool| = 10, TRST

= 5s and TCHT = 10ms

Figure 6 depicts the overhead of recording fake signatures
by FIB(SYN1) in Procedure-2b, as a function of rfake. We can
see that the length of FIB(SYN1) grows linearly, and with
existing FIB technology, the maximum tolerant rfake is limited
to 1 million SYNs per second.

6.3 Scheme-2: Putting It All Together
To address Challenge-3 better, we observe that there is no
need to track SYN1 packets during normal operation, namely,
when the pool of a VIP is not updated. Thus, it is better to use
Procedure-2a as long as there is no need to update the pool,
and to switch to Procedure-2b when a pool update is needed.
This is what Scheme-2 does.

As shown in Figure 7, the LB uses Scheme-1 as long as
the VIP is not under attack. When there is an attack, Prism

10,000 100,000 1,000,000 10,000,000
Fake SYNs per second

1%

10%

100%

1,000%

O
ve

rh
ea

d
of

fa
ke

si
gn

at
ur

es
in

FI
B

(S
Y

N
1)

Figure 6: The overhead of recording fake signatures by
FIB(SYN1) in Procedure-2b, as a function of rfake

t trigger
update t end

update

Procedure-2a Procedure-2aProcedure-2b for all affected bins

t start
attack t end

attack

Scheme-1 Scheme-1Scheme-2

Figure 7: Scheme-2 consists of 0 or more time periods during
which Procedure-2b is invoked (the figure shows only one

such period). During the rest of the time, Scheme-2 executes
Procedure-2a and SYN1 packets are therefore not recorded.

switches to Scheme-2. While using Scheme-2, Prism runs
Procedure-2a as long as a pool update is not needed for the
VIP under attack. When a pool update is requested, at time
t trigger

update , Prism switches to Procedure-2b and all affected bins
are updated one by one. When the pool update ends, at t end

update,
Prism continues to run Procedure-2a. When the SYN attack
ends, Prism switches to Scheme-1.

In the specific example of Figure 7, Prism is requested to
perform only one pool update during the SYN attack. But in
general, there might be many pool updates during the execu-
tion of Scheme-2, and each update requires Prism to switch
from running Procedure-2a to running Procedure-2b, and then
back to running Procedure-2a.

The advantage of switching between Procedure-2a and
Procedure-2b, rather than always running Procedure-2b, is
that FIB(SYN1) is used only during pool updates. This im-
plies that the FIB and MCT are exposed to fake SYNs only
during very short time intervals. Thus, less hardware resources
are needed. However, during the time periods when Scheme-2
is carrying out Procedure-2b, both fake and real SYNs are
recorded by FIB(SYN1), fetched by the software, and must
be inserted into the MCT. Thus, rfake is still limited to 1 million
SYNs per second.

8

t trigger
update = t start

bin1
t end

bin1
t end

bin2

. . .

t start
binn t end

update = t end
binn

Procedure-2b (bin1) Procedure-2b (bin2) Procedure-2b (binn)

Figure 8: Improving Scheme-2 by invoking Procedure-2b
multiple times, once per each bin, during a pool update. All

these executions reflect one instance of Procedure-2b in
Figure 7.

To improve Scheme-2 with respect to rfake, we propose that
during a pool update, Procedure-2b is performed separately
per each affected bin, and not for all bins together. Upon
updating each bini, the LB configures FIB(SYN1) to record
only SYNs destined for this bin. This is illustrated by Figure 8.
The update process for bini starts at t start

bini
and ends at t end

bini
.

Let #bin be the number of bins allocated to the attacked
VIP and #binTotal be the total number of bins. Assuming
that signatures are uniformly divided among the bins, rfake

#bin +rreal
#binTotal is the expected rate of SYN1 packets the LB should
record during the update of each bin. Since rfake � rreal and
#binTotal� #bin hold for the attacked VIP, this improvement
decreases the hardware resources needed for FIB(SYN1) by a
factor of #bin. The same improvement factor is obtained with
respect to the MCT-constraint.

To analyze the maximum tolerable rfake during a pool update,
let ρ be the rate of copying signatures into the MCT, and δ

be the rate of SYNs (real and fake) directed to the updated
bin. For the update algorithm to run correctly and guarantee
PCC for all real connections, δ

ρ
< 1 must hold. For a VIP

under attack, δ = rfake

#bin +
rreal

#binTotal . Thus (rfake

#bin +
rreal

#binTotal) ·
1
ρ
< 1

must hold. In our prototype switch, rreal = 1 million SYNs per
second, ρ = 25,000 per second, and #binTotal = 100,000. Thus,
rfake is limited only by 24,990 ·#bin. For example, with #bin
= 400, rfake is ≈ 10 million SYNs per second.

The attacked VIP might have only a few bins when the
attack starts. In such a case, when the attack is detected, the
number of bins allocated for this VIP is gradually increased,
as discussed in Section 3.1. But increasing #bin beyond 400
does not improve rfake due to CHT constraints. As discussed
in Section 5.1, with RTTmax = 10ms, the CHT resources can
handle a maximum rfake of ≈ 10 million SYNs per second.
With an RTTmax = 20ms, the maximum rfake rate decreases to 5
million SYNs per second.

6.4 Synchronizing the Servers and the LB
The coordination between the LB and the the servers with
respect to SYN attacks is important. If the LB is unaware of
an attack, and it continues running Scheme-1 while the servers
are using SYN cookies, it will almost immediately collapse,
as discussed in Section 4. Hence, an approach where the LB
runs an independent scheme for detecting a SYN attack is
unacceptable. Another option is that the LB will always run
Scheme-2, because this scheme works whether or not SYN

cookies are used by the servers. But this approach is also
unacceptable because it reduces the pool update rate for all
the VIPs, even when there is no attack.

Another option is to use a centralized controller for the
synchronization. When a server starts using cookies, it notifies
the controller, and the controller notifies the LB to switch to
Scheme-2 for the considered VIP. When all the servers stop
using cookies, the controller tells the LB to switch back to
Scheme-1 for the considered VIP.

We now propose a simple distributed scheme that does
not require any centralized entity. When a server uses SYN
cookies, it sets the unused URG flag in the TCP header of the
SYN2 packets it sends to the clients. To prevent any client
confusion, the LB hardware clears this bit after inspecting it.
Since the decision whether to use Scheme-1 or Scheme-2 is
made by the LB per VIP, and not per server (it is possible that
DIP1 detects an attack and starts using cookies, while DIP2
does not), the LB hardware maintains a bit vector for every
VIP, where each bit indicates the status of one server in the
VIP’s pool. If a SYN2 packet is received with URG=1 from
a given server, the corresponding status bit is set to 1. If a
SYN2 packet is received with URG=0, the corresponding bit
is not modified. The switch software reads this vector once
a while, e.g., every 10ms, and then resets all bits to 0. For
each VIP, if the LB is running Scheme-1 and the read vector
is 6= 0, the LB immediately switches to running Scheme-2.
If the LB is running Scheme-2, then after M=5 consecutive
times during which the vector is 0, the LB moves to running
Scheme-1.

7 Proof of Concept

The most important component in Scheme-2 is the CHT,
which allows the LB to keep a software state only for real
connections. The purpose of this proof of concept (POC) is to
implement the CHT and to prove that it can filter a high rate
of fake SYNs. As described by Figure 3, the CHT records
sequence numbers of SYN2 packets and then checks each
ACK packet received from a client to assess if it is a valid
ACK3. We implement the CHT by leveraging the hardware
FIB logic used for MAC address learning and forwarding.
When used for MAC address learning and forwarding, the
FIB searches for a match between the destination MAC ad-
dress of a received packet and its existing list of addresses.
In addition, it adds the source MAC address to this list. In
the POC, for each SYN packet coming from the server, the
sequence number plus 1 is learned in the same way a source
MAC address is learned. For each ACK packet coming from
a client, the acknowledgement number is checked against the
list of all numbers, in the same way a destination MAC ad-
dress is checked against a list of addresses, to decide if this is
a valid ACK3. If this is the case, the signature of this ACK is
remembered as a valid connection.

9

7.1 P4 Implementation
The POC is implemented on top of a Spectrum 2 ASIC [18]
running SONiC [2] on an x86 Pentium CPU, with 8GB
DRAM and 4 2.20GHz cores. We use the P4 language [4] and
the Mellanox P4 compiler to extend the hybrid programmable
pipeline with the SYN filtering functionality. In the ingress
pipeline stage, after the parser, a P4 table called tcp_learn
is defined in the following way:

// learn SYN2 sequence number (cookie)
action learn_sequence() {

set_hardware_learning();
set_src_mac((bit<48>) (headers.tcp.seq_no + 1));

}

// trigger ACK3 validation
action check_ack() {

set_dst_mac((bit<48>) headers.tcp.ack_no);
}

table tcp_learn {
key = {

headers.tcp.flags : ternary;
standard_metadata.ingress_port: exact;

}
actions = {

NoAction; learn_sequence; check_ack;
}

}

When used for MAC address learning, this table is responsible
for triggering the FIB learning mechanism. In the POC, this
table applies the learn_sequence action on SYN2 packets,
which sets the value of the sequence number plus 1 in the
packet source MAC address, and sets the remaining upper
16 bits to zero (instead of the 5-tuple hash, just to keep the
POC simple). This triggers an insertion of a cookie into the
CHT. For ACK packets coming from the clients, the table
applies the check_ack action, which sets the value of the
acknowledgment field in the destination MAC address of the
packet. This triggers a match check against the values stored
in the CHT. If there is a match, the hardware sets a register
called is_cht_hit.

In the egress pipeline stage, a P4 table called tcp_filter
is defined in the following way:

action validate_and_learn_signature() {
trap(0, 1 /*trap_id*/);

}

table tcp_filter {
key = {

headers.tcp.flags : ternary;
standard_metadata.ingress_port: exact;
standard_metadata.is_cht_hit: exact;

}
actions = {

NoAction; validate_and_learn_signature;

SONiC
SN3700

p1

p2

Client

Attacker

Server

p3

host 1

host 2

Figure 9: POC testbed topology

}
}

This table is responsible for remembering the signatures
of verified ACK3 packets. This action is applicable for ACK
packets coming from any client ports for which is_cht_hit
was set in the previous pipeline stage (i.e., there was a match
between their sequence number and a previous SYN2 se-
quence number+1). For this POC, the signatures of confirmed
ACK3 packets are remembered by trapping and forwarding
them to the software.

7.2 POC Topology

Figure 9 shows the testbed topology for the POC. The client
and the attacker send traffic to different ports from the same
host, while the target server is connected to another port. The
client runs normal send and receive scripts that emulate a
standard TCP three-way handshake. To emulate a heavy SYN
attack, the MoonGen packet generator [9] is used. MoonGen
runs on top of DPDK [13], and it can saturate a 10 Gb/s link
with minimum-sized packets. This enables the attacking host
to generate millions of fake SYNs per second.

The server runs on a host with a ConnectX-4 NIC. The
client and the attacker run on another host with a dual-port
ConnectX-4 NIC, such that each of them is connected to a
different port (see Figure 9). The server host has an Intel
8-core 3.4GHz i7-3770 CPU. The client host has an Intel
8-core 3.07GHz i7-950 CPU. The server also runs MoonGen
to respond to the high SYN rate. It replies to each received
SYN1 with a corresponding SYN2 whose sequence number
is randomly chosen.

The MoonGen server and attacker scripts are executed with-
out rate limiting. The traffic rate varies between 5-7 million
packets per second. During the experiment, all the information
related to ACK packets is collected, including their transmis-
sion times, and whether they are confirmed ACK3 packets or
not.

10

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%

1 11 21 31 41 51 61 71 81 91Sw
itc

h
CP

U
 co

ns
um

pt
io

n

System running time (seconds)

Figure 10: The switch’s CPU consumption over the system
running time

0

200

400

600

800

1,000

0 20 40 60 80 100ac
kn

ow
le

dg
m

en
t

fie
ld

 n
um

be
r

System running time (seconds)

sent by the client remembered by the LB/switch

Figure 11: The acknowledgment field number of ACKs
considered by the LB as ACK3 (representing legitimate

connections) and of ACK3 packets sent by the client
throughout the system running time

7.3 POC Experiment Results
Figure 10 presents the statistics for the switch’s CPU con-
sumption during an attack of seven million SYNs per second.
It is evident that CPU consumption is under 2% during most
of the time, and it never exceeds 6%.

Figure 11 shows the acknowledgment number field of ACK
packets learned by the LB and the ACK3 packets sent by the
client over the system running time. Since confirmed ACK3
packets are forwarded to the software and are added into
the SCT as new connections, this experiment proves that the
software is not exposed to fake SYNs.

We perform another experiment to verify that client’s regu-
lar ACK packets (as opposed to ACK3 packets) do not mistak-
enly establish new connections. To this end, the client script is
modified such that it sends 100 ACK packets after sending an
ACK3. The acknowledgment number of each ACK increases
by 100 compared to the previous ACK. Figure 12 presents
the collected results. As can be seen, the client manages to
complete each TCP handshake after which it sends 100 ACKs
every 5 seconds. It is also evident that the switch learns only
the first ACK of the connection (ACK3).

Next, we test the scalability of the POC. The objective of
this experiment is to verify that even if the LB receives a high
volume of SYN1 packets and regular ACK packets, it does

0

200

400

600

800

1,000

0 20 40 60 80 100ac
kn

ow
le

dg
m

en
t

fie
ld

 n
um

be
r

System running time (seconds)

sent by the client remembered by the LB/switch

Figure 12: The acknowledgment field number of ACKs
considered by the LB as ACK3s (representing legitimate

connections) and ACK3 packets sent by the client over the
system running time

not confuse between regular ACK and ACK3 packets. In this
experiment, one host runs a MoonGen script that generates
one million SYN2 packets every second and assigns a ran-
dom sequence number to each packet. This host emulates a
server replying to one million SYNs per second. The other
host also runs a MoonGen script, which emulates sending a
high volume of random regular ACK packets passing through
the LB. For the latter MoonGen script, the traffic rate is not
limited.

This experiment runs for about 30 minutes. During this
time, statistics are collected from the switch CPU, and the
number of ACK and SYN2 packets that trigger P4 actions
(check_ack and learn_sequence) is collected as well. This
is done using hardware counters that are hit when the relevant
actions are triggered. Figure 14 presents the collected results.
First, the CPU-wide curve is 1% on the average and never
exceeds 3-4%. Second, the rate of SYN2 packets (the bottom
thin curve) is indeed one million per second. Third, the rate
of regular ACKs (top thin curve) is 13 million per second.
Finally, not shown by the graph, the switch CPU does not
receive any ACKs during the entire 30-minute interval, which
proves that there are no false positives.

8 Hardware Authentication of Cookies

If the switch does not need to use a CHT, it would be able
to mitigate almost any rate of fake SYNs. But this requires
the switch hardware to check the validity of cookies in every
ACK packet it receives, without storing cookies in the CHT.
For this approach to work, the following requirements must
be fulfilled:

1. All the servers of the same VIP should use the same cryp-
tographic hash function and the same key to calculate
their SYN cookies.

2. The LB should know the cryptographic function and key
used by each VIP.

11

cookies
enabled?

ACK packet

MCT
connection signature DIP

conn1-signature DIP1
conn2-signature DIP2

Hash

ECMP Table
of VIP1
1. DIP1
2. DIP2
3. DIP3
4. DIP4

...
125. DIP1
126. DIP2
127. DIP3
128. DIP4FIB(ACK3)

VIP connection signature
VIP3 conn3-signature
VIP4 conn4-signature

SYN
cookie

is valid?

forward packet

no

(use Scheme-1)

yes

miss

yes

no

hit

Figure 13: The flow of clients’ ACKs when Hardware
Authentication of Cookies is used

3. The switch hardware should be able to execute the cryp-
tographic function on every received ACK packet.

As far as we know, requirement (3) is currently not satisfied
by off-the-shelf switches.

Let Hk be the cryptographic hash function used by a certain
VIP for the encrypted part of the cookie, where k is a secret
key. For each ACK packet sent to this VIP, the LB computes
Hk on the ACK’s 5-tuple, and compares it to the packet’s
acknowledgment number minus 1. If there is a match, the
packet is considered a valid ACK3, and is therefore recorded
by the FIB(ACK3) table of the LB. Otherwise, the packet is
forwarded to the server as a regular ACK. This new flow of
ACK packets is depicted in Figure 13.

During the cookie validation process, the LB is supposed
to verify the cookie’s timestamp field (Figure 2). To this end,
the LB must know the timestamp used by every server in the
pool of the given VIP. This can be done by inspecting the
SYN2 packets sent by every VIP’s server and remembering
the last timestamp each server uses.

To analyze the rate of false positives, let r be the rate of
regular ACKs passing through the LB for the given VIP. The
probability for a false positive validation is 4

229 since the
values of the 3-bit field of the MSS are ignored and there
are four acceptable timestamp values. For r = 100 million
ACKs per second, there are ≈ 0.75 false positives per second.
Suppose that each false positive signature is copied into the
MCT for an activity detection of five seconds, and is then
removed from the MCT and the SCT. Therefore, the MCT is
expected to simultaneously hold less than four false positive
signatures, which is a negligible overhead.

9 Conclusions

This paper showed that fighting against a SYN attack is diffi-
cult if a hardware LB needs to perform frequent server pool
updates. We proposed several hardware-based schemes, which
take advantage of a new Cookie Hardware Table (CHT). This

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

2

4
6

8

10

12

14

16

170 350 530 710 890 1070 1250 1430 1610

Sw
itc

h
CP

U
 co

ns
um

pt
io

n

M
eg

a
pa

ck
et

 p
er

 se
co

nd

System running time (seconds)

cpu consumption regular ACKs SYN2

Figure 14: The switch’s packet rate and CPU consumption
over the system running time

table is used by the LB for recording SYN cookies from the
SYN packets coming from the attacked servers. When the LB
receives an ACK from the client, it checks the acknowledg-
ment sequence number field against the CHT to deceide if
this ACK will open a new legitimate connection.

Using analysis, simulations and a proof of concept, we
showed that with the proposed schemes, the LB can support
a high connection rate of one million new connections per
second, together with a frequent pool update rate, without
breaking connections and without being affected by a high
rate of SYN attacks of up to 10 million fake SYNs per second.

References

[1] Aviatrix. Azure Inter Region Latency.
https://docs.aviatrix.com/HowTos/arm_inter_
region_latency.html, 2019.

[2] Microsoft Azure. Sonic. https://azure.github.io/
SONiC/, 2020.

[3] D. J. Bernstein. SYN Cookies. http://cr.yp.to/
syncookies.html, 1996.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Ta-
layco, Amin Vahdat, George Varghese, et al. P4: Pro-
gramming protocol-independent packet processors. In
ACM SIGCOMM, 2014.

[5] Reuven Cohen, Matty Kadosh, Alan Lo, and Qasem
Sayah. LB Scalability: Achieving the Right Balance
Between Being Stateful and Stateless. In Arxiv 2020,
https://arxiv.org/pdf/2010.13385.pdf.

[6] Van Tuyen Dang, Truong Thu Huong, Nguyen Huu
Thanh, Pham Ngoc Nam, Nguyen Ngoc Thanh, and
Alan Marshall. SDN-Based SYN Proxy—A Solution to
Enhance Performance of Attack Mitigation Under TCP
SYN Flood. The Computer Journal, 2019.

12

https://docs.aviatrix.com/HowTos/arm_inter_region_latency.html
https://docs.aviatrix.com/HowTos/arm_inter_region_latency.html
https://azure.github.io/SONiC/
https://azure.github.io/SONiC/
http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html

[7] Wesley M Eddy. Defenses against TCP SYN flooding
attacks. The Internet Protocol Journal, 2006.

[8] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In USENIX NSDI, 2016.

[9] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A script-
able high-speed packet generator. In Proceedings of the
Internet Measurement Conference, 2015.

[10] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. Duet: Cloud scale load balancing with hardware
and software. In ACM SIGCOMM, 2015.

[11] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from google’s net-
work infrastructure. In ACM SIGCOMM, 2016.

[12] Albert Greenberg, James Hamilton, David A Maltz, and
Parveen Patel. The cost of a cloud: research problems
in data center networks. In ACM SIGCOMM, 2018.

[13] DPDK Intel. Data plane development kit, 2014.

[14] Adam Kirsch and Michael Mitzenmacher. Using a
queue to de-amortize cuckoo hashing in hardware. In
Allerton, 2007.

[15] Jonathan Lemon et al. Resisting SYN Flood DoS At-
tacks with a SYN Cache. In BSDCon, volume 2002,
pages 89–97, 2002.

[16] Gil Levy, Salvatore Pontarelli, and Pedro Reviriego.
Flexible packet matching with single double cuckoo
hash. IEEE Communications Magazine, 2017.

[17] Patrick McManus. Improving SYN Cookies. https:
//lwn.net/Articles/277146/, 2008.

[18] Mellanox. Spectrum-2 Ethernet Switch
ASIC. https://www.mellanox.com/products/
ethernet-switch-ic/spectrum-2, 2019.

[19] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
ACM SIGCOMM, 2017.

[20] Microsoft. Azure network round trip latency statis-
tics. https://docs.microsoft.com/en-us/azure/
networking/azure-network-latency, 2019.

[21] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless datacenter load-balancing
with beamer. In USENIX NSDI, 2018.

[22] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud scale load balancing. In ACM SIG-
COMM, 2013.

[23] Christoph L Schuba, Ivan V Krsul, Markus G Kuhn,
Eugene H Spafford, Aurobindo Sundaram, and Diego
Zamboni. Analysis of a denial of service attack on TCP.
IEEE Symposium on Security and Privacy, 1997.

[24] The Internet Society. Transmission Control Proto-
col. RFC 4987. https://tools.ietf.org/html/
rfc4987, 2007.

[25] Andre Zuquete. Improving the functionality of SYN
cookies. In Advanced Communications and Multimedia
Security. Springer, 2002.

13

https://lwn.net/Articles/277146/
https://lwn.net/Articles/277146/
https://www.mellanox.com/products/ethernet-switch-ic/spectrum-2
https://www.mellanox.com/products/ethernet-switch-ic/spectrum-2
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://tools.ietf.org/html/rfc4987
https://tools.ietf.org/html/rfc4987

	Introduction
	Related Work
	Background
	Prism LB
	SYN Cookies

	Challenges Imposed by SYN Attacks on the LB
	Using a Cookie Hardware Table (CHT)
	Procedure-2a
	False Positive Analysis

	Pool Updates During a SYN Attack
	Procedure-2a May Violate PCC
	Procedure-2b
	Scheme-2: Putting It All Together
	Synchronizing the Servers and the LB

	Proof of Concept
	P4 Implementation
	POC Topology
	POC Experiment Results

	Hardware Authentication of Cookies
	Conclusions

