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Abstract

This paper is concerned with transductive learning. We study a recent transductive learning approach based on clus-

tering. In this approach one constructs a diversity of unsupervised models of the unlabeled data using clustering algo-

rithms. These models are then exploited to construct a number of hypotheses using the labeled data and the learner

selects an hypothesis that minimizes a transductive error bound, which holds with high probability. Empirical exami-

nation of this approach, implemented with �spectral clustering�, on a suite of benchmark datasets from the UCI repos-

itory, indicates that the new approach is effective and comparable with one of the best known transductive learning

algorithms to-date.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there has been a growing need for and

interest in learning algorithms capable of utilizing
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both labeled and unlabeled data (see, for example,
the survey by Seeger, 2002). Despite widespread

confusion, a distinction between inductive �semi-

supervised� learning and transductive learning

should be made. While both approaches attempt

to utilize unlabeled data (in addition to the stan-

dard labeled training set) to accelerate the learning

process, in transduction one is only interested in

classifying the given unlabeled points. There is
no need to construct a general hypothesis capable

of classifying unseen data points. Therefore, at the
ed.
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outset transduction appears to be an easier prob-

lem than (semi-supervised) induction.1

Transductive inference was introduced by Vap-

nik more than 20 years ago (Vapnik, 1982), and

through the years he has been its greatest advo-
cate.2 Although the interest in this learning frame-

work is rising, there is still lack of provably useful

learning principles and algorithms that are both

theoretically founded as well as good performers

on real world data.

In this paper we implement and study an idea

for transductive learning that was recently pro-

posed by Derbeko et al. (2004a,b).3 In this scheme
the learner applies a clustering algorithm over the

unlabeled data to generate several (unsupervised)

models. The learner then utilizes the labeled data

to guess labels for entire clusters (so that all points

in the same cluster have the same label). This way

the algorithm forms a number of hypotheses, one

of which is then selected based on an error bound

for transduction.
The natural idea of first clustering the unlabeled

data and then assigning labels to clusters has been

around for a long time and there are plenty of heu-

ristic procedures that attempt to learn using this

approach within a semi-supervised or transductive

settings (see, for example, Section 2.1 in Seeger,

2002 and references therein). However, to the best

of our knowledge, none of the existing procedures
was ever theoretically justified in terms of provable

reduction of the true risk.

The new approach, given here the acronym

CLUST, is both simple and rests on solid theoretical

ground. As we show here, CLUST is competitive

with one of the best transductive learning meth-

ods. In particular, we show in Section 5 a rather
1 We can make analogies between transduction and a ‘‘take-

home exam’’ (where the student gets to see the questions before

studying), and between semi-supervised learning and a standard

‘‘classroom exam’’ (where the student gets to see only exam

questions from previous years before studying).
2 In his 1995 book (Vapnik, 1995) Vapnik writes: ‘‘This model

[transduction] can provide the strongest contribution to the 2000

years of discussions about the essence of human reason’’.
3 These papers derived this transductive learning scheme from

a general PAC-Bayesian error bound for transduction but did

not consider any implementation details or evaluate its practical

significance.
extensive set of experiments where we study the

performance of CLUST and compare it to the recent

�Spectral Graph Transducer� (SGT) algorithm pro-

posed by Joachims (2003). Our results indicate

that CLUST fares well in this comparison. Note that
the SGT algorithm is shown in (Joachims, 2003) to

outperform other well known transductive learn-

ing methods such as the transductive support vec-

tor machine (TSVM) of Joachims (1999).
2. The transduction setting

Throughout the paper we consider a classifica-

tion setting. For simplicity (and initial evaluation

of the basic ideas), we focus on binary classifica-

tion.4 We rely on the transduction formulation

proposed in (Vapnik, 1998, Chapt. 8). In this for-

mulation the learner is given a full sample Xm+u of

m + u unlabeled points. After observing these

points, a training set Xm of m points is chosen uni-
formly at random among all m-subsets of the full

sample. The labels of all the points in the training

set are provided to the learner. Based on the la-

beled and unlabeled points, the learner�s goal is

to predict, as accurately as possible, the labels of

the remaining unlabeled points, which constitute

the test set, Xu = Xm+unXm.

Remark 1. The random choice of the training set

from the full sample as described above is equiv-

alent to choosing uniformly at random m points

from the full sample, without replacement. There-

fore, unlike the standard inductive setting, points
in the training (and test) sets are dependent.

Remark 2. It is not assumed that points in the full

sample are drawn i.i.d. from some (unknown) dis-

tribution. The only distributional requirement here

is that the training set is drawn uniformly at ran-

dom from all possible m-subsets. Vapnik consid-

ered a second transduction setting in which the
learner receives training and test sets, which are

assumed to be drawn i.i.d. from some unknown
4 The CLUST algorithm can be easily extended to handle multi-

class classifications in a natural manner.
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distribution. This second setting is more suitable

for some applications (and may appear more nat-

ural). However, Theorem 8.1 in (Vapnik, 1998)

states that error bounds for the first setting imply

the same bounds for the second setting. We there-
fore restrict our attention, throughout this paper,

to the first setting and note that the error bounds

and algorithms considered in this paper are appli-

cable in the second setting as well.

Throughout the paper we use the following

notations and definitions. We denote by H a set

of binary hypotheses consisting of functions from

the input space X to Y ¼ f�1g. The learner�s goal
is to choose a good hypothesis from H. For each

h 2 H and a set Z = x1, . . . ,xN of samples define

RhðZÞ ,
1

N

XN
i¼1

‘ðhðxiÞ;/ðxiÞÞ; ð1Þ

where /ðxiÞ 2 Y is the true label of xi and ‘(Æ , Æ) is
the 0/1-loss. We make use of the following quanti-

ties, which are all instances of (1). The quantity

Rh(Xm+u) is called the full sample risk of the

hypothesis h, Rh(Xu) is referred to as the transduc-

tion risk or test error (of h), and Rh(Xm) is the train-
ing error (of h). It is important to observe that in

our transduction setting Rh(Xm+u) is not a random

variable, but both Rh(Xm) and Rh(Xu) are random

variables, due to the random selection of the sam-

ples Xm from Xm+u. The goal of the learner is to

choose h 2 H with minimal transduction risk

Rh(Xu).
5 Specifically, in the original bound (Vapnik, 1982), the two-

sided condition j kh�r
u � r

m j > e is used instead of condition (2).
3. Vapnik�s bounds for transduction

The transductive error bounds we present here

are based on a slight adaptation of Vapnik�s argu-
ments presented in (Vapnik, 1982, 1998). The idea

is to bound the deviation between the two random

variables Rh(Xu) and Rh(Xm), which are both con-
centrated around their mean Rh(Xm+u). This devi-

ation can be explicitly written as a tail of an

hypergeometric distribution, which converges

exponentially fast, and in fact, has faster conver-

gence rates than the tail of the binomial distribu-

tion (which governs the learning rates in

standard inductive learning).
Fix m and u and consider some hypothesis

h 2 H. Suppose that h makes kh errors on the full

sample (i.e. kh = (m + u)Rh(Xm+u)). Consider a ran-

dom choice of the training set Xm from the full

sample, and let B(r,kh) be the probability that h

makes exactly r errors over the training set Xm.

This probability is by definition the hypergeomet-

ric distribution, given by

Bðr; khÞ ,

kh
r

� �
mþ u� kh

m� r

� �
mþ u

m

� � .

Define

Cðe; khÞ , Pr RhðXuÞ � RhðXmÞ > ef g

¼ Pr
kh � r
u

� r
m
> e

� �
¼
X
r

Bðr; khÞ;

where the summation is over all values of r such

that max{kh � u, 0} 6 r 6 min{m,kh} and

kh � r
u

� r
m

> e. ð2Þ

Define

C1ðeÞ , max
k

Cðe; kÞ; ð3Þ

C2ðeÞ , max
k

C

ffiffiffiffiffiffiffiffiffiffiffiffi
k

mþ u

r
� e; k

 !
. ð4Þ

We now state Vapnik�s implicit bounds for trans-
duction. The bounds are adapted slightly in order

to incorporate a prior probability over H (the ori-

ginal bounds deal with a uniform prior). This

change makes them similar to McAllester�s PAC-

Bayesian bounds in (McAllester, 1999). Also, we

note that the original bounds in (Vapnik, 1982)

are two-sided and the following theorem considers

one-sided bounds.5

Theorem 3 (Vapnik). Let d be given, let p be a

prior distribution over H that may depend on the
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Fig. 1. The Vapnik absolute, relative and combined bounds

and the explicit approximation bound (9); all bounds are

computed with m = u = 100 and p(h) = 1/608. This prior corre-

sponds to C = 20, T = 1 and s = 5 (see Section 4). The Vapnik

relative and absolute bounds are computed with d = 0.05, and

therefore the Vapnik combined bound corresponds to d = 0.1

The curve of the explicit bound was also calculated with d = 0.1.

7 In particular, Theorem 6 in (Blum and Langford, 2003)
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full sample Xm+u. Let e�1ðhÞ ðresp. e�2ðhÞÞ be the

minimal value of e that satisfies C1(e) 6 p(h)d (resp.

C2(e) 6 p(h)d). Then, with probability at least 1 � d,
for all h 2 H,

RhðXuÞ < RhðXmÞ þ e�1ðhÞ ð5Þ
and respectively,

RhðXuÞ < RhðXmÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RhðXmþuÞ

p
� e�2ðhÞ. ð6Þ

Proof. We sketch the proof of (6).

Pr 9h 2 H :
RhðXuÞ � RhðXmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RhðXmþuÞ
p > e�2ðhÞ

( )

6

X
h2H

C

ffiffiffiffiffiffiffiffiffiffiffiffi
kh

mþ u

r
e�2ðhÞ; kh

 !
6

X
h2H

Cðe�2ðhÞÞ

6

X
h2H

pðhÞd ¼ d; ð7Þ

where (7) follows from the union bound. h

It is easy to eliminate the (unknown) quantity

Rh(Xm+u) from the right hand side of (6). Subtract-

ing Rh(Xm) from both sides of (6), then squaring

both sides and substituting m
mþu RhðXmÞþ

u
mþu RhðXuÞ for Rh(Xm+u), we get a quadratic

inequality where the ‘‘unknown’’ variable is
Rh(Xu). Solving for Rh(Xu) yields the following re-

sult, as in Eq. (8.15) in (Vapnik, 1998).

Corollary 4 (Vapnik). Under the conditions of
Theorem 3,

RhðXuÞ 6 RhðXmÞ þ
e�ðhÞ2u
2ðmþ uÞ

þ e�2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RhðXmÞ þ

e�2ðhÞu
2ðmþ uÞ

� �2
s

. ð8Þ

We thus have two general bounds: The ‘‘abso-

lute’’ bound (5) and the ‘‘relative’’ bound (8).6

It is possible to show that the relative bound is

tighter than the absolute bound for smaller values

of the empirical error Rh(Xm) and that the absolute

bound is tighter for larger values of Rh(Xm) (see,
6 In his book Vapnik only focuses on the relative bound. Both

bounds are mentioned in (Bottou et al., 1994).
for example Fig. 1). We therefore use the union

bound to combine the bounds into one bound by

applying each of the bounds with confidence d/2
and taking the minimum of the two at each point.

Throughout the paper we refer to the combined

bound as ‘‘the Vapnik bound’’. Note that a related

result has recently been presented in (Blum and

Langford, 2003).7

The Vapnik bound is rather tight and therefore,

it is intriguing to see if the bound can be effectively

utilized in a practical model selection, as we at-
tempt in this paper. Possible sources of slackness

in this bound are only introduced through the uti-

lization of the union bound in (7) and the defini-

tions of Ci(e) in Eqs. (3) and (4). However, note

that e�i ðhÞ (i = 1,2) is a complicated implicit func-

tion of m, u, p(h) and d leading to a bound that

is difficult to interpret and (as noted also by Vap-

nik) must be computed in order to be used. A
number of explicit (but looser) bounds for trans-
presents a similar bound for transduction based on a direct

calculation of the hypergeometric tail. Note however that the

bound in (Blum and Langford, 2003) was the first to consider a

general prior p; Vapnik�s bound was stated with a uniform

prior.
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duction are presented in (Derbeko et al., 2004b).

For example, under the same conditions of Theo-

rem 3, the following bound holds with probability

at least 1 � d, uniformly for all h 2 H,

RhðXuÞ 6 RhðXmÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ u
u

� � ln 1
pðhÞ þ ln 1

d

m

 !vuut . ð9Þ

Fig. 1 shows the above bounds as a function of
the empirical error for realistic assignments of the

other problem parameters.
4. Transduction via clustering

In order to utilize bounds, such as the Vapnik

bound or (9), one has to specify a prior distribu-
tion p over H. As observed in (Derbeko et al.,

2004a), within the transduction setting it is often

convenient to apply such bounds because the prior

distribution can be constructed after observing the

(unlabeled) full sample. Derbeko et al. also pro-

posed the following learning scheme, based on

clustering.

Let Aðs; hÞ be a parametric clustering algo-
rithm that can partition the full sample into any

desirable number s of clusters. The hyper-para-

meter h 2 H can specify different clustering algo-

rithms and/or their parameters (e.g., the variance

in spectral clustering; see below). For s = 2, . . . ,C
(C 6 m) and h 2 H, we apply Aðs; hÞ on the full

sample and obtain a collection of partitions Cs;h,

s = 2, . . . ,C, h 2 H. Setting T = jHj we thus have
(C � 1)T partitions of Xm+u. We now receive the

training set Xm and would like to utilize it in order

construct (C � 1)T hypotheses, one for each parti-

tion. For each partition Cs;h, we consider each of

its s clusters and label all the points in the same

cluster according to a majority vote among all

the labeled points (from Xm) falling within that

cluster. If none of the labeled training points is
in the cluster (or in case of a tie), we arbitrarily

give the entire cluster a single label from {±1}.

Hence, we end up with a collection of (C � 1)T

hypotheses. We consider each hypothesis h, com-

pute its training error Rh(Xm) and then compute

its Vapnik bound based on appropriate prior
p(h) (see below). We select the hypothesis with

the minimal error bound.

We now discuss the construction of the prior.

Initially H consists of all 2m+u possible dichoto-

mies of the full sample. Let Hs;h � H be the set
of all binary hypotheses that assign an identical

label to all points in the same cluster in partition

Cs;h. Clearly, jHs;hj ¼ 2s for each h, because Hs;h

contains all possible dichotomies over s clusters.

Without any prior information about the quality

of the clustering as a function of the parameter

h, each hypothesis in Hs , [hHs;h is assigned

the same prior, which will be proportional to
1/(T Æ 2s). Also, without any additional informa-

tion we do not know the ‘‘correct’’ number of clus-

ters. Therefore, each of the C � 1 subsets Hs, s =
2, . . . ,C, is assigned the same probability mass,

1/(C � 1). The final prior distribution is, thus,

pðhÞ¼
1

ðC�1ÞT2s ; if h2Hs; for some 26 s6C;

0; otherwise.

8<
:

ð10Þ

To summarize, each of the partitions Cs;h in-

duces one hypothesis hs,h, through the use of the

training set. Clearly,
P

s;hpðhs;hÞ ¼ 1, and there-

fore, the Vapnik bound applies. Similarly, using

the prior (10) in (9) we have, that with probability

at least 1 � d (over random choices of the training

set from the full sample), for all h 2 Hs,

RhðXuÞ 6 RhðXmÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ u
u

� � sþ logððC � 1ÞT Þ þ ln 1
d

m

� �s
.

ð11Þ

It can be shown that the right hand side of (11)

upper bounds the Vapnik bound. From (11) it fol-

lows that if we are lucky enough to compute a

‘‘quality clustering’’ of the data, which gives rise
to an hypothesis with a small training error, based

on a small number of clusters, then we have a

guarantee that the transductive test error of the

corresponding hypothesis will be small. A nice

property of this bound is that the divergence be-

tween the true and empirical risks increases only
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logarithmically with the number of models we con-

sider (i.e., (C � 1)T). The pseudo-code in Fig. 2

summarizes the CLUST algorithm.

4.1. Which clustering algorithm?

A successful implementation of the CLUST algo-

rithm may critically depend on the choice of a clus-

tering algorithm Aðs; hÞ. Although the area of

unsupervised learning is very active and offers a

great many types of algorithms, the task of select-

ing a ‘‘suitable’’ clustering algorithm for a given

data is ill-defined and cannot have a principled
solution without considering the objective func-

tion. However, the strength of the CLUST algorithm

should be exactly in its ability to consider many

clusterings simultaneously and automatically
Fig. 2. CLUST pse
choose a relatively good one! Therefore, we seek

an algorithm that is reasonably fast, and flexible

in the sense that it can generate a diversity of mod-

els based on a diversity of metrics. Particularly

convenient candidates are the spectral clustering

(or kernel PCA) algorithms, which are reasonably

fast and well-motivated, and flexible in the sense

that they use a kernel to assign the initial pairwise

dissimilarities. For our implementation we (rather

arbitrarily) selected the spectral algorithm of (Ng

et al., 2002). This algorithm uses an RBF kernel

to assign pairwise dissimilarities and has one

parameter r (which here is interchangeably re-
ferred to as h). It can also cluster the data into

any desired number s of clusters. Due to lack of

space we refer the reader to (Ng et al., 2002) for

the details of this algorithm.
udo-code.



0 10 20 30 40 50 60 70
0

0.2

0.4
Tr

ai
n

 
E

rr
o

r

voting, dim=49, m=20, u = 80, N=100, C: 14, σ: 5, 5–fold, δ=0.10

0 10 20 30 40 50 60 70
0.1

0.2

0.3

Te
st

 
E

rr
o

r

0 10 20 30 40 50 60 70

5

10

15

# 
C

lu
st

er
s

(τ
)

0 10 20 30 40 50 60 70

10
0

K
er

n
el

 
W

id
th

 (
σ)

0 10 20 30 40 50 60 70

0.6

0.8

V
ap

n
ik

 b
o

u
n

d
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In all the experiments described below we ap-

plied the spectral clustering algorithm with

C = 15 and we fixed H = {10�3,10�2,10�1,
100,101}. That is, we clustered the data to

s = 2, . . . , 15 clusters and for each s we attempted

five different metrics. These parameter sets were

chosen and fixed before we applied the algorithm

to any of the datasets.8 Overall, the CLUST algo-

rithm attempted 5 · 14 = 70 unsupervised models

(using the spectral clustering algorithm) in each

of the applications described below. In all cases
most of these unsupervised models were very

unsuccessful, but for most datasets this diversity
8 However, we clearly used some ‘‘prior knowledge’’ in

selecting H. Some experience with SVMs indicates that such a

logarithmic ‘‘grid’’ (H) of possible values for the RBF ‘‘width’’

(r) is often sufficient to achieve high quality results when

applying (supervised) SVMs on datasets of medium sized

dimension, as those we consider.
of models often included a small number of high

quality models.

4.2. Example

Before we present our empirical study of the

CLUST algorithm, we describe in some detail one

run of the algorithm. Consider Fig. 3 (see the fig-

ure�s caption for a description of the five panels).

The figure shows a particularly successful applica-

tion of the algorithm, where the final selection is of
the best hypothesis among all the 70 hypotheses

that were generated.9 The selected hypothesis (cir-

cled) does not have the smallest empirical (train)

error and we see that the Vapnik bound did pro-
9 This run corresponds to one of the folds (among the five; see

below). Another fold was also particularly successful and in the

other three the algorithm�s performance was less than perfect.



Table 1

The datasets (�MUSH� is the ‘‘mushroom’’ dataset)

Dataset Dimension Bias (%) Nominal?

MUSH 21 (117) 48
p

TAE 5 (57) 20
p

VOTING 16 (48) 38
p

MUSK 166 39 ·
PIMA 8 35 ·
IONOSPHERE 34 42 ·
BUPA 6 41 ·
MI 7 (17) 47

p

The dimension is the original number of features. In cases

where the original features are nominal (indicated in last col-

umn) the effective dimension, after transforming to numerical

features, appears in parenthesis; �Bias� is the proportion of the

majority class as measured on the full sample Xm+u.
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tect the algorithm from selecting a number of

hypotheses with a lower (or similar) training error,

but with a significantly larger test error. Another

striking fact is that most of the clusterings were ex-

tremely bad and did not yield useful hypotheses
(for example, see the ones corresponding to small

r). The algorithm easily avoided all those ‘‘irrele-

vant’’ hypotheses. On the down side, we see that

the Vapnik bound was not sufficiently tight to

provide the final hypothesis with a useful ‘‘perfor-

mance guarantee’’ (w.h.p.). In particular, the

bound corresponding to the best hypothesis is

slightly larger than 0.5. Unfortunately, this behav-
ior was typical in all the experiments we conducted

and is partly due to the very small sample size we

used (m = 20 and u = 80 in the current example)

and the relatively large number of hypotheses,

which increases the slack of the bound (due to

the use of the union bound in Eq. (7)).
5. Experiments

We tested the CLUST algorithm on standard

learning problems from the UCI repository. In

order to minimize the risk of over-fitting due to

‘‘dataset selection,’’ we committed ourselves be-

fore the start of the experiment to the entire collec-

tion of datasets used by Blum and Chawla (2001)
in their paper on the transductive �graph-mincut�
algorithm.10 This benchmark consists of eight

datasets from the UCI repository. Some properties

of these sets are summarized in Table 1. Since the

spectral clustering algorithm we employ assumes

numerical vectors, we transformed nominal fea-

tures to numerical ones. This was done in a stan-

dard way through the use of binary indicator
attributes. We also normalized each attribute inde-

pendently so that the dynamic range of the attri-

butes was [0,1]. No other preprocessing was used.

Using this collection of problems we conducted

a rather extensive experiment, focusing on a very

hard setting with extremely small sample size.

For each dataset, we examined the performance
10 We have not tested the CLUST algorithm on other datasets

and we report below on all our results.
of the CLUST algorithm over nine m:u partitions

that were constructed from a full sample of

m + u = 100 points selected uniformly at random

from the original dataset. The m:u partitions we

examined are: 10:90, 20:80, . . . , 90:10. For each

m:u partition we provided the algorithm with the

unlabeled full sample consisting of 100 points

together with a labeled training set of size m that
was selected randomly and uniformly among all

m-subsets. We repeated this random choice of

the training set five times and all the results re-

ported here are averages over these fivefolds.

5.1. Benchmark algorithms

As our main benchmark algorithm we selected
the Spectral Graph Transducer (SGT) algorithm

presented recently in (Joachims, 2003). This

sophisticated algorithm appears to be one of the

best transductive learning algorithms known to-

day, as judged by the empirical study presented

by Joachims. In particular, SGT clearly shows an

advantage over inductive learning algorithms and

in many cases it beats other well known transduc-
tive algorithms such as the transductive support

vector machine (TSVM) variant of Joachims

(1999), the graph-mincut algorithm of Blum and

Chawla (2001) and the co-training algorithm of

Blum and Mitchell (1998), which can be viewed

as a special case of SGT.

The SGT algorithm has a number of parameters.

As indicated by a sensitivity analysis presented in
(Joachims, 2003), all but one of these parameters



Table 2

Fivefold average errors (± standard error of the mean) for m = 20 and u = 80. The lowest error among the three algorithms (CLUST, SGT

and NAIVE) appears in boldface. Also, the best among CLUST* and SGT* appears in boldface

CLUST SGT NAIVE CLUST* SGT*

MUSH .11 ± .04 .12 ± .04 .53 ± .01 .07 ± .00 .06 ± .01

TAE .17 ± .01 .28 ± .03 .19 ± .01 .17 ± .00 .18 ± .01

VOTING .13 ± .01 .13 ± .02 .37 ± .01 .10 ± .00 .08 ± .01

MUSK .45 ± .03 .42 ± .01 .45 ± .05 .32 ± .03 .31 ± .02

PIMA .31 ± .03 .39 ± .01 .36 ± .01 .27 ± .02 .29 ± .01

IONO .24 ± .03 .33 ± .04 .48 ± .04 .16 ± .04 .25 ± .02

BUPA .43 ± .03 .42 ± .02 .46 ± .04 .38 ± .02 .31 ± .02

MI .47 ± .02 .41 ± .01 .51 ± .02 .35 ± .01 .32 ± .02
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are not critical. However, one parameter (k, which

determines the number of nearest neighbors of

each point, for the purpose of graph construction)

is critical. Joachims discovered a nice heuristic to

determine a good value for this parameter, based

on a solution for the optimization problem solved

by the SGT algorithm. In all the experiments we

conducted with SGT we assigned the value of k

using the same heuristic as used by Joachims in

his paper. We set the other parameters to their rec-

ommended values.11 The assignment for k was

chosen to be the best one (according to Joachims�
heuristic) among all 100 possible choices in

{1,2, . . . , 100} (recall that the size of our full sam-

ple is always 100).

In order to gain some perspective on the results
we also tested and report on the test errors

achieved by two extreme algorithms. The first is

a trivial algorithm that labels the test set according

to the majority class as observed on the training set.

We denote this algorithm by NAIVE. Clearly any

useful transductive learning algorithm must not

consistently underperform NAIVE. The second

benchmark is the best hypothesis in hindsight

generated by algorithm CLUST. This benchmark is

denoted by CLUST*. We also report on the best

hypothesis in hindsight considered by SGT (among

all 100 models) and denote it by SGT*.
11 Specifically, we used D = 80 and C = 3200. Also, note that

we used Joachims� code to run the SGT algorithm. This code can

be downloaded from Joachims� web site.
5.2. Empirical observations

As mentioned, overall we conducted, 9 · 8 = 72

experiments, with nine different m:u partitions and

eight datasets. Each experiment included fivefolds.

Table 2 specifies the average errors (over the

fivefolds) suffered by the various algorithms, for

train/test partitions with m = 20 and u = 80. Such
partitions, with very small training sets, are often

of practical interest. We see that CLUST is signifi-

cantly better than SGT in three datasets (TAE, PIMA

and IONO). SGT is significantly better than CLUST

in one dataset (MI). In most cases both CLUST and

SGT are significantly better than NAIVE. In one case

(MUSK) CLUST is no better than NAIVE but SGT is sig-

nificantly worse than NAIVE in two cases (TAE and
PIMA). In the majority of sets SGT* achieved lower

test error than CLUST*.

Table 3 provides a general view on the entire set

of experiments. The table specifies the average er-

rors of the various algorithms, where the average

is taken with respect to the errors obtained in all

nine m:u partitions. Here we see that both CLUST

and SGT significantly beat each other exactly three
times. We also see that both CLUST and SGT lose

twice to NAIVE. A rough conclusion from this table

is that no algorithm is better than the other and

that each of the algorithms excels in different

learning problems. We also see that the perfor-

mance of SGT* is significantly better than that of

CLUST*. Except for the IONO set, where SGT* (and

SGT) are particularly bad, on all other sets SGT*

achieves smaller error rates. Perhaps this is not

so surprising because for the computation of SGT*

we considered 100 different models whereas for



Table 3

‘‘Total’’ average errors (± averaged standard errors of the mean). Each entry is an average of the nine fivefold averages, corresponding

to the nine m:u partitions. Best results appear in boldface as described in Table 2

CLUST SGT NAIVE CLUST* SGT*

MUSH .09 ± .02 .09 ± .02 .54 ± .02 .07 ± .02 .05 ± .01

TAE .16 ± .03 .23 ± .04 .17 ± .02 .13 ± .01 .12 ± .01

VOTING .14 ± .02 .13 ± .03 .39 ± .05 .10 ± .01 .06 ± .01

MUSK .44 ± .04 .38 ± .03 .42 ± .05 .29 ± .04 .24 ± .02

PIMA .29 ± .03 .39 ± .03 .35 ± .03 .25 ± .03 .24 ± .02

IONO .16 ± .03 .33 ± .03 .43 ± .03 .08 ± .02 .21 ± .02

BUPA .43 ± .03 .41 ± .03 .42 ± .03 .33 ± .02 .24 ± .01

MI .41 ± .03 .31 ± .02 .53 ± .03 .25 ± .02 .19 ± .02
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CLUST*, only 70 models. In any case, the relative

success of SGT* (and of CLUST*) may indicate that
there is still room for significant improvements of

both algorithms!

The two scatter plots in Fig. 4 provide some-

what different general views of the experiments.

Each point in the main scatter plot corresponds

to one of the 72 experiments (and by itself repre-

sent an average over fivefolds). The experiments

are ordered by datasets as indicated by the labels
of the x-axis (and the y-axis). Within each dataset

range, the nine experiments are ordered in increas-

ing size of m (each corresponding to one of the m:u
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Fig. 4. Two scatter plots. Each point represent one experiment

among the 72 experiments conducted. The subplot is a standard

scatter plot of the algorithms� errors. For a description of the

main plot, see the text.
partitions). Suppose that in the ith experiment (in

this order) the test error of CLUST is a and the error

of SGT is b. If a < b then the point corresponding to

this experiment is located at the coordinate

(i, i + b/a). Otherwise, the point is located at

(i, i � a/b). Thus, a point below the diagonal repre-

sents an advantage for SGT and vice versa. The sub-

plot in Fig. 4 is a standard scatter plot. Here again
there is a point for each experiment and the loca-

tion is simply determined by the error rates. From

these plots we see again that each of the algorithms

is an overall winner on 3 different datasets and

there is a mixed behavior on the other two sets.

On the IONO set we observe a major advantage of

CLUST over SGT. There is no such major advantage

of SGT on other datasets. From the standard scat-
ter (sub)plot we can see that there is rather weak

positive correlation between the behaviors of the

two algorithms over the set of experiments.

The experiments described above consider

settings where the total number of points m +

u = 100 is rather small. While many applications

of interest have limited sample sizes (e.g., medical

applications), some others (e.g., text categoriza-
tion) may have access to large repositories of unla-

beled data. It is therefore interesting to ask what

could be the resulting learning curves for a fixed

m and growing u. Consider the explicit bound

(11). The only appearance of u in the bound is

within the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ uÞ=u

p
. For u P m, this fac-

tor is bounded at the interval ð1;
ffiffiffi
2

p
�. Therefore,

one should not expect any dramatic improvement
of this bound by taking larger u. In our algorithm

we use the (implicit) Vapnik bound that is only

bounded above by the explicit bound (11).
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Fig. 5. The explicit bound (11) and the Vapnik bound on the test error, as a function of u. Both graphs are computed with a fixed

m = 100, T = 10, C = 10 and d = 0.1.
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However, as can be seen in the graphs in Fig. 5

both bounds are qualitatively similar and we ob-

serve that also the Vapnik bound would not bene-

fit from larger values of u.
6. Concluding remarks

We studied a new learning scheme for transduc-

tion based on clustering. Unlike many other trans-

ductive learning heuristics the new scheme is

theoretically well-founded. Our empirical study

indicates that the CLUST algorithm achieves state-
of-the-art performance, and we conclude that it

is competitive with the the recent SGT algorithm

(while being considerably simpler than SGT). Nev-

ertheless, we note that the running time of CLUST,

compared to SGT (using the parameters reported

above), are considerably longer.

Our study concerned a straightforward imple-

mentation of the CLUST approach. We made no at-
tempts to improve the basic scheme. It would be

interesting to consider more sophisticated prior

constructions, perhaps ones which are based on

more extensive knowledge that can be derived from

the full sample geometry. Also, it would be interest-

ing to see if the SGT algorithm can benefit from a

principled model selection as we propose here.

Transductive inference is an intriguing type of
learning that is not well understood. We believe
that transduction offers new opportunities for

machine learning research. In any case, while

the precise relation between the inductive and

transductive settings remains unclear, the interest

in transduction should not be underestimated. If
transduction allows for faster (and/or computa-

tionally more efficient) learning than the best

possible inductive learning, then much more

research attention should be devoted to

transduction.
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