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Abstract— The Internet connectivity in the Autonomous Sys-
tem (AS) level reflects the commercial relationship between ASes.
A connection between two ASes could be of type customer-
provider when one AS is a provider of the other AS, or of type
peer-peer, if they are peering ASes. This commercial relationship
induces a global hierarchical structure which is a key ingredient
in the ability to understand the topological structure of the AS
connectivity graph. Unfortunately, it is very difficult to collect
data regarding the actual type of the relationships between ASes,
and in general this information is not part of the collected
AS connectivity data. The Type of Relationship (ToR) problem
attempts to address this shortcoming, by inferring the type of
relationship between connected ASes based on their routing
policies. However, the approaches presented so far are local in
nature and do not capture the global hierarchical structure.

In this work we define a novel way to infer this type of
relationship from the collected data, taking into consideration
both local policies and global hierarchy constrains. We define
the Acyclic Type of Relationship AToR problem that captures this
global hierarchy and present an efficient algorithm that allows
determining if there is a hierarchical assignment without invalid
paths. We then show that the related general optimization prob-
lem is NP-complete and present a 2

3
approximation algorithm

where the objective function is to minimize the total number of
local policy mismatches. We support our approach by extensive
experiments and simulation results showing that our algorithms
classify the type of relationship between ASes much better than
all previous algorithms.

I. INTRODUCTION AND RELATED WORK

The current Internet consists of over 20000 Autonomous
Systems (ASes) interconnected by a set of thousands links.
Each AS is a collection of routers under a single administrative
authority, and routing between ASes is done using the Border
Gateway Protocol (BGP) [1]. One of the well appreciated
advantages of BGP is its ability to use policy based routing
where each AS defines its own local policy. In practice, the
policy of an AS reflects its commercial relationship with other
ASes. Thus, the AS connectivity graph has a hierarchical
structure in which connected ASes have customer-provider
relationship if a small AS is connected to a larger AS, and
they have peer-peer relationship if they have comparable size
(other types of relationship such as sibling-sibling also exist,
but they apply to less than 2% of the connections) [2], [3].

Despite the increasing effort to reveal and characterize
the topological structure of the Internet by several projects
that collect real up-to-date data, the hierarchical structure,
induced by the commercial relationship between connected

ASes, is typically not part of the collected information. Thus,
in order to get this more complete view, one should infer
these relationships from the collected information. This is
usually done using guidelines and assumptions regarding the
policy used and knowledge regarding the gathered information.
For instance, the Internet Routing Registry [4] is a union
of world-wide routing policy databases that use the Routing
Policy Specification Language (RPSL) [5] . These databases
contain, among other things, the local connectivity and the
local import/export policy of the registered ASes. In [6] and [7]
the authors analyzed the RPSL policies of ASes in the IRR
and inferred the type of relationship between registered ASes.
Nevertheless, using the IRR database to infer the hierarchical
structure of the AS connectivity map has several drawbacks.
First, in some cases, entries in the IRR may be invalid and
contain out-of-date data [8]. Second, this database is not
complete enough. In particular, only 36000 links, most of them
are located in Europe, out of over 130000 [7] are fully covered
by this database.

While the IRR database contains the local policy of reg-
istered AS, it is not part of the information gathered by
other projects. In these cases, other techniques should be
used in order to infer the type of relationship. The Route-
Views project [9] is a BGP based database that collects
a snapshot of the Internet AS level topology on a daily
basis, based on BGP routing tables from about 60 different
sources. The DIMES project [10] samples the Internet using
distributed agents located at thousands hosts around the world,
performing periodic traceroute to a set of IP addresses. While
these projects gather information using different methods, the
collected data of both databases consists of a set of routing
paths (between ASes) that reflect the routing policy of these
ASes. In order to infer the type of relationship from such
routing paths, one should understand how the policy in the
AS level affects these paths.

According to the guidelines presented in [3] and in [2] an
AS usually exports its routes and its customer routes to its
providers and peers, but it does not export its provider or peer
routes to other providers or peers. In contrast, an AS usually
exports its routes and its customer routes, as well as all its
provider or peer routes to its customers and sibling. This policy
indicates that BGP paths are valley-free, and step-free, i.e. after
traversing a provider-customer or a peer-peer link, the path
cannot traverse a customer-provider or peer-peer link [11].
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Fig. 1. A ToR instace with two paths
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Fig. 2. A ToR instace - A possible solution

Gao [11] was the first to infer the AS relationships from
BGP routing tables, based on this valley-free nature of the
routing paths. She developed a heuristic algorithm assuming
that typically a provider has a larger size than its customer,
and the size of an AS is usually proportional to its degree in
the AS level connectivity graph. Thus, for each routing path,
the AS with the highest degree is set as a top provider with
respect to the path, inducing customer-provider relationship to
preceding and subsequent links in the path. The experimental
results of [11] indicate that 90% of the links in the Route-
Views database are of type customer-provider, 8% are of type
peer-peer, and 1.5% are of type sibling-sibling.

Subsequently, the Type of Relationship ToR problem was
formally defined in [12] as a maximization problem:

Definition 1.1: Given an undirected graph G = (V, E), and
a set of paths P , label the edges in E as either −1, 0 or +1 to
maximize the number of valid paths in P , where a valid path
can be one of the following types for M, N ≥ 0:

1) −1, ... (N times), +1, ... (M times).
2) −1, ... (N times), 0, +1, ... (M times).
Here −1 indicates a customer-provider edge, 0 indicates a

peer-peer edge, and +1 indicates a provider-customer edge.
For example, consider the instance of the ToR problem

depicted in Fig. 1. This instance consists of nine ASes and
two paths. A possible solution to that instance, containing only
valid paths, is depicted in Fig. 21. In this solution both paths
are of type 1, namely they consist of several customer-provider
links followed by several provider-customer links.

The technique proposed in [12] to solve the ToR problem
combines data from multiple vantage points, where each BGP
routing table gives partial view of the Internet from one AS.
This technique does not rely on the degree of the ASes. The
authors ranked the ASes based on their position in the graph,
induced by a single BGP routing table. Then they infer the
relationship by comparing the ranks of ASes as it derived from
multiple sources.

1A directed edge in the graph going from node v to node u means that v
is a customer of u.
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Fig. 3. A ToR instace - every solution contains cycle

In [13] the authors showed that the decision version of the
ToR problem is NP-complete in the general case. Moreover,
they presented a linear time algorithm that determines if
there is a fully valid solution (i.e without any invalid path).
This algorithm maps a ToR instance into a 2SAT formula by
converting every two consecutive edges in any of the paths
into a clause with two literals. Finding a Truth assignment
to this formula induces a valley-free solution, while if the
formula cannot be satisfied the ToR instance must contain at
least one valley. They also proved that the maximum version
of the problem (i.e. maximizing the number of valid paths)
cannot be approximated within 1/n1−ε (for any ε > 0) for
general instances with n paths unless NP=co-RP. This is done
using approximation-preserving polynomial reduction from
the Maximum Independent Set problem [14].

The formal definition of the ToR problem indeed captures
the fact that BGP paths are valley-free and step-free. However,
it has an inherent drawback - it does not consider the hierarchi-
cal structure of the AS graph. In particular, in the real Internet
the directed graph imposed by the assignment of the customer-
provider relationship can not contain cycles (see [15], [16]). A
national AS, for example, that provides services to a regional
AS that provides services to a local AS cannot be also the
customer of the local AS. Consider the solution to the ToR
instance depicted in Fig. 2. In this solution both paths are
valley-free, however it contains a directed cycle, violating the
hierarchical structure of the graph. One can achieve an acyclic
solution to this specific instance, by changing the direction of
the edge (AS4, AS5). In contrast, every optimal solution to
the ToR instance depicted in Fig. 3 contains a cycle.

In this paper we address this drawback by defining a new
problem, the Acyclic Type of Relationship (AToR) problem,
taking into account the acyclic structure of the AS connectivity
graph. In this case, given a set of routing paths, the objective
function is to maximize (or minimize) the number of valid
(invalid) paths, keeping the directed graph acyclic. This new
problem captures the type of relationship between connected
ASes more accurately. Note, that while these two problems
look similar, their analysis is quite different. In particular, in
the ToR problem one should only satisfy local conditions in
which every two consecutive edges in all the paths should be
valley-free. On the other hand, in the new AToR problem, in
addition to these local conditions, one should satisfy a more



global condition ensuring that the assignment is acyclic. For
that reason, techniques and algorithms that have been used
with respect to the ToR problem, cannot be adopted and used to
analyze and solve the AToR problem. A very similar problem,
also termed AToR, was independently defined and studied by
Kosub et al. [17]. This work, done in parallel to ours, studies
pure theoretical aspects of this problem.

In Section II we formally define the AToR problem. Then,
in Section III we present an efficient algorithm determining
whether an acyclic solution without invalid paths exists. The
general case is discussed in Section IV. We consider a variant
of this problem in which the objective function is to minimize
the total number of valleys. This variant captures the fact
that in some cases the export policy executed by an AS does
not follow the export policy presented above. Thus, due to
the locality of the policy, paths that traverse such ASes may
contain valleys. We show that similar to the original problem
(in which the objective function is to maximize the number of
valid paths), the decision version of this variant of the problem
is NP-hard, and we present 2

3 -approximation algorithm for the
maximum version of the problem. In Section V we consider
practical aspects of inferring the actual type of relationships
between ASes. This includes heuristics to infer also peer-peer
and sibling-sibling relationships. In Section VI we examine our
algorithms over real up-to-date data gathered from the Route-
Views database, and perform simulations over several random
graph. We also compare our algorithms to other approaches
presented in [13], [12], [11]. We summarize our work and
present some conclusions in Section VII.

II. MODEL AND PROBLEM DEFINITION

The AS connectivity map is modelled by a graph G =
{V,E}. A node in the graph represents an AS, and an edge
represents a peering relation between two ASes. Assigning
an orientation to a particular edge in the graph indicates the
business relationship between its corresponding ASes. Thus,
an edge (v, u) is directed from v to u if v is a customer
of u (and respectively u is a provider of v). On the other
hand, an undirected edge indicates that the corresponding
ASes are connected by peer-peer relationship. As explained in
Section I, a directed cycle that contains at least one directed
edge (i.e. a customer-provider edge) violates the hierarchical
structure of the graph. On the other hand, ASes from the
same hierarchy level can be connected by peer-peer links.
Thus, cycles that consist of undirected edges alone (i.e. all the
links composing these cycles are of type peer-peer), implying
that the participants ASes are in the same hierarchy level, are
permitted. With respect to this observation, we use the term
hierarchical cycle to describe a directed cycle that contains
at least one directed edge. We use the term valid path to
indicate that the path does not contain valleys nor steps. Thus,
p = {v1, v2, ..., vn} is a valid path if for all 1 < i < n,
the edge (vi−1, vi) is directed from vi−1, to vi or the edge
(vi+1, vi) is directed from vi+1, to vi. A path is invalid if
it is not valid. Considering the hierarchy structure of the AS

graph and using these policy guidelines, we define the AToR
(Acyclic Type of Relationship) problem as follows:

Definition 2.1: Given an undirected graph G and a set of
paths P , assign orientation to some of the edges of G such
that the directed graph does not contain hierarchical cycles
(i.e. directed cycles that contains at least one directed edge),
and the number of valid paths is maximized.

One may observe that sibling-sibling edges are not part
of this definition. In Section V we show how to refine our
algorithm to include such edges. In some cases an instance to
the AToR problem includes only the set of paths P while the
graph G is omitted. In such cases, one may consider a graph
G′ = (V ′, E′) that is imposed by the set of paths, namely
V ′ = {v|v ∈ P}, and E′ = {e|e ∈ P}. The decision version
of the problem, k-AToR, is defined as follows:

Definition 2.2: Given an undirected graph G, a set of paths
P , and an integer k, test if it is possible to give orientation to
some of the edges of G such that the directed graph does not
contain hierarchical cycle, and the number of invalid paths is
at most k.

In sections III and IV we present theoretical analysis both
for the AToR and the k-AToR problems. In these analyses
we consider solutions that contain only directed edges (i.e.
edges of type customer-provider). One can argue that this
requirement is stricter than necessary and therefore does not
reflect the real practical problem. Yet, as we prove in the next
lemma, every solution that contains peer-peer links can be
converted to a solution that contains only customer-provider
links by giving an orientation to the peer-peer links. Clearly,
in a solution that contains only directed edge, every directed
cycle is a hierarchical cycle and acyclic solution is a solution
that does not contain hierarchical cycles.

Lemma 2.1: Given an instance (G,P ) to the AToR problem
and a solution S that assigns an orientation to some of the
edges of G, such that the directed graph does not contain
hierarchical cycles and the number of valid paths is k, there
is a solution S′ that assigns an orientation to all the edges
of G, such that the directed graph does not contain directed
cycles and the number of valid paths is at least k.

Proof: Denote by E1 the set of edges that have an
orientation with respect to S, and denote by G1 = (V, E1)
the graph imposed by this set of edges. Clearly, G1 does not
contain directed cycles. We build S′ gradually by assigning
orientation to the set of undirected edges E\E1 (i.e. converting
the set of peer-peer links into customer-provider links). We
show that each such step does not reduce the number of valid
paths and preserves the acyclic property of the graph.

Consider a peer-peer link e = (v, u), namely e ∈ E \ E1.
The graph G1 does not contain directed cycles therefore,
if there is a directed path p = (v, ..., u) then there is no
directed path p′ = (u, ..., v) (otherwise, their concatenation
is a directed cycle in contradiction to the assumption)2. Thus,
if there is a directed path from v to u we assign e from v to
u. Otherwise, we assign e from u to v. In both cases, after

2Note that p and p′ are not necessarily in P .



adding e to E1, the graph G1 is still acyclic.
Next, we show that every valid path remains valid by

assigning direction to a link e. Clearly, paths that do not
traverse e are not affected so we need to show that every
valid path that traverses e remains valid. Consider a valid path
that traverses e. According to the discussion above, this path
consists of N customer-provider links followed by e which
is a peer-peer link followed by M provider-customer links
(where N, M ≥ 0). If e is assigned to be a customer-provider
links then the new path consists of N + 1 customer-provider
links followed M provider-customer. On the other hand if
e is assigned to be a provider-customer links then the new
path consists of N customer-provider links followed M + 1
provider-customer. In both cases the new path is valid.

III. THE 0-AToR PROBLEM

In this section we present an efficient algorithm for the 0-
AToR problem. In other words, given an instance (G,P ) to the
AToR problem, the algorithm determines if there is a solution
without any invalid paths. In such case, the algorithm finds
such a solution. For simplicity, we present and analyze the
algorithm over a special case of the 0-AToR, called the 0-
AToR2 problem, in which the length of all paths is exactly
two links. Although this version seems to be simpler than the
0-AToR problem, it does not. In particular, in the following
lemma we show that the complexity of the 0-AToR2 problem
is identical to the complexity of the 0-AToR problem3.

Definition 3.1: Given an instance (G,P ) to the 0-AToR
problem, we say that there is a Satisfying assignment to (G,P )
if there is an orientation to the edges such that the directed
graph is acyclic and all the paths are valley-free.

Lemma 3.1: Given an instance (G,P ) to the 0-AToR prob-
lem, there is an instance (G,P2) to the 0-AToR2 problem such
that there is a Satisfying assignment to (G,P ) if and only if
there is a Satisfying assignment to (G,P2).

Proof: P2 is generated in the following way: for each p =
{AS1, AS2, ...ASn} ∈ P produce n−2 paths p1, ...pn−2 such
that pi = {ASi, ASi+1, ASi+2}. For each assignment, if the
path pi is invalid than the path p is invalid as well (it contains
valley in ASi, ASi+1, ASi+2). On the other hand, if the path
p is invalid, at least one of the paths p1, ...pn−2 is invalid
(if p contains valley at (ASi, ASi+1, ASi+2) then the path
pi contains a valley as well). Clearly, an acyclic assignment
to (G,P ), induces an acyclic assignment to (G,P2) and vice
versa, since both instances consist of the same graph.

As discussed above, the directed graph imposed by a solu-
tion to an instance of the 0-AToR2 problem does not contain
directed cycles. Thus, one can present this solution as an
ordering π of the vertices of a graph such that for each directed
edge (vi, vj) ∈ E, going from vi to vj , π(vi) < π(vj).
Clearly, the directed graph induced by such ordering is acyclic.
Moreover, this solution does not contain valleys, namely for

3Recal that in this section we consider solutions that assign an orientation
to all the edges. In this case, a valid path is a valley-free path (i.e. a path that
does not contain valleys).

each path p = (vi, vj , vk) π(vj) > π(vi) or π(vj) > π(vk).
The following algorithm determines if such an ordering exists.

Algorithm ATOR(G = (V,E), P = (p1, ..., pn))

1. P2 = φ
2. For all pi = {AS1, AS2, ...ASm} ∈ P .
3. for(i = 1 to m− 2)
4. P2 = P2 ∪ {ASi, ASi+1, ASi+2}
5. i=1
6. For all v ∈ V, π(v) = −1.

7. while P2 6= φ do
8. Find v ∈ V such that

∀p = (vi, vj , vk) ∈ P2, v 6= vj

9. If such v does not exist
return NO SOLUTION.

10. set π(v) = i.
11. i=i+1.
12. P2‘ = {p|v ∈ p}.
13. P2 = P2 \ P2‘

14. while i ≤ |V |
15. if π(v) = −1, set π(v) = i.
16. i = i + 1.

17. return π.

In the first stage (steps 1 to 4) the algorithm generates a
set of paths P2 according to the construction described in
Lemma 3.1, such that the length of each path in P2 is exactly
two and (G,P ) has a Satisfying assignment if and only if
(G,P2) has a Satisfying assignment. Steps 5 and 6 are for
initialization. Then, in every iteration the algorithm finds a
vertex that does not appear in the middle of any path. Giving
this vertex the current lowest value in the ordering insures
that the associated paths are valid. On the other hand, if such
vertex does not exist, it means that at least one path contains
this vertex in the middle. Thus, giving this vertex the current
lowest value in the ordering makes this path invalid.

In each iteration at least one path is removed (steps 12
and 13), and thus at most |P2| iterations are performed. In each
iteration, the algorithm goes through the vertices and pick one
vertex (Step 8). Moreover, |P2| = |P | ·(N−2) where N is the
average length of a path in P . Therefore, the time complexity
of the algorithm is O(|P | ·N · |V |).

If the algorithm finds a solution (i.e. it does not return NO
SOLUTION) the peering relationships are induced as follow:
For each edge (v, u) in the graph, v is a customer of u (and
respectively u is a provider of v) if and only if π(v) < π(u).
Next we show the correctness of the algorithm.

If an instance (G,P ) of the 0-AToR problem has a Satisfying
assignment, clearly a sub-instance (i.e. an instance that consists
of a subset of P ) has a Satisfying assignment as well. Thus,

Observation 3.1: Given an instances (G,P ) and (G,P ′)
to the 0-AToR problem, such that P ′ ⊆ P . If (G,P ′) does
not have a Satisfying assignment then (G, P ) does not have a



Satisfying assignment.
Given an instance (G = (V, E), P ) of the 0-AToR problem,

denote by Gp = (Vp, Ep) the graph imposed by P (i.e. Vp =
{v|v ∈ P} and Ep = {e|e ∈ P}). Clearly, the ordering of any
vertex v such that v ∈ V \ Vp does not affect the validity of
any path (since this vertex does not appear in any path), thus:

Observation 3.2: Given an instance (G,P ) to the 0-AToR
problem. (G,P ) has a Satisfying assignment if and only if
(Gp, P ) has a Satisfying assignment.

Theorem 3.1: Given an instance (G, P ) to the 0-AToR prob-
lem, if Algorithm ATOR returns ordering π of the vertices of
a graph, then this ordering induces a Satisfying assignment.

Proof: Clearly, the directed graph induced by the order-
ing is acyclic. We show that this directed graph is valley-free
with respect to the set of paths P2. Without loss of generality,
assume that p = (vx, vy, vz) is removed from P2 in the
i’th iteration. According to steps 8 and 10 of the algorithm
π(vx) = i or π(vz) = i. Moreover, π(vy) was not set yet,
thus π(vy) > i and therefore p is valley-free.

Now, recall that P2 is constructed according to Lemma 3.1,
thus the directed graph imposed by the ordering π, is valley-
free with respect to the set of paths P as well.

Theorem 3.2: Given an instance (G,P ) of the 0-AToR2
problem, if Algorithm ATOR returns NO SOLUTION, then
there is no Satisfying assignment.

Proof: Without loss of generality, assume that the al-
gorithm returns NO SOLUTION in the i’th iteration and the
set of paths that was removed in the first i − 1 iterations is
P ′′2 . Denote by P ′2 the remaining paths, namely P ′2 = P2 \P ′′2 .
We show that the instance (G′, P ′2), does not have a Satisfying
assignment, where G′ = (V ′, E′) is a subgraph of G in which
V ′ = {v|v ∈ P ′2} and E′ = {(v, u)|(v, u) ∈ E

⋂
v, u ∈ V ′}.

Assume that there is an ordering π that induces a Satisfying
assignment. Denote by v the node with π(v) = 1. Recall that
v ∈ V ′, therefore v ∈ P ′2. According to steps 8 and 9 in
the algorithm, ∀v ∈ P ′2, ∃p = (vx, vy, vz) ∈ P ′2 such that
v ≡ vy . Thus, since π(vx) > 1, π(vz) > 1, and π(vy) = 1,
p contains a valley, so (G′, P ′2) does not have a Satisfying
assignment. According to Observation 3.2, (G,P ′2) does not
have a Satisfying assignment and according to Observation 3.1
(G,P2) does not have a Satisfying assignment. Again, recall
that P2 is constructed according to Lemma 3.1, thus the
instance (G,P ) does not have a Satisfying assignment as well.

Discussion: One may notice that the AToR2 problem resem-
bles to the well known BETWEENNESS problem, studied in
the field of Computational Biology [18]. The input to the
BETWEENNESS problem consists of a set of points S =
{x1, x2, ..., xn} and a set of constraints, where each constraint
is a triplet {xi, xj , xk} ∈ S × S × S. A solution to the
problem is a total order on its points such that every constraint
{xi, xj , xk} satisfies xi < xj < xk or xk < xj < xi,
namely xj is between xi and xk (see [18]). With respect to
our problem, the set of triplet corresponds to the set of paths
with length two. While in the BETWEENNESS problem xj
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Fig. 4. One invalid path - Multiple valleys

must be between xi and xk, in the AToR problem xj can be
between xi and xk or bigger than xi and xk (i.e. xj must
not be lower than xi and xk). Despite the appeared similarity
between the problems their complexity is completely different.
Thus, while determining if there is a satisfying assignment
to the AToR2 problem (and finding such an assignment) can
be done in polynomial time (using the algorithm described
above), determining if there is a satisfying assignment to
the BETWEENNESS problem is NP-hard [19]. The intuition
behind this difference is the fact that in the AToR problem,
determining the ordering of one edge of a path satisfies this
path (i.e. the path is valid). On the other hand determining
the ordering of single point in a triplet, does not necessarily
satisfy this triplet, in the BETWEENNESS problem.

IV. THE k-AToR PROBLEM

While determining if there is a solution without invalid paths
(i.e. finding a solution to the 0-AToR problem) can be done in
polynomial time, the general case is much more complex. In
particular, the reduction presented in [13] for the ToR problem
holds for the AToR problem. Thus, the general decision version
(called the k-AToR problem) is NP-hard and the maximum
version of the problem (i.e. maximizing the number of valid
paths) cannot be approximated within 1/n1−ε (for any ε > 0)
for general instances with n paths unless NP=co-RP.

In this section we consider a variant of the problem in
which the objective function is to minimize the total number
of valleys. This problem is different from the original problem
since one invalid path may contain more than one valley (see
Fig. 4), and on the other hand, if several paths traverse a
common AS, one valley (in the common AS) may cause
several invalid paths (see Fig. 5). The objective function of this
variant of the problem is motivated by the fact that in some
cases ASes (mistakenly or purposely) do not follow the export
policy discussed in Section I. In particular, in such cases, an
AS may export its provider routes to other providers. Thus,
due to the locality of the policy, paths that traverse such ASes
may contain valleys. In the extended version of this paper we
prove that the decision version of this variant of the problem
is NP-hard using a reduction from the Feedback Vertex Set
(FVS) problem [20], [14]. Here we present a 2

3 -approximation
algorithm to the maximum version of the problem.

Consider an instance of the k-AToR problem in which all
the paths contain exactly two edges (we refer this problem
as k-AToR2 problem). In this case an invalid path contains
exactly one valley and therefore if there is no duplicated paths,
every valley corresponds to one invalid path. Thus, given a
graph G and a set of paths P , we build an instance (G,P2)
to the k-AToR2 such that for any assignment, the number of
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valleys with respect to the set of paths P is equal to the
number of invalid paths with respect to the set of paths P2.
Thus, for each p = {AS1, AS2, ...ASn} ∈ P we produce
n− 2 paths p1, ...pn−2 such that pi = {ASi, ASi+1, ASi+2},
then we remove all the duplicate paths. In this case, given
an assignment of the edges in G, every valley in the edges
(v1, v2) and (v2, v3) with respect to P , corresponds to invalid
path (v1, v2, v3) with respect to P2. Based on this observation,
henceforth we consider only the k-AToR2 problem.

Next, we present a 2
3 -approximation algorithm to the k-

AToR2 problem. For each vertex v ∈ V , denote by Ev the set
of the paths such that v is an end point of each path in the set.
Similarly denote by Mv the set of the paths such that v is in the
middle of each path in the set. Formally, Ev = {p|p ∈ P, p =
{v, u, w} ∪ p = {u,w, v}}, Mv = {p|p ∈ P, p = {u, v, w}}.

Algorithm k-ATOR2(G = (V, E), P = (p1, ..., pn))

1. P2 = φ
2. For all pi = {AS1, AS2, ...ASm} ∈ P .
3. for(i = 1 to m− 2)
4. P2 = P2 ∪ {ASi, ASi+1, ASi+2}
5. i=1
6. For all v ∈ V, π(v) = −1.

7. while P2 6= φ do
8. Let v be the vertex in V such that

∀u ∈ V, |Mv|/|Ev| ≤ |Mu|/|Eu|
9. set π(v) = i.

10. i=i+1.
11. P2‘ = {p|v ∈ p}.
12. P2 = P2 \ P2‘

13. while i ≤ |V |
14. if π(v) = −1, set π(v) = i.
15. i = i + 1.

16. return π.

The algorithm is similar to the algorithm presented in
Section III. In particular, the algorithm presented in Section III
is a special case of this algorithm in which the vertex, selected
in Step 8 must follow |Mv|/|Ev| = 0 (i.e. |Mv| = 0)4. Next
we prove that this algorithm is a 2

3 -approximation algorithm.

4Note that Ev and Mv are defined with respect to the set of paths P2 in
the algorithm.

Lemma 4.1: The vertex v that is selected in Step 8 fulfils
|Mv|/|Ev| ≤ 1

2 .
Proof: In every path p = {v1, v2, v3} two vertices (v1

and v3) are end points and one vertex (v2) is in the middle.
Thus, |P | =

∑
v∈V |Mv| = 1

2

∑
v∈V |Ev|, and at least one

vertex v ∈ V satisfies |Mv|/|Ev| ≤ 1
2 and therefore the vertex

selected in Step 8 fulfil |Mv|/|Ev| ≤ 1
2 .

Theorem 4.1: Given an instance (G, P2) of the k-AToR2
problem, the Algorithm k-ATOR2 returns an ordering π such
that the directed graph induced by this ordering is acyclic and
the total number of valley-free paths Pvalid is at least 2

3 ·|Sopt|,
where Sopt is the optimal solution.

Proof: The algorithm returns an ordering over the
vertices, thus the directed graph induced by this ordering is
acyclic. Assume that p = (vx, vy, vz) is removed from P2

in the i’th iteration. If p ∈ Ev then according to Step 9 in
the algorithm π(vx) = i or π(vz) = i. Moreover, π(vy) was
not set yet, thus π(vy) > i and therefore p is valley-free.
On the other hand, if p ∈ Mv then π(vy) = i while π(vx)
and π(vz) were not set yet. In this case π(vx), π(vz) > i
and p is an invalid path. According to this observation, in
each iteration, |Ev| paths turn to be valid paths while |Mv|
paths turn to be invalid paths. According to Lemma 4.1
|Mv|/|Ev| ≤ 1

2 therefore the total number of valid paths is
at least double the number of invalid paths. In other words,
Pvalid ≥ 2(|P2| − Pvalid) and hence Pvalid ≥ 2

3 · |P2| ≥
2
3 · |Sopt|.

One may observe that the proof is independent of the
value of |Sopt|. Thus, the theorem proves a stronger result.
In particular, the algorithm guarantees that at least 2

3 of the
paths are valley-free regardless on the optimal solution.

While we consider an objective function that minimizes the
total number of valleys, other objective targets may be con-
sidered as well. In particular, one may consider an objective
target that minimizes the total number of directed cycles. This
objective target may be interesting from a theoretical point of
view, but it seems that it does not have a practical interest.
While invalid paths and valleys may appear in the internet
for several reasons (e.g. export policy misconfiguration) the
hierarchical acyclic structure of the internet is a result of
the business relationship between ASes. Large ASes always
provide services to small AS and this ordering imposes an
acyclic structure.

V. PRACTICAL CONSIDERATION

In this section we show how the theoretical algorithms
presented in sections III and IV can be used to solve the
practical problem of inferring the correct type of relationships
from the collected data. In practice we may have to choose
between more than one solution and we also have to consider
other type of relationships, namely peer-peer and sibling-
sibling that were not considered in these algorithms.

Consider the algorithms presented in sections III and IV.
While these algorithms find a specific ordering, the space of
possible solutions may contain more than one ordering. In
particular, in Step 8 of both algorithms, more than one vertex
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Fig. 6. Space of Solutions

may satisfy the required condition (i.e. minimizing |Mv|/|Ev|)
and therefore different orders found by the algorithm may in-
duce different peering relationships. In particular, the ordering
found by the algorithm may induce peering relationship that
are different from the real relationships. To obtain a more
accurate solution, one should use heuristics and guidelines
that consider the topological structure of the graph and the
gathering process of the data5.

Considering the fact that the overwhelming majority of
ASes are small6, most of the routing paths obtained by BGP
routing tables are between small ASes (i.e. the source and
the destination of the path are small ASes). Thus, most
of the routing paths consist of several customer-provider
links follows by several provider-customer links. For instance,
consider the routing path depicts in Figure 6. One possible
solution may determine that AS(i) is a customer of AS(i+1)
(i.e. AS7 is the top provider). In this case, the vertices are
picked by Step 8 of the algorithm in the following order:
AS1, AS2, AS3, AS4, AS5, AS6, AS7. In a more realistic
solution AS4 is defined to be the top provider. In this case,
the vertices are picked by Step 8 of the algorithm in the
following order: AS1, AS7, AS2, AS6, AS3, AS5, AS4. Our
heuristic is based on this observation and we choose the
vertices assigned to a single path in rotation, i.e. after picking
a vertex from one end of a path7 we prefer that the next vertex
picked from this path will be from the second end of the path.

A. Finding Peer-Peer Relationships

The algorithms described in previous sections give orien-
tation to all edges in the graph, and therefore determines
a customer-provider relationship between adjacent ASes. In
practice some of the edges may be of type peer-peer. While
Lemma 2.1 proved that every peer-peer link can be converted
to a customer-provider link without harming the solution, the
opposite does not hold. Namely, not every customer-provider
link can be converted to a peer-peer link.

With respect to this observation, we need to assign peer-
peer relationship to some of the links reserving the quality of
the solution, namely without increasing the number of invalid
paths and without violate the hierarchical, acyclic structure
of the graph. We handle this task in two stages, during the
execution of the algorithm, and after the assignment of the
customer-provider links.

In the first step, we refine the algorithms by assigning peer-
peer relationship to some of the links. In Algorithm k-AToR
we omit Step 15, while in Algorithm AToR we omit Step 16
(i.e. i = i+1). Thus, all the remaining vertices have the same
value in the topological sort, which is greater than the values

5Note that enumerating all possible solutions is computationally infeasible.
6The term small AS refers to the hierarchy level of the AS
7In this case, we refer to the entire long path before it was sliced into short

paths according Lemma 3.1.

of all other vertices. The peering relationship is induced as
follow: Given an edge (v, u), the edge is of type peer-peer
if and only if π(v) = π(u), and v is a customer of u if
and only if π(v) < π(u). Thus, all the edges connecting the
remaining vertices are of type peer-peer while other edges are
of type customer-provider. In this case, the graph does not
contain hierarchical cycle, but cycles that consist of peer-peer
links alone are possible. Recall that two ASes connected by
peer-peer link, means that they are in the same hierarchy level.
Thus, these kind of cycles are permitted and they do not violate
the hierarchical structure of the AS graph . In addition, for each
valid path p = (vi, vj , vk), π(vi) < π(vj) or π(vk) < π(vj)
thus the following five options are possible:

π(vi) < π(vj) = π(vk), π(vi) < π(vj) < π(vk),
π(vi) < π(vj) > π(vk), π(vi) = π(vj) > π(vk),
π(vi) > π(vj) > π(vk)

One can see that in all cases, the peering relationship that
are derived from each assignment induces a valid path.

In the second step, we convert customer-provider links into
peer-peer similar to the way described in [21]. First, we find a
set of peer-peer candidates. A customer-provider link is added
to this set if it can be converted to peer-peer link without
violate the hierarchical structure of the graph and without
increasing the number of invalid paths. While converting any
single link from the candidate set is permitted, converting
simultaneously more than one link may violate the hierarchical
structure or increase the number of invalid paths. Thus, we
convert the links in the set one after the other, preferring links
that connect nodes that their vertex degrees are on the same
order, testing each time if the graph remains acyclic and if the
number of invalid path is not increased.

B. Finding Sibling-Sibling Relationships

A solution of the Algorithm k-AToR presented in Section IV
may contain invalid paths. In particular, when |Mv|/|Ev| >
0 with respect to Step 8 in the algorithm, it means that
at least one valley traverses vertex v. While these kind of
anomalies can be explained by an unexpected policy, it may
reflect a sibling-sibling relationship between connected ASes.
Thus, invalid paths may be settled by assigning sibling-
sibling relationship to one of the edge on each valley. Similar
to the discussion regarding peer-peer links in Section V-A,
converting a customer-provider link into sibling-sibling link
may violate the hierarchical structure of the graph. We convert
customer-provider link into sibling-sibling in the following
way. First, we find a set of sibling-sibling candidates. This
set consists of all the edges that are traversed by at least one
valley. Then we convert the links in the set one after another,
preferring links that connect nodes that their vertex degrees
are on the same order, until the set is empty or until all the
paths become valid, testing every step if the graph remains
acyclic.

VI. EXPERIMENTS AND SIMULATION RESULTS

In this section we examine practical versions of the al-
gorithms presented above over real data gathered from the



Route-Views project [9]. We also simulate the algorithms over
several random graphs, and compare the obtained results to
other approaches presented in [11], [12], [13].

As mentioned in Section I, the Route-Views database con-
sists of 54 BGP routing tables from different sources. Each
table contains a set of AS paths from a single source to almost
all other ASes in the AS connectivity map. We use data from
April 2006 that consists of 21505 ASes, 45783 links and over
1,500,000 paths. First, we execute Algorithm AToR over the
entire database. The algorithm returns NO SOLUTION, namely
every assignment contains cycles or invalid path. Moreover, we
found out using the algorithm presented in [13] (and similar to
the results presented in [13] over older data), that the simpler
0-ToR problem (i.e. regardless the existence of cycles), does
not have a valley-free solution as well8.

Next, we execute the different algorithms over the entire
Route-Views database. To verify and evaluate the results
obtained by the algorithms, one needs to compare these results
against actual data, namely one needs to obtain information
regarding the real type of relationship of links in the AS
connectivity graph, and compare the relationships inferred
by the algorithms against the relationships of these links.
In contrast to previous work that validate the results against
the type of relationships of few ASes (usually contacting
the network administrators of these ASes and asking for
internal information regarding the actual type of relationships
of each AS [11], [21]), we use a general and much more
extensive method consisting of a data, collected from the
IRR database [4]. This database contains among other things,
the export policy of registered ASes. We use the methods
presented in [7] and [6] to infer the peering relationships
between these ASes. While the IRR database contains 36,000
links and the Route-Views database contains 49,500 links, the
intersection of these databases consists of 10,000 links (i.e.
10,000 links appears in both databases). Thus, we compare the
solution, obtained by the algorithms to the orientation induced
by the IRR database with respect to these intersected links.

Result analysis and measurement: Given an edge (u, v),
the export policy of u to v and the export policy of v to
u determines the type of relationship of this edge [3], [2]. In
particular, an AS may export its routes and its customer routes
or it may export its routes and its customer routes, as well as
all its provider or peer routes. We denote the first case as Type
I and the second case as Type II. Table I show how the export
policy of an edge (u, v) is derived from this export policy. For
example, if u exports to v its routes and its customer routes
(i.e. Type I) and u exports to v its routes and its customer
routes, as well as all its provider or peer routes (i.e. Type II,
it means that u is a customer of v.

If the orientation of an edge, assigned by a specific al-
gorithm is different from the actual orientation of the edge,
it means that there is a mismatch between the export policy
inferred by the algorithm to the actual export policy of one

8We refer to the 0-ToR problem as the decision version of the ToR problem
that determines if there is a solution without any invalid path.

Type of relationship Export policy Export policy
u− v of u to v of v to u

customer-provider Type I Type II
provider-customer Type II Type I

peer-peer Type I Type I
sibling-sibling Type II Type II

TABLE I
EXPORT POLICY AND TYPE OF RELATIONSHIP

or both nodes. We say that the orientation of an edge is fully
mismatched if the export policy of both nodes is incorrect. We
say that the orientation of an edge is partly mismatched if the
export policy of one node is incorrect.

Table II presents the number of partial and full mismatch
edges of each graph and each algorithm (CR - our algorithm,
presented in Section IV; BPP - the algorithm presented
in [13]; Gao - the algorithm presented in [11]; and SARK-
the algorithm presented in [12]). The table also depicts the
number of policy mismatch, i.e. the total number of cases in
which the export policy derived by the algorithm is different
from the actual policy9. One can see that the results, obtained
by our algorithm are better compared to the results obtained
by other algorithms. Moreover, while the solution obtained
by CR is acyclic, the solutions obtained by BPP, SARK,
Gao, contain directed cycles. An interesting result is that the
number of partial mismatch (in all algorithms) is extremely
high compared to the number of full mismatch which may
emphasize the difficulty to identify peer-peer relationship (a
partial mismatch is usually caused by confusing between peer-
peer and customer-provider relationships).

Algorithm Partial Mismatch Full Mismatch Policy Mismatch
CR 1463 93 1649
BPP 1526 104 1734

SARK 2329 192 2713
Gao 1610 109 1828

TABLE II
EXPERIMENTS RESULTS ROUTE-VIEWS VS. IRR

While the experiment presented above is performed over
real data, its validation using the IRR may lead to biased
validation results. In particular, as mentioned in Section I, in
some cases entries in the IRR may be invalid and contain data
that is out-of-date or not updated. Second, as pointed out in [7],
in some cases the interpretation of the export policy may be
ambiguous. For that reason we perform simulations, examining
the different algorithms over several random graphs. This
process consists of the following steps. First, we generated
a random graph and assign a type of relationship to its edges.
Then, we simulate the gathering process of BGP routing
tables, by modelling each BGP routing table as a policy-
based shortest path tree. This modelling is motivated by the
assumptions that each BGP routing table contains paths from a
single source to the entire ASes, and under the policy discussed
so far routing is done along shortest paths10. Finally, we

9This is exactly (Partial Mismatch + 2 · Full Mismatch).
10For further discussion regarding this modelling see Section 2 in [7].



execute the different algorithms and measure their inaccuracy,
i.e. in how many edges, each algorithm failed to assign the
correct type of relationship.

We consider several random graphs; each of them consists
of 22,000 vertices (similar to the number of ASes observed
by the Route-Views database). As was suggested in [7] about
third of the links in the AS graph are of type customer-provider
while almost all the rest of the links are of type peer-peer.
In the first graph we use the guidelines from [20], [6], [21]
and divide the set of nodes of the graph into five hierarchical
groups, where the number of ASes in each group increases
exponentially. Thus, the set of nodes of each graph is divided
in the following way: 10 ASes are in level 1, 140 ASes are in
level 2, 1350 ASes are in level 3, 3500 ASes are in level 4, and
about 17000 ASes are in level 5. According to this hierarchy,
ASes from the same groups are connected by a peer-peer
relationship while ASes from different groups are connected
by a customer-provider relationship. In order to guarantee the
reachability of the nodes in the graph with respect to the policy
enforced11, we build the graph such that each AS has, on
the average, two providers. We call this graph layered graph.
The second graph captures the fact that the vertex degree
distribution of the customer-provider subgraph follows the
power-law while the peer-peer vertex degree distribution does
not [7]. Thus, in this graph the customer-provider subgraph is
modelled by a Barabasi-Albert graph [22] while the peer-peer
subgraph is modelled by a random graph. We call this graph
Barabasi-Albert graph. The ten top providers in both graph
are fully connected by a set of 45 peer-peer links.

Barabasi-Albert / Layered graph
Algorithm Partial Mismatch Full Mismatch Policy Mismatch

CR 304 / 221 7 / 0 318 / 221
BPP 730 / 1808 22 / 44 774 / 1896

SARK 9980 / 5590 806 / 35 11592 / 5660
Gao 833 / 417 26 / 1 885 / 419

TABLE III
SIMULATION RESULTS OF THE RANDOM GRAPHS

Table III presents the number of partial and full mismatch
edges of each graph and each algorithm. It also presents the
number of cases in which the export policy derived by the
algorithm is different from the actual policy. Similar to the
experiments over the Route-View database, in both graphs
the results obtain by our algorithm are much better compared
to other algorithms. These results stand out mainly when the
number of full mismatch is considered. Likewise, the solutions
obtained by our algorithm is the only one that preserve the
hierarchical acyclic structure of the graph.

VII. DISCUSSION

In this paper we studied the Type of Relationship problem.
We observed that the conventional definition of the problem
does not consider the hierarchical acyclic structure of the

11In general, when routing policy is considered, connectivity does not
necessarily mean reachability, namely if two ASes are physically connected
via one or more physical paths it does not necessarily means that there is a
permitted path with respect to the adopted policy.

AS connectivity map. Base on this observation we defined
a new problem, the Acyclic Type of Relationship problem,
that takes into account this hierarchical structure. We proved
that determining if there is a solution without invalid paths
can be solved in a polynomial time, and presented an efficient
algorithm for this case. We also presented a 2

3 approximation
algorithm for a variant of the problem, considering the total
number of valleys. Our experiments and simulation results
show that our algorithms classify the type of relationship
between ASes much better than all previous approaches.
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[17] S. Kosub, M. G. Maaß, and H. Täubig, “Acyclic type-of-relationship
problems on the internet,” in Proceedings of the 3rd Workshop on
Combinatorial and Algorithmic Aspects of Networking (CAAN’2006),
2006, pp. 98–111.

[18] B. Chor and M. Sudan, “A geometric approach to betweenness,” in Third
Annual European Symposium on Algorithms, September 1995, pp. 227–
237.

[19] J. Opatrny, “Total ordering problem.” SIAM J. Comput., vol. 8, no. 1,
pp. 111–114, 1979.

[20] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.,
1972, pp. 85–103.

[21] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,
kc claffy, and G. Riley, “As relationships: Inference and validation,”
ArXiv Computer Science e-prints, April 2006.

[22] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science,, vol. 286, pp. 509–512, October 1999.


