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Abstract— The topological structure of the Internet infras-
tructure is an important and interesting subject that attracted
significant research attention in the last few years. Apart from the
pure intellectual challenge of understanding a very big, complex,
and ever evolving system, knowing the structure of the Internet
topology is very important for developing and studying new
protocols and algorithms. Starting with the fundamental work
of Falostous et. al, a considerable amount of work was done
recently in this field, improving our knowledge and understand-
ing of the Internet structure. However, one basic problem is
still unanswered: how big is the Internet. In the AS level this
means: how many peering relations exist between ASs. Finding
this number is hard since there is no direct way to retrieve
information from all nodes regarding their direct neighbors, and
all our knowledge is based on sampling processes. Thus, it is very
difficult to characterize the Internet since it may well be the case
that this characterization is a result of the sampling process, and
it does not hold for the “real” Internet.

In this paper we attack this problem by suggesting a novel us-
age of the measurements themselves in order to infer information
regarding the whole system. In other words, in addition to looking
at the overall graph that is generated from the union of the
data obtained by performing many measurements, we consider
the actual different measurements and the amount of new data
obtained in each of them with respect to the previous collected
data. Using the second moment allows us to reach conclusions
regarding the structure of the system we are measuring, and in
particular to estimate its total size. We present strong evidence
to the fact that a considerable amount (at least 35%) of the links
in the AS level are still to be unveiled. Our findings indicate
that almost all these missing links are of typepeer-peer, and
we provide novel insight regarding the structure of the AS
connectivity map with respect to the peering type.

I. I NTRODUCTION

The topological structure of the Internet infrastructure is
an important and interesting subject that attracted significant
research attention in the last few years. Apart from the pure
intellectual challenge of understanding a very big, complex,
and ever evolving system, built by people and used by many
more, knowing the structure of the Internet topology is very
important for developing and studying new protocols and
algorithms.

The work in this area composed of collecting information
regarding the current (and possibly past) state of the Inter-
net [1], [2], [3], inferring from the collected data the actual
topological structure [4], [5], and analyzing this structure in
order to understand the inherently important characteristic and

evolution of the system [6], [7], [8], [9]. One problem that
arises in this context is that it is impossible to measure the
full structure of the Internet directly and to obtain the full
connectivity graph. This is not only due to the fact that the
Internet is too big and ever evolving, but largely because
there is no direct way to retrieve information from each node
regarding its direct neighbors. Thus, it is very difficult to
characterize the Internet since it may well be the case that
this characterization is a result of the sampling process, and
it does not hold for the “real” Internet. In other words, it is
extremely difficult to know if the picture we have is a good
approximation of the “real” Internet connectivity, or if it is
biased to a large extend by the measurements, and thus does
not reflect the “true” picture.

In this paper we attack this problem by suggesting a novel
usage of the measurements themselves in order to infer infor-
mation regarding the whole system. In other words, rather than
looking at the overall graph that is generated from the union
of the data obtained by performing many measurements, we
consider the actual different measurements and the amount of
new data obtained in each of them with respect to the previous
collected data. This technique allows us to reach conclusions
regarding the structure of the system we are measuring. In our
case we apply the methods to the Autonomous System (AS)
level connectivity graph.

In Section II we start with a rigorous study of the different
data collecting techniques that are used in order to collect AS
connectivity information. We then use the characterization of
the data collection to draw conclusions regarding the actual
structure of the full AS map. We consider a new measure for
graphs, the number of (policy-based) shortest path spanning
trees needed to cover the edges of a graph and show that the
AS map is unique in the sense that a considerable amount of
links are not revealed in this covering process. We also show
that these unrevealed peers are mostly of the typepeer-peer
while this process unveiled many of thecustomer-provider
peers. We also analyze the routing policy of available database
using concepts that have been presented in [7] and [6], and we
settle a fundamental difference between the results that were
presented in these works.

While the size of the full AS connectivity map is unknown,
in Section III we show several methods to estimate this size. In
particular, we use a data from several databases to approximate



the actual number of missing links and present a strong
evidence to the fact that at least 35% of the links in the AS
level are still to be unveiled.

In Section IV we examine the vertex degree distribution of
the AS connectivity map. Using our inferences from Section II,
we explain the difference between earlier results that show
that the AS connectivity map follows the power law [4] and
other results that question this observation [5], by showing that
while thecustomer-providersubgraph follows the power law,
the peer-peersubgraph behaves differently.

II. U NDERSTANDING THEAS DATA GATHERING PROCESS

The AS level connectivity map is modelled by a graphG =
{V,E}. Each node in the graph represents an autonomous
system, and an undirected edge represents a peering relation
between two ASes. In order to formalize the methods used to
gather information about the available peering relations in the
Internet we use several simplifications and assumptions. This
helps us create a rigorous view of the discovery process, and
hopefully maintains the most important and relevant aspects of
the discovery process while eliminating less important issues.

There are several methods to gather and sample information
of the AS connectivity map. The first one is a BGP based
database consisting of a set of BGP routing tables from a
set of ASes. Each routing table contains the paths (in terms
of ASes) to each of the relevant subnetworks. For simplicity,
we assume that this data, the path vector of an AS, contains
paths to all other ASes and not to specific subnetworks. Since
most AS level routing do not distinguish between different
networks within the same AS, this should not add a significant
inaccuracy. Thus, the collection of all the path vectors from a
given AS to all other ASes is a DAG (Directed Acyclic Graph).
Retrieving the peering connectivity as reflected by the data of
a specific AS is the most basic peering retrieval process. This
can be done by a direct access to the BGP data, or via the
Looking Glasstool1.

One of the well appreciated advantages of BGP is its
ability to use policy based routing where each AS defines
its own local policy. In practice, the policy of an AS reflects
the commercial relationship with other ASes. Thus, the AS
connectivity graph has a hierarchical structure in which con-
nected ASes have acustomer-providerrelationship if a small
AS is connected to a larger AS, and they have apeer-peer
relationship if they have comparable size [10], [11]. Moreover,
permitted paths do not include so calledvalleysnor steps[8],
[12]. Although ASes may use other policies and BGP routing
table may reflect more than one route for a destination AS,
we assume that under the above policy, routing is done along
shortest paths and the information retrieved form a single AS
is a tree. This assumption makes the discussion regarding
the retrieval process formal and rigorous. Thus, one can now
model the process of retrieving peering information by creating
a policy based shortest path tree, namely a shortest path tree

1A list of ASes that provide access to theLooking Glasstool can be found
in www.traceroute.com .

that follows the policy guidelines presented above, from a
given node to all the nodes in the graph.

The question of discovering peering relations translates now
to the amount of edges covered by a union of such trees rooted
at a given set of nodes. In other words, the amount of peering
relations covered by a collection of BGP path vectors from
a set of ASes, corresponds to the amount of edges covered
by a set of the corresponding trees. In this work we use the
Route-View project [1] as a source for our BGP database. This
project collects a snapshot of the Internet AS level topology
on a daily basis from about 40 ASes.

The second method to gather information is the Internet
Routing Registry (IRR) [2]. This is a union of world-wide
routing policy databases that use the Routing Policy Specifi-
cation Language (RPSL) [13], [14]. These databases contain,
among other things, the local connectivity information for
the registered ASes. In terms of the AS connectivity graph,
this corresponds to discovering all the edges connected to a
given node and therefore these objects are referred to as stars.
Obviously, if we had such a complete and an updated database
we could easily derive the AS connectivity map. However, not
all the ASes are willing to publish their peering relationship.
Moreover, in some cases the entries in the database are out
of date, thus they may fail to contain existing peers while in
some other cases they may contain peering relationships that
are no longer valid.

The most updated and complete IRR database is maintained
by RIPE [15]. This is one of four Regional Internet Registries
and during June 2005 it consisted of about 6800 ASes that
have registered in Europe2. In this database almost all the
registered ASes (over 98%) share their peering relationship. In
contrast, only 400 ASes out of 11000 ASes that have registered
in ARIN (American Registry for Internet Numbers) share this
information.

As mentioned above, entries in the IRR may be invalid.
Thus, one should use a filtering mechanism in order to remove
these entries. In this work we use a filter that is based on the
sanity checks that have been presented in [5]. These filters are
based on the fact that a valid peer should appear in the entries
of both ASes while a peer that appears in only one entry may
be out of date and should be removed from the IRR. In case
that one of the ASes does not have an entry in the IRR it is
not clear whether this peer should be filtered out or not. Thus,
we consider two filtered database, the first one contains these
peers while in the second one the peers are removed.

DIMES [3] is a new project that samples the Internet
using traceroute. In particular, distributed agents located in
thousands hosts around the world, perform periodictraceroute
to a set of IP addresses. In contrast to the other methods
(i.e. BGP routing tables and IRR) this technique obtains
information regarding the Internet connectivity in the router
level. Nevertheless, one can correlate between an IP address

2Actually there are almost 10000 registered ASes but over 3000 out of them
seem to be inactive due to the fact that they do not appear in the Route-View
database and their entries look invalid (see discussion regarding IRR filtering
mechanism in the next paragraph).



and its corresponding AS (i.e. the AS that allocated this IP
address) and therefore connectivity in the router level induces
connectivity in the AS level. Currently (June 2005), DIMES
consists of 3781 distributed agents3 located in 77 countries
around the world and it spans 39000 links from the AS map.

A. Covering graph by shortest path trees

In [5] the authors found that the available databases con-
sisting of BGP routing data alone, are not complete enough
and when adding the IRR database, a significant number of
links are revealed. They explain this result by the fact that
there are several paths to each AS while only one path is
published, and by the private nature ofpeer-peerlinks. In [16]
the authors pointed out that the majority of these new links,
connect between so calledrich nodes - nodes with large
numbers of links. In this section we reconstruct the gathering
process that is used to build the Route-View database, using
information from June 2005. We show that most of the links
in this database are already disclosed by less than 10 BGP
routing tables (from different sources) while the amount of
peers that are discovered by the rest of the sources is very
small. Simulating this process over several graph models we
find that policy has a significant role in the revealing process
and that most of the hidden peers are of typepeer-peer, while
almost all thecustomer-providerpeers are unveiled.

During June 2005 the Route-View database consisted of
about 20000 ASes and 43200 links and it was a superposition
of 40 different BGP routing tables4. With respect to the
discussion above, the process of composing these BGP routing
tables into a complete database is similar to the process of
spanning a graph by a set of policy-based shortest path trees. In
order to examine the process in which these routing tables are
composed, we took from the Route-View database the 40 BGP
routing tables (each representing a policy-based tree). Then,
using 50 random permutations, we calculated the average
number of new links found in each step. Figure 1 depicts
the average number of new peers that are unveiled by the i’th
BGP tree. Clearly, the first routing table discover over 20000
links5 (the average size of a BGP routing table). However, the
amount of new discovered links decreases very fast. In fact,
starting from the tenth routing table, each new table unveiled
less than 300 new peers (compare to more than 1000 peers
in the first 5 trees), a very small number comparing to the
size of the graph. In other word, a small number of BGP trees
revealed a significant amount of peers while the rest of the
routing tables reveal very little. Although many links remain
hidden, incrementing the number of BGP routing tables will
not help much in increasing the number of unveiled links.

As mentioned before, by disregarding the policy, a BGP
routing table can be approximately simulated by a shortest

3Note that several agents can be located in a single AS.
4Actually, there are 45 routing tables but 5 of them contains less than

1500 links compare to more than 20000 links in the others. Since their total
contribution is less than 200 links, we ignore these small tables to avoid
unnecessary deviations.

5In practice, a complete BGP routing table may contain several paths to
each AS. Thus, each table contains more links compared to a tree.
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path tree. Thus, we can simulate this covering process by
generating graphs and cover their edges by a set of shortest
path trees. In Figure 2 we show this covering process for
several random graphs6. One can see that similar to the Route-
View covering process, the contribution of new trees by means
of new edges decreases very fast. Obviously, the degression
is more moderate in graphs that have more links due to the
fact that each tree contains exactlyN−1 edges, thus exposing
large graph requires more trees.

There are two main differences between the covering pro-
cess of the AS database and our simulated graphs. The first
one refers to the quantity of the cover. From the fact that the
IRR database contains thousands of links that do not appear in
the route-view database we know that the route-view database
covers at most 60% of the links in the AS connectivity map.
On the other hand, in our simulation the set of 40 trees cover
almost all the edges in the graph (see Figure 3). The second

6In this experience, and throughout this paper we consider the following
random graphs.GN (p) graphs in which an edge between two nodes exists
with probability p, a Barabasi-Albert graph [17], [18] and Waxman graph
[19], all have about 18000 nodes. For each model we generated two graphs
with 40000 (termed a a small graph), and one with 80000 edges (termed a
large graph).
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difference can be observed by considering figures 1 and 2.
While the degression of the number of new link becomes
moderated in the AS graph (see Figure 1), it remains linear
(in the log scale) in our simulation (see Figure 2).

In order to understand these differences we study the impact
of the policy routing on the covering process. According to our
policy paradigm, as described above, two ASes from different
hierarchy level are connected bycustomer-providerlink while
two ASes from the same hierarchy level are connected by
peer-peeplink. In order to simulate this structure we need
to classify the nodes in each one of our graphs into several
hierarchy levels and give orientation to the links according to
this hierarchy.

Using the guidelines from [20], [6], [21] we divide the set
of nodesV of each graph into four hierarchy groups according
to the vertex degree where the number of ASes in each group
increases exponentially. Thus, the set of nodes of each graph is
divided in the following way: 15 ASes (that have the highest
degree) are in level 1, 150 ASes are in level 2, 1500 ASes
are in level 3, and about 16500 ASes (that have the lowest
degree) are in level 4. According to this hierarchy, ASes from
the same groups are connected by apeer-peerrelationship
while ASes from different groups are connected by acustomer-
provider relationship. Note that while this approach (degree
based hierarchy) may not be the best to approximate the
hierarchy structure of the AS connectivity map, it provides
“good enough” method to simulate the policy-based discovery
process.

In general, when routing policy is considered, connectivity
does not necessarily mean reachability, namely if two ASes
are physically connected via one or more physical paths it
does not necessarily means that there is a permitted path with
respect to the adopted policy. In heavy-tailed models such
as Barabasi-Albert, there is a strict correlation between the
hierarchy structure of the graph and the policy. Thus, In these
kind of models more edges are of typecustomer-providerand
the reachability under the policy routing constraints is stronger
compare to other model. In particular, in the Barabasi-Albert
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graphs that have been used in our simulation, more than 54%
of the edges are of typecustomer-providerwhile in the random
graphs and the Waxman graphs only 30% and 35% of the
edges are of typecustomer-providerrespectively. Moreover,
In the Barabasi-Albert graphs a single tree unveiled couple
of thousands vertices, in the Waxman graphs a single tree
unveiled couple of hundreds vertices, while in the Random
graphs only a few dozens of vertices are unveiled by a single
tree. One can observe that there is a correlation between the
number ofcustomer-providerlinks in a graph, its structure,
and its reachability.

The intuition behind this property is that a permitted path
cannot contain more than onepeer-peerlink [6], [21]. More-
over,customer-providerlinks must precedecustomer-provider
links. Thus, in a heavy-tailed graph, where many vertices are
connected to a heavy core bycustomer-providerlinks, almost
all the ASes are connected. In other models, every vertex can
reach only its local environment since the existence of many
peer-peerlinks forbid many (long) paths. Using the fact that
the AS graph is strongly connected7 similarly to the Barabasi-
Albert model, we simulate the policy-based covering process
over this model alone. In Figure 4, one can see that similar to
previous simulation, a small number of trees reveals most of
the link and similar to the AS graph, the degression of number
of new link become moderated. In addition, significant amount
of peers (more than 45%) remain hidden (see Figure 5).

Another interesting point is the difference between the
covering process ofpeer-peer links and customer-provider
links. In [6], [21] the authors presented some heuristics to
infer the type of relationship of the peering in the AS graph.
In both works they found that in the Route-View database,
less than 8% of the links are of typepeer-peer. Using the
algorithm presented in [6] we have found that 39700 out
of 43200 links in the current Route-View database are of
type customer-providerwhile 3650 are of typepeer-peer. In
contrast, in [7] the authors show that in the IRR database more
than 56% of the links are of typepeer-peer. They have tried to

7In the Route-View database every single tree unveiled almost all the ASes.
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explain this fundamental difference by the fact that one of the
algorithms may mislead or by the fact that entries in the IRR
are incorrect. We suggest a different explanation that is based
on the fundamental difference between BGP based database
and IRR database. As explained before, due to the locality of
peer-peerlinks, it is hard to unveiled this kind of links by BGP
routing tables, thus this overwhelming majority ofcustomer-
provider links in the Route-View database is not surprising
and one should not infer that this is the ratio between the
number ofpeer-peerand customer-providerlinks in the full
AS graph. In contrast, the IRR database is not affected by
the policy and therefore it unveils morepeer-peerlinks and
reflects the ratio betweenpeer-peerand customer-provider
links more accurately. Our simulations support this explanation
and show that in the covering process (that simulates the BGP
database) less than 3% of the links that have been unveiled are
of type peer-peercompare to almost 45% in the full graph.
Namely, a graph may contain manypeer-peerlinks that will
be hidden in a subgraph composed of BGP routing tables. In
addition, in a subgraph that consist of a set of stars (simulating
the IRR database) there are 44%peer-peerlinks, similar to the
original full graph.

Recall that when we ignored policy, the covering process
unveiled almost all the edges in the graph (including thepeer-
peer links). We also saw thatpeer-peerlinks are almost not
revealed when policy is used. An interesting question is, if
we consider thecustomer-providersubgraph alone (i.e the
subgraph that consist ofcustomer-providerlinks), what is the
quality of the cover? namely, Does the covering process cover
most of these links, or due to policy consideration many links
remain hidden?

Figure 6 depicts the coverage of both thepeer-peerand
the customer-providersubgraphs. In the large graph (i.e. the
graph that has about 80000 links) 48000 links are of type
customer-providerand more than 90% of these links were
unveiled in the covering process (recall that 97% of all the
links were unveiled when the policy is ignored). In the small
graph (i.e. the graph that has about 40000 links) in which
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25758 link are of typecustomer-provider, 84% of these links
were covered. This coverage is smaller than the one in the large
graph since there are less links in this graph and reachability
is more difficult. Nevertheless, in both graphs the coverage of
the customer-providersubgraph is very large which implies
that the AS connectivity graph has a similar behavior. Thus,
while the covering process of the Route-View database is not
complete and a significant amount of links are remain hidden,
a large portion (80%-90%) of thecustomer-providerpeers are
unveiled by this database. Namely, the Route-View database
span almost all thecustomer-providersubgraph while thepeer-
peer subgraph remains hidden.

B. IRR Policy Analysis

The information that is gathered by projects like IRR and
Route-View is also incomplete in the sense that the type of
relationship (i.e., customer-provider or peer-peer) is not part
of the collected information. This incompleteness is due to
the fact that many ASes do not expose their commercial
relationship, or due to the fact that this information is gathered
from BGP resources consisting on a set of path vectors. In [6]
the author presented algorithms that infer the AS relationships
based on the heuristic that the size of the AS is typically
proportional to its degree in the AS connectivity graph. Using
this heuristic (that was used in [20] to classify the ASes
into four hierarchy levels) they classify the type of peering
between ASes. In [21] the authors define the ToR (Type of
Relationship) as an optimization problem aiming at giving
an orientation to the edges of a graph such that the number
of invalid paths is minimized. They propose a technique to
classify the type of peering relationship by combining data
from multiple vantage points. The algorithms presented in both
work are based on an analysis of BGP pathes, thus they can be
applied over BGP database such as Route View, and not over
IRR database that gives only local view. In [7] the authors
developed framework to analyze the RPSL policies of ASes
in the IRR and infer the type of relationship of these ASes. In
this section we use the concept that was presented in [7] and
analyze the policies in the IRR database using a variant of this



method8. Using this analysis we infer the business relationship
of the registered ASes. In addition, we consider two practical
scenarios in which links may be classified in more than one
way.

Routing Policy Specification Language (RPSL) allows net-
work operator to specify routing policies at various levels in
the Internet hierarchy. In particular, RPSL is used in IRR to
describe BGP routing policy at the Autonomous System level.
RPSL is an object oriented description language that contains
many classes and attributes. The most important class from
our point of view is theaut-numclass that containsimport
andexportattributes that describe the routing policy of an AS.
Parsing the RIPE IRR we have obtained the export policy of
about 8,200 registered ASes. To infer the business relationship
between connected ASes (i.e. the type of peers) we use the
guidelines presented in [11] and [10] in which an AS can
export its routes and its customer routes to its providers and
peers, but usually does not export its provider or peers routes.
In contrast, AS can export its routes and its customer routes, as
well as its provider or peer routes to its customers and sibling.

Consider a simple topology of six ASes described in Fig-
ure 7. The export policy of each AS is also described in RPSL
format usingaut-numclass andexportattribute9. For example,
AS5 does not export AS4 and AS2 to AS3. Thus, according
to the guidelines described above, the peerAS5-AS3cannot be
a customer-providerlink (where AS5 is the provider), neither
sibling-sibling link. In order to determine the type of this link
we should explore the export policy of the other edge (i.e.
AS3). Since AS3 exports all its neighbors to AS5 we now can
infer that AS5-AS3is a customer-provider(where AS3 is the
provider). One can observe that in order to determine the type
of a single peer, the export policy of both edges are required.
Moreover, the import policy of an AS does not reflect the
export policy of the other edge. Thus, only peers in which
both edges describe their export routing policy in the IRR can
be analyzed. As described above our first IRR filter mechanism
that is used to remove invalid peers meets this requirement and
therefore it is used in our analysis. After analyzing the IRR
database using this method, we have found that 26700 out of
36237 links in the IRR database are of typepeer-peer, 8990
links are of typecustomer-providerand small amount of 490
links are of typesibling-sibling.

Analyzing peering type of relationship as described above
may lead to several problems in which the type of links may
be interpreted in different ways. The first problem refers to the
case in which an AS has no more than one provider (e.g. if an
AS is a stub or if an AS is in top hierarchy). In this case (and
according to our export guidelines) an AS exports all its routes

8In particular, we do not rely on the import policy of an AS, since in many
cases this policy does not reflet the actual export policy of the neighbor AS.
Thus, in contrast to [7] we infer the business relationship of a link only if the
export policy of both edges are available.

9In practice, theaut-numclass contains more attribute such asimport to
describe the import policy and other administrative attributes for maintenance.
In addition, theexportmay be more complex and contain regular expressions,
routes, and aggregation of routes and ASes (usingas-setand route-setRPSL
classes).

peer

AS1

AS3

AS4 AS5 AS6

AS2

customer provider

peer

aut-num: AS3 aut-num: AS5

export: to AS1 announce AS3 AS5 AS6 export: to AS2 announce AS5

export: to AS2 announce AS3 AS5 AS6 export: to AS3 announce AS5

export: to AS5 announce AS1 AS2 AS3 AS6 export: to AS4 announce AS5

export: to AS6 announce AS1 AS2 AS3 AS5

aut-num: AS4 aut-num: AS6

export: to AS2 announce AS4 export: to AS3 announce AS6

export: to AS5 announce AS4

aut-num: AS1 aut-num: AS2

export: to AS3 announce AS6 export: to AS3 announce AS2 AS4 AS5

export: to AS4 announce AS2 AS3 AS5

export: to AS5 announce AS2 AS3 AS4

Fig. 7. Routing Policy Example

to its neighbors, regardless the type of relationship. Thus, the
export policy in these cases is not enough to determine the
type of relationship of a link. For instance, using the same
export policy described in Figure 7, the linkAS1-AS3can be
identified as apeer-peerinstead of acustomer-providerand
the link AS3-AS6can be identified as asibling-sibling instead
of a customer-provider. In the RIPE database only 950 links
(out of 36237) are in this category and may be interpreted
in more than one way. In particular, 300sibling-sibling links
can be classified ascustomer-providerlinks and 650customer-
provider links can be classified aspeer-peer.

While this problem refers to the way in which the export
policy is interpreted, the second problem questions the classic
paradigm that consider three, well defined, types of rela-
tionship (i.e.customer-provider, peer-peer, sibling-sibling). In
contrast to the theoretical guidelines in which an AS either
exports all its providers (and peers) or none, in practice there
may be case in which an AS export only a subset of its
provider. For instance, consider that AS5 exports AS3 to
AS4 but does not export AS2. According to our analysis,
in this case the linkAS4-AS5is interpreted as apeer-peer
link (since AS4 does not export AS2 and AS5 does not
export AS2). Nevertheless, this analysis may be wrong since
although AS5 does not export all its providers it exports part
of them. Thus, these link cannot be interpreted by the classic
paradigm presented above. In particular, one may infer that
the type of the linkAS4-AS5should becustomer-provider
(where AS5 is the provider) and notpeer-peer. This kind of
ambiguity is very common and 4800 peers in the IRR meet



 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 L

in
ks

Threshold

Customer-Provider
Peer-Peer

Fig. 8. x− customer-providerThreshold

this category. These links may be interpreted ascustomer-
provider or sibling-sibling instead ofpeer-peeror customer-
provider respectively, since at least one edge exports subset of
its providers.

One way to deal with this problem is to determine the type
of each link by a threshold as follow. We say that aAS-i
is x-provider of AS-j if exactly 100x% of AS-i providers are
exported toAS-j. According to this definition ifAS-j is 0-
provider of AS-i andAS-i is 0-provider of AS-j, thus the link
AS-j, AS-iis of type peer-peer. If AS-j is 1-provider of AS-
i and AS-i is 1-provider of AS-j, thus the linkAS-j, AS-i is
of type sibling-sibling. And finally, If AS-j is 1-provider of
AS-i and AS-i is 0-provider of AS-j, thus the linkAS-j, AS-
i is of type customer-provider(where AS-j is the provider).
For the rest of the cases (i.e. where0 < x < 1) we define
a thresholdt. If x > t then x is considered to be1. If
x ≤ t then x is considered to be0. Figure 8 depicts the
number ofpeer-peerand customer-providerlinks in the IRR
for different threshold values. Clearly, for small threshold
values the amount ofcustomer-providerlinks increases at
the expense ofpeer-peerlinks (in absolute number, the total
amount ofsibling-sibling links almost does not change and
thus it is not considered in our discussion). Another interesting
inference from Figure 8 is that almost all the links that moved
from peer-peerto customer-providertype have a big threshold
value (i.e.t = 0.9). Namely in almost all the cases, a specific
AS exports all its providers (to another AS) except one.

Another way to deal with this problem is to consider new
types of relationship. Recall, that the types of relationship
intend to describe the business relationship between ASes. For
instance, in acustomer-providerlink the providers gives to the
customer full access to its routes. Nevertheless, in some cases
a provider gives only partial access to its provider (i.e. some of
the routes are blocked), thus the provider is not afull-provider
but asemi-provider.

III. A PPROXIMATING THE AS CONNECTIVITY GRAPH

SIZE

Using data, collected during June 2005 from Route-Views,
IRR, and DIMES projects we unveiled 83782 AS peers10.
Nevertheless, as discussed earlier, this data is not complete
enough and despite the increasing effort to reveal the full map,
some peers may remain hidden. In this section, we address
the following question: What is the overall size of the AS
connectivity graph. We want to be able to answer this question
without assuming anything about the full (partly unrevealed)
graph. It is important to note that having a good approximation
of the size of the AS connectivity map is not just a theoretical
question. The overall number of active ASes is known (about
21000 during June 2005), and thus the overall number of edges
translates directly to the average node degree - which is an
important parameter regardless of the model we use. We show
in this section that the AS connectivity map contains at least
128000 links and most likely the size of the graph is higher.

First, we try to estimate the size of the connectivity graph
using the degree of the stars in the IRR database assuming that
the database is representative. This database consist of 6583
stars and 72474 links, using the first filtering or 7129 stars
and 82339 links, using the second filtering. Thus, the average
degree is72474

6583 = 11 and 82339
7129 = 11.54 respectively. Using

the fact that the AS graph consists of 21000 active ASes this
implies that the AS graph consists of21000 · 11

2 = 115000 or
21000· 11.54

2 = 121000 peers. Clearly, the estimation using this
method depends on the filtering used. An aggressive filtering,
may remove legal peers and therefore it induces a smaller IRR
graph compare to the real one. Thus, the estimation in this case
deviates down. On the other hand, using a moderate filtering
the induced graph may contain peers that are no longer valid.
In this case the estimation deviates up. To emphasize this issue
let us estimate the size of AS connectivity graph using the
unfiltered IRR data. In this case the database contains 9247
stars and 138343 reflecting an average degree of14.9 and a
size of 156000 edges for the full graph.

With respect to the assumption that the database is represen-
tative, one may refer to the fact that almost all the ASes in the
IRR are located in Europe and it is possible that the average
degree of ASes in Europe differs from the average degree of
an ASes in other region. In order to avoid such assumption, we
aim at estimating the number of AS peering relations using the
data added by the IRR database to the Route-View database.

In Section II-B we analyzed the type of relationship in the
IRR database and showed that 8990 out of 36237 peers (i.e.
25%) in the filtered IRR11 are of typecustomer-provider. If
we consider the last discussion in Section II-B regarding the
way in which export policy is analyzed, there may be a doubt
regarding 4200peer-peerlinks. In this case, when we consider
only the undoubt links, 8990

8990+22056 = 29% of the link are of
type customer-provider. Assuming that the sampling space is

10This is after filtering the IRR data as discussed in Section II.
11Recall that this analysis requires that both edges will be in the database.

Thus, we have used only the second filter mechanism.



representative, 25-29% of the peers in the full AS connectivity
map are of typecustomer-providerwhile 71-75% are of type
peer-peer(or sibling-sibling). Since the Route-view database
contains 39700customer-providerlinks it indicates that the
full AS connectivity map contains at least10029 ∗ 39700 =
138000 links. Using a more conservative analysis, considering
all the doubt links (i.e. link that their type is unknown with
respect to the last discussion in Section II-B) as acustomer-
provider links, 37% of the links in the IRR are of type
customer-provider. Therefore, the same technique indicates
that the AS connectivity map contains at least 107300 links.
Nevertheless, in this case0.36∗36237 = 13045 of the peers in
the IRR are of typecustomer-providerwhile the IRR and the
Route-View data have only 6730 commoncustomer-provider
links. Thus, the size of thecustomer-providersubgraph is at
least39700 + 13045 − 6730 = 46015 links. In this case the
lower bound is 128000 links12.

Obviously, these estimations are very conservative and
intent to give a lower bound on the size of the AS map.
For instance, in the last estimation we assumed that the
Route-View data does not discover about 6500customer-
provider links in Europe alone. This indicates that (under
the assumption that 36% of the links are of typecustomer-
provider) a large portion of 20000customer-providerlinks
remain hidden and therefore the estimation should be 165800
links.

The next estimation is based on the intersection of the
new sample space (the stars coming from the IRR) with
the existing coverage created by trees from the BGP routing
information. If the new data contains a set of independent
edges, we could measure the portion of the full graph covered
by the BGP data, because it gives us the probability that an
edge is covered by the BGP data. Recall that the Route-View
database contains 43200 links and the unfiltered IRR contains
102106 links. The union of these two graph contains 128697
links. This means that 16618 out of the 102106 edges where
already covered by the Route-View database. Therefore, the
probability of an edge to be discovered by the Route-View
database is16618

102106 = 0.16 and the total number of edges can
be approximated by1/0.16 × 43200 = 265400. Obviously,
removing invalid peers from the IRR database, increase the
probability of an edge to be discovered by the Route-View
database. Thus, similar to pervious method (using the average
degree of a node), the estimation is significantly affected by
the filter mechanism. Using the filtered IRR, this probability is
increased to1210746611 = 0.26 (where 12107 is the number of peers
exists in the IRR and have already covered by the Route-View
database, and 46611 is the total number of peers in the filtered
IRR database) using the first filter mechanism and8719

36237 =
0.24 using the second filter mechanism. Thus, the total number
of edges can be approximated by1/0.26 × 43200 = 166000
and1/0.24× 43200 = 180000. Note that the accuracy of this

12In [7] the authors indicate that 42% of the links in the IRR are of type
customer-provider, thus estimating the lower bound using their results may
be different. However, since information regarding the commoncustomer-
provider links is also required, we cannot present this estimation.

Graph Size Estimation Graph Size
BA 161700 161955
BA+Wax 141085 141135

TABLE I

GRAPH SIZE ESTIMATION

400 1000
Estimation Method Biggest Stars Small Stars
Average Degree (First Method) 718000 58900
Data Intersection (Second Method) 195000 121800

TABLE II

ROBUSTNESS OFESTIMATION

method depends of the independency of the database. Thus,
if there is a correlation between the data the estimation will
deviate and indicate a smaller value (and vice versa).

In order to examine the method we simulated the process
over several graphs. The first graph is a Barabasi-Albert graph
and the second one is a superposition of a Barabasi-Albert
graph (that contains 40000 edges) and a Waxman graph (that
contain 100000 edges). Both graphs contain 18000 nodes.
From each graph we have constructed two subgraphs. The first
one consisted of 5000 random stars (that simulates the IRR
database) and the second consisted of 40 policy based shortest
path trees (that simulates the Route-View database). Table I
summarizes the average results of the estimation process over
20 independent iteration, with respect to the actual size13.

In contrast to the vertex degree method, where the esti-
mation is significantly affected by the average degree of the
sampling space, this method seems to be much more robust
with respect to the degree of the nodes in the sampling space.
However, our sampling space is indeed dependable and the
estimation is still affected by the average degree. Every AS
has at least one peer in the Route-view (Recall that the Route-
View consists of a set of trees that span the graph), thus
the probability of an edge in an AS with small degree to
be covered by the Route-View is bigger than an AS with
bigger degree. To demonstrate it, we divided the IRR into two
subgraphs. The first subgraph contains the 400 biggest stars
(i.e. the stars with the highest degree) and the second contains
400 small stars14. Table II summarizes the estimation using
these two subgraphs (instead of using the full IRR).

Next, we use the same technique to estimate the size of
the AS map using data from the DIMES project. Thus, we
measure the intersection between DIMES and IRR data and
between DIMES and Route-view data. During June 2005,
DIMES unveiled 38928 links. 7000 links of them have already
been revealed by the IRR data, while 23850 of them have been
revealed by the Route-View data. Namely, the probability of

13Recall that in the simulations, unlike in the AS case, we know the actual
size of the full graphs.

14The IRR contains many ASes with one peer (i.e. their degree is one).
These links are found by the Route-View as well. Thus is order to avoid this
side effect we did not took the ASes with the smallest degree but ASes that
have at least 5 peering relationship.



an edge in the DIMES data to be discovered by the IRR
data or by the Route-View database is23850

43200 = 0.55 and
7000
36237 = 0.19 respectively. Thus, the total number of edges
can be approximated by1/0.55 × 38928 = 201606 using
IRR and1/0.19× 38928 = 70522 using Route-View. Clearly,
the second estimation (using DIMES and Route-VIew data)
seems to be very low. However, since DIMES is based on
traceroutequeries, it obtains only links that traverse permitted
AS paths. Thus, it has strong overlapping with BGP based
database such as Route-View and the probability of an edge
covered by DIMES to be unveiled by Route-View is bigger
compare to two independent subgraphs.

Currently DIMES consists of almost 4000 distributed agent
performingtracerouteto a set of random IP addresses. While
the IRR contains peering information of ASes located in
Europe, less than 25% of DIMES agents are located in Europe.
Moreover, the majority of IP addresses are located outside
Europe. Thus, most of thetracerouteperformed by DIMES
agents are probably targeted to destination that are not covered
by IRR data and their source is outside of IRR scope as well.
Therefore, the correlation between IRR and DIMES data is
weaker than independent random subgraphs and the estimation
based on these two data set deviates up.

Using the estimations presented so far, one can bound the
size of the AS connectivity map between 128000 and 200000
links. Both methods used in this section are sensitive to many
parameters (e.g. the average degree, the accuracy of filtering
and the type of relationship analysis, independency of the
database, etc.), thus trying to approximate the accurate size of
the AS connectivity map is very difficult. Nevertheless, while
the lower bound seems to be too conservative, the upper bound
is too loose. Therefore, the actual size of the AS connectivity
map is somewhere between these boundaries.

IV. V ERTEX DEGREEDISTRIBUTION

In their paper, Faloutsos et al. [4] showed that despite
the apparent randomness of the Internet, simple power-laws
hold for the Internet in the AS level. This novel observation
was adopted by many researches and it is one of the basic
building blocks for modelling the AS connectivity map. The
authors use the NLANR - National Laboratory for Applied
Network Research data [22] consisting of several BGP routing
tables. This kind of database (i.e. a database that consisting on
routing tables alone) is incomplete and may cause a significant
inaccuracies. In other words, the graph that is derived from
this kind of database is only a subgraph of the full AS graph,
thus properties that hold in the subgraph may not be valid for
the full graph. In [5] the authors questioned this observation
and showed using a more complete database (yet not fully
complete) that the vertex degree distribution deviates from
the straight line (reflecting a power-law distribution). One can
see this deviation in Figure 9 that depicts the complementary
distribution function of the AS degree as it is derived from the
route-view database alone, and from the route-view plus IRR
data. The data for this graph has been collected during June
2005. In this section we study the vertex degree distribution of
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the AS graph. We show that despite the fact that the databases
are not complete, their vertex degree distribution may reflect
the distribution of the full graph. In particular, we observe that
the customer-providersubgraph follows the power-law while
the peer-peer subgraph may behave differently. Although
the most complete database contains both IRR, Route-View
and DIMES data, in order to understand the vertex degree
distribution of the AS graph, we use the IRR database alone
since it is not affected by the policy and therefore it is much
more representative in the sense that the ratio betweenpeer-
peer andcustomer-providerlink is more accurate.

As discussed in Section II, BGP based database contains
mostlycustomer-providerlinks and therefore it may be consid-
ered as a subgraph of thecustomer-providergraph. Moreover,
using more representative database (i.e the IRR database)
we showed that the ratio betweenpeer-peerand customer-
provider links is completely different and there are many
morepeer-peerlinks in the full AS graph. Therefore, although
the vertex degree distribution of databases such as Route-
View and NLANR follows the power-law, it reflects the
distribution of thecustomer-providersubgraph alone and does
not give information regarding the distribution of thepeer-peer
subgraph.

To support this finding, we use an independentcustomer-
provider subgraph that is based on IRR data. We use the
analysis described in Section II-B to divide the IRR data
into peer-peerandcustomer-providersubgraphs. With respect
to the last discussion in II-B, we consider only the links
with undoubt type. Thus, we have 8990customer-provider
and 22050peer-peer links. Figure 10 depicts the vertex
degree distribution of thecustomer-providersubgraphs as they
derived from the Route-View and the IRR database. The size
of the customer-providersubgraph derived from the IRR data
is much smaller than the Route-View subgraph (in particular
the first contains 8990 links while the second contain 43200
links), thus it is located below Route-View subgraph. Clearly,
both graphs follow the power-law.

In contrast to thecustomer-providersubgraph we suggest
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that thepeer-peersubgraph does not follow the power law.
Figure 11 depicts the vertex degree distribution of thepeer-
peer subgraph derived from the IRR. The distribution is
completely different. In particular, it is much more similar
to the distribution of Waxman graphs (see Figure 12).

Naturally, the distribution of the full graph is a superposition
of both distributions (i.e.customer-providerand peer-peer
subgraph). Figure 13 depicts the vertex degree distribution of
the IRR. Recall that about 75% of the links in the IRR database
are of typepeer-peerand only 25% are of typecustomer-
provider. Thus, the distribution of the full graph is mostly
affected from thepeer-peersubgraph.

So far we drew conclusions regarding the vertex degree
distribution using only partial data. In particular, we used
subgraph consisting of a collection of policy-based shortest
path tree (i.e. the Route-View database) and another subgraph
consisting of a set of random “stars” (i.e. the IRR database).
As pointed up in [23], the vertex degree distribution of a
graph may be differ from the distribution of a subgraph that is
derived from the original graph. In particular, given a random
graph, the vertex degree distribution of a subgraph formed
by a collection of shortest paths trees from a set of sources
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to a set of destination, may be heavy-tailed. Thus, one may
question our inferences by suggesting that these subgraphs do
not represent the vertex degree distribution of the full graph.

However, in [23] the set of destination vertices is very small
compare to the number on vertices in the graphs (only 1%)
while when we consider BGP routing table, the destination set
contains almost all the vertices in the graph. The significance
of this difference is depicted in Figure 14. One can observe
that when the size of the set of destination is small, the vertex
degree distribution of the derived subgraph follow the power-
law, but increasing the size of the set bring the distribution
of the derived subgraph closer to the distribution of the full
random graph.

While the Route-View database represents a policy-based
shortest path trees subgraph, the IRR database may represent a
random subgraph (generated by a set of random stars) and does
not follow the last discussion. Our simulation results indicate
that in this case the vertex degree distribution of the subgraph
is similar to the full graph. Figures 15 and 16 depicts the vertex
degree distribution of small and big subgraphs generated by a
set 1500 and 5000 random stars respectively. Both subgraphs
preserve the vertex degree distribution of the full graph.
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V. D ISCUSSION ANDFUTURE WORK

In this paper we showed that despite the increasing effort
to unveil the AS connectivity map at least 35% of the links
are still missing from all known databases. Less conservative
estimations indicate that more than 50% of the link remain
hidden. By understanding the gathering process of databases
such Route-View and IRR we showed that almost all missing
links are of typepeer-peerwhile a considerable amount of
customer-providerlinks are revealed. Thus, trying to disclose
the full AS connectivity graph by an increasing set of BGP
routing table or by a set of agents performing periodictracer-
oute (both discover mostlycustomer-providerlinks) may be
insufficient in order to fully unveil thepeer-peersubgraph.
A better understanding and modelling the structure of these
unveiledpeer-peerlinks and their location in the hierarchical
structure is a subject to future work. Note that unlike the
Route-View and IRR databases, at this time the DIMES project
is relatively new and a more thorough study of its information
gathering is in place.

We also studied the vertex degree distribution of the AS
connectivity graph and showed that the distribution of the
peer-peersubgraph is considerately different from the one
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of the customer-providersubgraph. These inferences, may
lead to new models describing the AS connectivity map that
consist of two separate models. One describing thepeer-
peer subgraph and another describing thecustomer-provider
subgraph. In particular, these models should take into ac-
count our finding regarding the vertex degree distribution of
each subgraph. Namely, the vertex degree distribution of the
customer-providersubgraph follows the power-law and the the
vertex degree distribution of thepeer-peersubgraph is similar
to the distribution of a Waxman graph.

An interesting area for future work is studying a more
complex peering relationship that does not follow the classic
export paradigm. As we pointed out in Section II-B, an
AS may export to some its customers only a subset of its
provider’s paths. In such a case, one or more providers may
give (to this AS) only local services. This kind of export
policy that actually determines a new type of relationship
between ASes, was not studied in the past and it may lead to a
different model describing and characterizing the AS hierarchy
connectivity map.

Another direction is to study some classical routing related
problems (e.g. minimum spanning tree, the cache location
problem) that have been well studied in the past over flat
graphs, over the hierarchical structure of the AS graph. In
particular, in this case the AS graph connectivity does not
necessarily mean reachability and the triangle inequality does
not necessarily holds, and thus new approaches may useful.
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