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Abstract

In some statistical learning applications, the individual objects that are encountered are complex, behave
probabilistically, and are encountered too briefly for the learner to form more than a fragmentary and unreliable
record of the properties of each individual. In some cases, only previously collected sporadic survey data is
available to the learner. In other cases, studying an object extensively may alter the object or may encounter
the object’s—perhaps a person’s—resistance.

Motivated by such considerations, we initiate the study of learning mixture models from sparse samples
of their component distributions. We design and analyze learning algorithms for two fundamental mixture
models that are loosely motivated by data mining and market analysis applications, and that cannot be learnt
by sampling from the mixture distribution. The first model we consider is a mixture of biased coins. The input
sample is generated by choosing random coins from the mixture and tossing each of them K times (where
K is too small to learn the bias of any single coin accurately). The second model, which is somewhat closer
to the motivating applications but requires the first for its solution, is a generalization where the coins are
replaced by biased n-faceted dice, for n possibly much larger than K.
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1 Introduction

Problem statement. A statistical mixture model is a probability distribution on items (or “components’) which
are themselves probability distributions; with the restriction that the component distributions take values in a
common space of outcomes. A mixture model generates a mixture distribution in an obvious way: first choose
at random a component distribution from the mixture, then draw one sample at random from the component
distribution. In recent years theoreticians have made remarkable progress in forming a computational theory of
learning statistical mixture models from a sequence of independent samples of their mixture distribution. The
fundamental mixture models investigated include mixtures of Gaussians [16, 17, 4, 39, 27, 1, 22], mixtures of
discrete product distributions [29, 23, 13, 21, 10], and similar models [13, 6, 35, 27, 15]. These papers study the
problem of learning from sequences of points in R™ or in {0, 1}" that were generated by independent samples
from an unknown mixture distribution. A typical PAC-style learning problem is to design an algorithm that takes
a sequence of points generated in this manner and computes with high probability a mixture model whose mixture
distribution is statistically close to that of the true model.

A mixture model can generate sample sequences other than the obvious sequence of independent samples
from the mixture distribution. For instance, each time a component is selected, several samples rather than
just one may be drawn from it; the resulting sequence has very different statistics than those of the mixture
distribution. It can therefore be desirable, and is a fundamental algorithmic question in statistics, to learn the
mixture model itself, not merely the mixture distribution which it defines. Yet there are mixture models that
simply cannot be learnt from the mixture distribution they generate. For example, consider a mixture of Bernoulli
trials with success probabilities p1, p2, ..., pr and equal weight in the mixture. A sequence generated by the
mixture distribution is statistically indistinguishable from a sequence generated by a single Bernoulli trial with
success probability % Zle pi. Thus, a natural question that arises in this context is the power of correlation:
what can be learnt if each time a component distribution is chosen from the mixture, not one but a few samples
are drawn from that distribution? !

In this paper, we initiate the study of this question. We examine two fundamental classes of mixture models,
in each of which little can be learnt about the mixture model from a sequence of independent samples from
the mixture distribution. We analyze the effect of obtaining repeated samples from each independently chosen
component of the mixture, and design learning algorithms for these mixture models.

The first of these two models is the above-mentioned mixture of Bernoulli trials. In other words, the model
is a mixture of coins of various biases. The available sequence of samples is generated by repeatedly selecting
a coin at random (the coins are indistinguishable in appearance) and tossing it a few times before a fresh coin is
selected. Our goal is to learn the mixture model that generated the input sequence. We allow sample sequences
generated by any probability distribution on coin biases, in particular continuous distributions.

One benefit of learning the mixture model is that we may find out, for example, that the coins are clustered
into just a few distinct types. Such a discovery, aside from providing a concise representation for the model,
may also help us to classify individual coins as they now need to be tested against a small number of hypotheses,
rather than against a continuum of possibilities.

As mentioned above, if each coin in the sample is tossed just once, then the only thing we can infer from the
sample is the bias of the mixture distribution. On the other hand, if each coin in the sample is tossed as many
times as we wish, we can estimate its bias with high accuracy, and therefore we can easily learn the mixture
model. Thus, the intriguing question is how to handle the intermediate case, when each coin is tossed only a
few times, making it statistically impossible to learn accurately the bias of any single coin in the sample, yet
potentially feasible to aggregate data from many samples to infer much about the mixture model. This is the
central topic of our paper. We refer to the key parameter, the number of times K that each coin is tossed, as the

!"This question makes sense even in the case of mixture models that can in principle be learnt from their mixture distribution, e.g.,
mixtures of Gaussians. Two very close Gaussians are hard to distinguish, but with repeated sampling, the variance of each is reduced,
effectively separating them and greatly reducing the overall sample complexity required to learn the parameters of the mixture model.



sampling aperture available to the learning algorithm.?

Our second model is adopted from the collaborative filtering mixture model of Kleinberg and Sandler [31,
32].3 This second model generalizes the coins model, replacing Bernoulli trials by n-way trials. One way to
visualize the model is to think of a mixture of biased n-faceted dice (the faces of each die are numbered 1
through n). The learning algorithm is given a sequence of dice sampled from the mixture, each rolled K times
(the sampling aperture). Analogously to the coins model, if K = 1 then we can only learn the face probabilities
in the mixture distribution and not the mixture model, while if K is very large (at least n) we can learn accurately
the face probabilities of each individual die in the sample, and thus learn the mixture model with ease. So the
interesting case is when K is somewhere in between these extremes.

Motivation. Our study was loosely motivated by market analysis scenarios and other data mining applications.
We wish to learn the global properties of a population of individuals, each of which exhibits probabilistic behav-
ior. We only have a small amount of data on each individual—far less data than is necessary in order to describe
adequately that individual. The reasons for this deficiency may vary. Collecting additional data may be expen-
sive, it may affect the individual’s behavior, it may encounter the individual’s resistance, because only previously
collected sporadic data is available for study. In spite of this limitation we wish to build up an accurate model of
the entire population, by piecing together the fragmentary data from the individuals we have encountered.

Consider, for example, a survey intended to study movie viewing patterns. When people are asked for their
movie preferences, they are unlikely to respond with a ranking of all movies ever produced. Instead, one can
realistically expect to get from each person surveyed a very short and fairly random list of favorites that happen
to cross this person’s mind when asked. Movies that are ranked high on the hypothetical complete list are more
likely to be mentioned than movies ranked low on that list. Thus, while we cannot hope to study the preferences
of a single person thoroughly, we may still be able to aggregate superficial data from many people to detect overall
trends and to segment the population into a number of recurring types. Our dice model is a simplistic model for
scenarios such as the movie viewing survey (see [31, 32]): the dice are people, the dice faces are movies, and K
is the number of answers given by each person. (Our coin model is, of course, motivated by our reduction from
the dice model. But as a basic question in machine learning it is also interesting in its own regard.)

There are various ways in which construction of a statistical mixture model for the population can be useful.
The model can be used as a Bayesian prior. After a customer has ordered a few movies (or other products), the
merchant can make a posteriori Bayesian inference about the preferences of this customer, and shape advertising
or recommendations to the customer. (In this context our algorithms can be thought of as a preprocessing phase.)
More generally, market research can influence what products the merchant offers. Since market survey costs
may vary with their thoroughness, analyzing the limits of market predictions may help in optimizing spending
on market studies. But in this paper we stick with the statistical fundamentals, and acknowledge the gap between
our work and concrete applications.

Performance measures. The natural metric in which to measure the output quality in our setting is the trans-
portation cost metric [25, 40].* Informally, a metric space (U,J) generically induces a transportation metric
Trang s on the set of probability distributions on U > The distance Trang (01, 02) between two probability
distributions is informally the minimum cost of a flow that redistributes probability mass from 687 to 0.

A biased coin corresponds to a point p € [0, 1], where p is the “heads” probability of this coin. Thus, a mixture
of coins is a probability measure ¥ on U = [0, 1]. We will endow U with the standard metric §(z,y) = |z — y|.
For two mixtures ¢, v, the distance Tran(1J, ') is simply the minimum cost of a matching of the coins in ¥ to

?For simplicity, we assume that the sampling aperture is uniform for all sampled objects.

3They, in turn, relate their model to that of Hofmann and Puzicha [26].

“The transportation metric is also called earthmover, Wasserstein, or exponent-1 Monge-Kantorovich distance.
>We will use the simpler notation Tran whenever the underlying metric space (U, §) is clear from the context.



those in 1Y, where the cost of matching two coins is the difference in their “heads” probabilities. Similarly, a die
is a vector p € A,, denoting its face distribution. A mixture of dice is a probability measure 8 on U = A,,. We
will endow U with the total variation distance 6(z, y) = ||z —y||1. To interpret Tran(6, 6”), think of a min-cost
matching of the dice in 6 to those in 8’, where the cost of matching a pair of dice is the total variation distance
between their face distributions.

Our results. We first analyze mixtures containing a finite number %k of coin types (which we call a k-spike
mixture). We prove that in this case the asymptotic statistics of sampling aperture K = 2k — 1 characterize
the mixture uniquely; this leads to the design of a learning algorithm for the problem. We prove the following
theorem.

Theorem 1.1. There exists a polynomial time algorithm that gets as input k € N and a sample of m >
(~k/ W)O(k) coins from a k-spike mixture U, each tossed K = 2k — 1 times, and outputs a k-spike mixture
9, such that Tran(¥,9) < W with high probability.

Next we prove that any two coin mixtures with identical asymptotic statistics of sampling aperture K differ by
a transportation distance of O(1/+/K). This applies also to mixtures containing a continuum of coin types, and
leads to the design of a learning algorithm for arbitrary coin mixtures. We prove the following theorem.

Theorem 1.2. There exists a polynomial time algorithm that gets as input a sample of m > exp K OM) coins
from a mixture 9, each tossed K times, and outputs a mixture U, such that Tran(9,9) = O(1/v/K) with high
probability.®

The bound on Tran(, 19) in Theorem 1.2 is close to best possible, even information- theoretlcally there are two
mixtures ¢ and 9 that produce identical statistics of sampling aperture K, yet have Tran(d, 19) Q(1/K).” W

do not know if the exponential dependence of the sample size m on K in Theorems 1.1 and 1.2 is necessary,
though we conjecture that this is indeed the case. Notice that Theorems 1.1 and 1.2 are incomparable. The former
applies to a special case of the latter, but provides stronger guarantees in the sense that the error does not depend
on the sampling aperture, only on the sample size.?

Our main result deals with the dice problem. We do not know how to handle arbitrary mixtures 8 (i.e.,
arbitrary distributions on the simplex A,,), and we suspect that they may require prohibitive sample sizes (in
terms of n). In this extended abstract we only deal with mixtures @ of two distributions p,q € A,, and, more
generally, mixtures containing any number (even a continuum) of distributions of the form ap + (1 — a)q. We
believe that our approach is likely to extend to mixtures containing any finite number of arbitrary distributions
in A,,. We show that this data model reduces to the coins data model. More specifically, given two distributions
»,q € A,, we can map die rolls to coin tosses as follows. If the die shows a face 7 for which ¢; > p;, then the
coin shows “heads,” and if the die shows a face ¢ for which ¢; < p;, then the coin shows “tails” (we ignore all
other rolls). This maps the set distributions r € A,, with Pr,.[i : p; # ¢;] > 0to [0, 1], and in particular it maps
the set of distributions of the form ap+ (1 — a)q isometrically into [0, 1]. We denote this mapping by 1), ,. Notice
that points in [0, 1] can be mapped inversely to distributions of the form ap + (1 — a)q. We denote this mapping
by ¥, (}. We show the following reduction.

Theorem 1.3. There is a polynomial time algorithm that gets as input a sample of m > (l/W)O(l) - logo(l) n

dice from a mixture 0 containing distributions of the form ap + (1 — a)q (for two unknown distributions p,q €

The Weierstrass approximation theorem ensures that polynomial approximations converge to continuous functions on bounded inter-
vals in Lo, (implying that under mild conditions, if all the moments of ¢} are known, then it is uniquely defined). As part of our proof of
Theorem 1.2, we prove an upper bound on the rate of convergence in terms of the transportation norm (rather than L. ).

"The proof is omitted for lack of space.

8 Also notice that the k-spike algorithm cannot be used to solve the general case, despite the fact that every distribution can be approx-
imated in transportation cost by a k-spike distribution. The reason is that we sample the true distribution rather than the approximation,
so the empirical statistics do not converge to those of a k-spike distribution, and the Theorem 1.1 algorithm may fail.



A,,), each die rolled twice, and outputs two distributions p, § € A, such that for every probability measure ¥ on
[0, 1], Tran(6, 77%_,;'(?9)) < Tran(v; 4(0),9) + W.

This gives polynomial time learning algorithms for such mixtures @, using a sample size of n logO(l) n (assuming
that K and the desired accuracy are fixed), as follows. First compute p, § using Theorem 1.3. Next learn 15 5(0)
using Theorem 1.1 (if applicable) or Theorem 1.2. Finally, map the result back to Ay, using 15 %. Notice that if
the expected face probabilities in the mixture are all © (%), then a constant fraction of the faces will be missed
altogether by sampling O(n/K) dice. Thus, we cannot hope to improve the required sample size by more than a
logo(l) n factor.

Organization. The rest of this paper is organized as follows. Section 2 deals with the coins model. In subsec-
tion 2.1 we deal with the k-spike case, and in subsection 2.2 we deal with the general case. Section 3 deals with
the dice model. We provide some intuition and informal discussion of our algorithms and proof techniques in the
beginning of each section. Notation and definitions are also presented there.

2 The Coins Problem

In this section we present our algorithms for the coins problem. A coin is identified with a point z in the interval

J = [0, 1], the probability of the coin showing “heads.” (But in Section 2.2 for convenience we will switch
to J = [—1,+1], with “heads” probability p, = (1 — z)/2.) The (unknown) mixture model is a probability
distribution ¥ on J.

Consider the moment map 4’ : [0,1] — RX that maps = € [0,1] to the vector (z,22%,23,...,2%). The

image of [0, 1] under ' is called the moment curve. The first K polynomial moments of a probability measure
Y on [0,1] are E[p/(x)1], E[i/ (x)2], . .., B[/ (2) k], where  ~ ). We will extend the range of x’ to probability
measures on [0, 1] and write 1/ (9) = (E[p/(2)1], E[t/(x)2], ..., E[¢/(z)k]). Let X be the random variable
denoting the number of times a coin drawn from ¢ and tossed K times shows “heads.” We can compute p' (1)
if we know the distribution of X, given by the following equations. For every i € {0,1,..., K}, Pr[X =] =
I (IZ( ) 2%(1 — ) ~'d¥(x). The latter probabilities can be estimated empirically to within any desired accuracy

given a sufficiently large sample from ) (where each sampled coin is tossed K times). In particular, let freq;
denote the fraction of sampled coins that showed “heads™ exactly j times. Our algorithms use these empirical
frequencies to compute a close approximation ¥ of ¥.

It will be convenient to rescale the vector of empirical statistics as follows: f =
(freqq, ﬁ;‘.‘l, f('ifi ,...,freqg). In the limit of large sample size this vector converges to the moment vec-
2

tor f = (fo,-.., [x) = (freqq, frjgl, f(rif)Q ,...,freqg); we define this vector to be 1(¥), and observe that 1. is a
2

linear mapping on the space of signed measures on .J.

We need to be more rigorous about transportation cost. Say that a signed measure 9 on J is bounded if (5
exists and is finite for every measurable S C .J. Define the trace of a bounded signed measure on .J to be 9(.J).°
If 91, 95 are two signed measures on J of equal trace, a transport of V1 to 97 is a measure v on J x J such that
for all measurable sets I C J, ¥1(I) = v(I,J) and ¥2(I) = v(J, I). The transportation distance Tran(d,92)
is defined to be inf [ |z — y| dv, where the infimum is taken over all transports v of 9 to 5. Observe that there
is a separate metric space for each value of the trace. (Transportation cost for distributions of finite support has a
classic LP formulation, see Appendix C.) Define 7o(.J) to be the space of trace-0 bounded signed measures on
J, with the norm ||| yan = Tran(, 0) where 0 is the signed measure assigning measure 0 to every set.

?For background see Doob [19] §IX; we use slightly modified terminology.



2.1 Proof of Theorem 1.1: learning k-spike mixture models using aperture 2k — 1

To prove Theorem 1.1, we show how to invert the moment map p’, and we analyze the effect of the sampling
noise on the inversion. We show in particular that a k-spike mixture ¢} is uniquely determined by its first 2k — 1
polynomial moments.'® The proof relies crucially on showing that the moment curve is highly convex, in the
sense that given two distant sets of points on the curve with a total of at most K + 1 points, any weighted
combination of the points of one set is distant from any combination of the other set.

A k-spike mixture 1) can be represented as ¥ = Zle Y304, Where ¥; > 0, > 0; = 1, and J,, is the Dirac
measure that puts weight 1 on the point «; € [0, 1], corresponding to a “coin type” having probability «; of

showing “heads.” We use the notation ¥ = (9, ), where ¥ = (¥1,...,9;) and & = (a1, ..., az). Our goal is
to infer the weights ¥; and the points «; with small error and thus approximately reconstruct .
For a vector x = (1, ...,x¢) (with all 0 < x; < 1) and for a positive integer b, let V}(x) be the ¢ x b matrix

(Vp(x))ij = x{ (with1 < i </Zand0 < j < b—1), and let Ay(x) be the £ xbmatrix (Ay(z));; = (1—3:1-)1’*1*3'1:{
(with1 <i</and0 < j <b—1). Let P be the 2k x 2k lower triangular ‘“Pascal” matrix: for 0 < j <2k —1
and j+1 <i <2k, P = (2;“:]{_11) Then Vay(a) = Agi () P. Note that the moment vector f; = freqj/(%j_l)
(for 0 < j < 2k — 1) is given by the linear transformation f = 5A2k(a), It will be convenient in this section to
also work with the vector g of “standard” moments (those w.r.t. the basis 27), g = fP = 9Voi(a).

We show how to compute a k-spike distribution 9 = (15, &) from the empirical (scaled) moments vector f ,
such that Tran(4, 15) is small. To give some intuition, suppose at first that we know the true moments vector
g = fP = 9Vy(a). Observe that there is a common vector A = (Xg, ..., )’ of length k + 1 that is a
dependency among every k + 1 adjacent columns of Vo (). In other words, letting A = A(\) denote the
2k x k matrix with A;; = A;_; (with the understanding A, = 0 for ¢ ¢ {0,...,k}), Vor(a)A = 0. Thus
g = 9Va(a)A = 0. Overtly this is a system of 2k equations but we eliminate the redundancy in A by forming
the k x (k + 1) matrix G = G(g) defined by G;; = gi4; fori =0,...,k—1and j = 0,...,k; then solving the
system of linear equations GA = 0 to obtain A. This system does not have a unique solution, so in the sequel A
will denote a solution with \;, = 1. Foreachi = 1,..., k, we have (V%(OZ)A()‘))LI = 2% s e’ = 0. This

implies that we can obtain the «; values by computing the roots of the polynomial Py (x) := ZIZ:O Azt. Once
we have the a; values, we can compute ) by solving for y the system of linear equations 3Vay () = g. Since
we only have the empirical vector f and not £, not all the steps above may be well defined or yield meaningful
values. It is also necessary to control the error that results due to the difference between f and f, Put § = fP.
We assume that ||§g — g|2 < &, where ¢ is a parameter we will fix later. The learning algorithm is as follows:

(1) We first solve the minimization problem:
minimize ||z||; subjectto |[G()z|1 < 2F¢, xp =1 P)

to obtain a solution \. Note that this minimization problem can be encoded as a linear program. Observe
that since G(g) has k + 1 columns and k rows, there is always a feasible solution.

(2) Let ay,...,a; be the (possibly complex) roots of the polynomial P5. Thus, we have Vor(a)A(X) = 0.
We map the roots to values in [0, 1] as follows. Let ¢ be the smallest separation between distinct c;-s.
Lete = %((k + 1))k, First we compute 1, ..., &y, values such that |&; — a;| < e for every 7 in time
poly (log(1)) using Pan’s algorithm [36, Theorem 1.1] '' We now set &; = Re(d;) if Re(d;) € [0,1];
a; = 01i1f Re(dl) <0;and a; = 11if Re(dl) > 1.

1%In other words, we show that the moment map compresses sparse non-negative signals to dimension about twice their support size;
moreover we show that this compression is relatively insensitive to noise.

"'The theorem requires that the complex roots lie within the unit circle and that the coefficient of the highest-degree term is 1; but the
discussion following it in [36] shows that this is essentially without loss of generality.



(3) Finally, we find 9 by finding the row-vector y € [0, 1]* that minimizes ||yVay.(&)— §||2 subject to ||y[|1 = 1.
Notice that this is a convex program.

We now proceed with analyzing our algorithm. Theorem 2.1 establishes the information-theoretic component
of Theorem 1.1, namely that if two distributions ¥ = (19, ") and 9 = (5, &) are distant in transportation distance,
then 9Vay,(a) and 5‘/2k(&) are distant in Euclidean distance. Subsequently Proposition 2.5 shows that our recon-
struction algorithm efficiently reconstructs 0= (01,...,0%) and & = (A, . .., @y) such that HEng(d) —dll2
is small. Thus, by choosing a large enough sample size so that ||§g — g||2 is sufficiently small, we obtain that
[9Var () — 5V2k(64) |2 is small; by Theorem 2.1 this implies that the distribution 9 = (5, @) is close in trans-
portation distance to the true distribution ¢ = (¢, a).

= . N\ 4k—2
Theorem 2.1. ||g — IVor(&)||2 > @ T)Ts (Tran(ﬁ, 19)) .

Proof. Consider the difference ¥ = 9 — 9 (abounded signed measure), which we also write as ¥ = Zfﬁ 1 Eidai,
where a = {a, ..., a9} = {a1,..., U {a,...,a,} and a1 < ... < agg. (The assumption that the
gi’s are distinct is only for ngtationaLconvenience.) Observe that 19, .. .L’ﬂzk may be positive or negative. Let
9 € R?* be the row vector (91, ..., ;). Let n = ||9]|Tvan and let y = 9Vor(cx). So what we need to show is
that ||yl > W -k,

There is an 1 < ¢ < 2k such that ‘Z? 9| - (g1 — ay) > n/(2k — 1). Let § = Zf 9J;; without loss of
generality § > 0, and note that § < 1. Let s = a1 — oy, so (2k — 1)ds > 0. (Of course also n > 55.)

Denote row ¢ of a matrix A/ by M;, and column j by M,;. A vector y minimizing ||y|l2 = ||9Var(a)]2

subject to the list v and the value of ¢, must be orthogonal to Vor ()i — Vop(a)ys if 1 < i < i’ < £orif
¢+1 < i < i’ < 2k. This means that there are scalars c and d such that y = cy+dy/, where y = Eﬁ:l ng(a)*_jl

and 7/ = Z?ieﬂ Var(a),;. At the same time, § = S0 = Var(a)y=y-yand -5 = 3% 9, =y - .
Thus ||y||3 = v - (cy + dy') = (¢ — d)§. Our task is therefore to lower bound ¢ — d. We collect our equations for
y,d and —0 into a 1 X 2 vector equation:

(cd)(v v) (v +)=(6 -0)

Solving for ¢, d, we get

(¢ d)= 1 (5_5)(\7'”% —w’)

VB IR = (v )2 — v 3

SO

_ 1 Y15 +7-4" ) _ Olly +1'113

c—d=1—m 2 (0 —0) / 2 | = a2 2
Iz - 112 = (v 9")? = =iz 70z - 171z = (v -2
First we examine the numerator. What is v + +/? Like any combination of the columns of Vo ()™}, it is
the list of coefficients of a polynomial of degree 2k — 1, in the basis 1,z ..., z?*~1. By definition, v + ~ =
Zj(VQk(a)*l)*j, which is to say that for every i, Vor(c)ix - (v + ') = 1. So the polynomial v + +/ evaluates
to 1 at every «;. It can therefore only be the constant polynomial 1; this means that (y ++'); = 1 if ¢ = 1, and
(v +7'); = 0 otherwise. Thus ||y ++/[|3 = 1.

Next we examine the denominator. To begin with we upper bound it by ||]|3 - ||[7/||3. (Not much is apt to be
lost in this step because by construction  and +' are far from identical.) Next we upper bound each of the terms
through an interpolation inequality. In what follows we focus on |||3, the treatment of ||y'||3 being essentially
identical.

The vector v, interpreted as a polynomial, takes the value 1 on a nonempty set of points a1, . . . , oy separated
by the positive distance oy — oy from another nonempty set of points a1, . . ., o upon which it takes the



value 0. Observe that if the polynomial was required to change value by a large amount within a short interval,
it would have to have large coefficients. Our inequality (stated in the following lemma) is a converse to this
observation. For the purpose of the lemma 2k — 1 is replaced by «, which may be any (not necessarily odd)
positive integer. The proof appears in Appendix A.1

Lemma 2.2. Let vy, ..., 041, s and € be as above. Let y(x) = Y. vix' be a real polynomial of degree
K evaluating to 1 at the points a1, . .., o and evaluating to 0 at the points o1, . .., Qeq1. Then Y g 72 <
224;{—1 —2K
K §T4F.
We now return to the proof of Theorem 2.1. We have shown that
(52 52 52 SSk—4

> > .
= B 73 = @k — 1725552 = (2k = 1)720-0

Recall that § < 1 and 5 > §s. So [|y||3 > mn%_‘l. n

Ilyl3 = (c — d)s

Theorem 1.1 now follows as a simple corollary of the following propositions, whose proofs appear in Ap-
pendix A.1. We use Vi, Var, G, A to denote Vi (o), Vaor (), G(g), A(N\) respectively, and V, Vo, G, A to denote

Vi(@), Vo (&), G(g), A(X) respectively. Recall that ¢ is the smallest separation between distinct «;-s.
Proposition 2.3. If ||§ — glla < & then ||GA||1 < [|GA|1 < 28(k + 1)¢.

Proposition 2.4. For every oy, i = 1,....k, there exists a (i) € {1,...,k} such that V;|c; — Gy <
H(k+ O

Proposition 2.5. The weights 0 satisfy |[0Var, — gll2 < llg — gll2 + & - (8K)¥/2((k + 1)€) /™.

So |lg — 5‘72;@\\2 <2||lg—gl2+ % - (8k)32((k + 1)€) Yk We can choose ¢ small enough using the sample size

in Theorem 1.1 so that ||g — 9Vax(&) |2 < ( - W4 =2_Coupled with Theorem 2.1, this completes the

m
proof.

Remark: If we are fortunate enough to have a sampling aperture of ©(k? log k) instead of 2k — 1, then there is
a simple and more straightforward learning algorithm that requires a sample size of only ©(k log k). However,
our work is motivated by applications where the sampling aperture is severely constrained. A quadratic increase
in the sampling aperture is actually a quadratic loss in the richness of the statistical models that can be learned
with the available aperture. (Richness is measured in this section in terms of the number of spikes, or in the next
section, for general distributions, in terms of the greatest possible transportation distance between distributions

with indistinguishable statistics.)

2.2 Proof of Theorem 1.2: learning arbitrary mixtures

For general mixtures ¢, the moment map ' is many-to-one for any finite K. Nevertheless, one can think of its
“inverse” as mapping moment vectors to sets of mixtures that produce the same K moments. The main idea of
the proof is to bound the Lipschitz constants of the moment map and its inverse.

In this section, we take .J to be the interval (—1, 1) for convenience (we exclude coins of type = € +1 for
technical reasons; this is not a limitation because in a finite sample it is impossible to distinguish perfectly biased
coins from very highly biased ones). Thus, a coin of type x has Pr[heads] = (1 — x)/2.

Recall that for every real r, the transportation norm || - || rvan induces a metric space on the signed measures
of trace r on J.

Let P denote the set of probability measures on .J. Let 7p(.J) denote the metric space (P, Tran): this is a
sub-metric space within the trace-1 signed measures. Let 7o(.JJ) C 7o(J) consist of the trace-0 bounded signed
measures on J which assign measure < 1 to any set. Observe that 7o(J) = Tp(J) —7p(J) = (P—="P, || - [ Tvan)s
where P — P is Minkowsky sum.



Observation 2.6. Let S be the definite integration operator on J defined by (S(9))(x) = 9((—1,x)), and let

9 € 1o(J). Then, (9)]]1.
Recall our notation of the empirical statistics f = (ﬁ':aao, frigl, f(r%q)Q e ,ffr\ea K) and the moment vec-
tor f = p(W) = (freqo,freql,f(re}?)2 ..,freq). The linear mapping p : 7p(J) — (X1 s defined
2
by the maps freq;(9¥) = f_ll (IZ{) i (x) - d19( ) for each 0 < i < K, with P;(.) being the polynomial
Pi(z) = (52)" (52) " nshort, f; = p(9); = 27K [ ( 1+ )57 dy(x).

By linearity, x extends to a mapping / : ’ZE)(J) — Eé{ﬂ (settlng w(d =9 = p() — u(?')). By Obser-
vation 2.6, the linear map S : 7o(J) — L1(J) is an isometry. Consider the restriction of S to 7o(.J); define
Jo C Ly(J) to be the image of this restriction, and let D : Jo — 7Zp(J) denote the inverse of .S on Jy. Note that
Jo consists of the functions g € Ly (J) of total variation at most 2, for which g(—1) = g(1) = 0.

We first show that the observed moments suffice to determine a close approximation to J. The mapping
poD : Jo — Eg( *1 is far from isometric, being many-to-one. It nonetheless has very nice metric properties. These
are established in Lemmas 2.7 and 2.8, which yield Theorem 2.9 as a simple corollary, and in Proposition 2.10,
which is used for the algorithmic reconstruction. Lemma 2.7 establishes that the preimage of any point under
o D has small diameter. Lemma 2.8 establishes that the preimage changes only gradually as the point is moved.

Lemma 2.7. sup{|lg||1: g € (o D)~*(0)} < n(;?ﬂ)'

For a metric space (M, d) the induced Hausdorff metric on subsets, which we denote (2, d), is given by
d(S,T) = supg, g4 er infsyes,,er max{d(sy, t2),d(t1, s2)}. Consider (10 D)~! as a mapping from K+ o
the Hausdorff metric on subsets of Lq(.J).

Lemma 2.8. ||(x 0 D)™ Y|Lip < C for some finite C = C(K) = KO,

Theorem 2.9. If || f — fll2 < & then any reconstructed measure O such that 0 = f satisfies |0 — 9| Tran <
IC(K)+ +/8/(m(K +1)).

Proof Sketch of Lemma 2.7. The proof is fairly technical but the approach to it is this. Consider g € (poD)~*(0).

Let T;,(x) denote the Chebyshev polynomials of the first kind and let U, (z) = n_lﬂ dT”*;(x) denote the Cheby-
shev polynomials of the second kind. We will expand g € Jj in the basis of the Chebyshev polynomials {U,, }
and obtain a bound on these Chebyshev coefficients (by a method inspired by a classical bound on the Fourier

coefficients of functions of bounded variation). The proof is in Appendix A.2. |

Proof of Lemma 2.8. Let F' = u(7p(J)) be the image of 7p(J) under the linear transformation p. We wish to
show that there exists a finite C'(K) such that given any f1, fo € F and g1 € Jp that satisfies f1 = (1o D)(g1),
there exists go € Jp such that fo = (10 D)(g2) and ||g1 — ¢2][1 < C(K) - || f1 — f2l]2- Since p o D is linear, it
suffices to show the equivalent claim that for every f € p(7o(J)) there exists g € Jp such that f = (o D)(g)
and [lglly < C(K) - [[f]}o

Let Ho(z),...,Hg(x) denote a basis for the space of polynomials of degree at most K, that is dual
on J to the polynomials FPy(x), Pi(x),..., Pg(x). In other words, f_ll Hi(z) - Pj(x) dx = &;5. Set

g==_S (Zfio fZHZ) Then (o D)(g) = p (Zfio szz> = Zfio fin(H;) = f. Let L,, denote the Legendre
polynomials, scaled so that they are orthonormal on J. Let B denote the (K + 1) x (K + 1) change-of-basis
matrix from S(HD) .,S(Hg) to Ly,...,Lky1; B is defined by By, = fil L,(y) - S(H;)(y) dy. (Note

Yo viS(Hy) =5, Ly f Ln(x) Y, viS(H;)(x) de =), Ln Y, 7iBin.) Notice that g(z) is a constant-free



polynomial of degree at most K + 1, therefore g € Span{L1,..., Lx4+1}. Thus,

K+1 1 K41 1 K
o@) = 3 L@ [ L) o) dy = 3 La@) [ Luw)-S (Z fin-(y)> dy
n=1 -1 n=1 -1 i=0
K+1 K 1 K+1 K
= Y L@ Yo f [ L) S dy = 3 o) D i

n=1 i=0 71 n=1 i=0
Therefore, ||g||3 = || £ B3, so |lgll1 < V2 llgll2 < V2| f]l2 | Bllop> Where || - ||op is the matrix operator norm.
Finally, take C'(K) = v/2 - || B|op- (In this abstract we omit the argument that || B||o, € K°))) [ ]

We now complete the proof of Theorem 1.2 by giving an algorithm to invert the noisy moment map. The key
to our algorithm is an upper bound on the Lipschitz constant of 1 o D.

Proposition 2.10. ||x o D||ip < K. (The proof appears in Appendix A.2.)

This proposition, in conjunction with Theorem 2.9, allows us to restrict our search for ¥/ to any subset of
Tp(J) dense enough to constitute a good “covering code.” More specifically, let € > 0, and let S C 7p(J)
be such that supy, ¢ 7. infy,es [[U1 — V2 Tran < /(2K - C(K)). Let the sample size be large enough that
with high probability || f — f|l2 < &/(2C(K)). The covering code condition and the lemma ensure that there
exists a ¥’ € S such that ||u(0) — flla < &/(2C(K)). So (if the high probability event occurs), ¢ is such that
|u(¥') — fll2 < e/C(K). Then by Theorem 2.9, || — ¥||1yan < € + /8/(7(K + 1)).

It remains to choose a suitable covering code and to provide an algorithm to search it for a measure 1’
satisfying ||(9) — fll2 < €/(2C(K)). There is a fairly obvious (and far from unique) covering code: pick
e = /8/(m(K+1)),sets = [K - C(K)/e]|, and specify as the covering code the collection of measures
where x; = I1/2 et A denote the 25 x (K+1)

S

supported on the finite set of coin types {z;}__ <integer j<s—1°

matrix Aj; = P;(z;). To find a suitable measure ¥', solve the convex program
minimize {Hvﬁ"A —flla: 9> 0}.

This can be done in time exponential in K (i.e., polynomial in the sample size). Thus we have demonstrated
Theorem 1.2.

3 Proof of Theorem 1.3

Our reduction uses spectral methods. In particular, we use results on the concentration of the eigenvalues of
random matrices [24, 2, 41]. Previous empirical and theoretical results on spectral analysis of data [7, 18, 37, 33,
8, 30, 9, 20, 28, 11, 34, 5, 39, 1, 27, 14] are somewhat related to our work, though our algorithm differs from
previous uses of these tools. We note that a more complicated algorithm gives slightly tighter bounds on the
required sample size; this is deferred to the full version of the paper.

Let p,q € A, and consider a mixture @ of distributions of the form ap + (1 — a)q. Let r € A,, denote the
expected face probabilities with respect to 8, and let o denote the linear variance of € (along the supporting
interval [p, ). Putv = § - (7 — p). Note that for all s € [n], |vs| < r,. Let M denote the pairwise correlation
matrix for the underlying distribution on pairs of rolls. Le., for s,¢ € [n], Mg is half the probability that two
rolls of a die produce s, ¢ in any order.

Proposition 3.1. M = 3 ((r +v)(r + v)T + (r —v)(r —v)7).



We will use the notationp = r—vand g = r+v. Sor = 3 (p+¢)andv = § (¢ — p). Let ¢ = %Hp—qu =
> o, |vs| be the total variation distance between p and ¢. Notice that for every s € [n], 75 = ;" | Mg (because
Yo v =0). Thus if we have M, we can compute trivially r and also v, which is the pr1nc1pal eigenvector of
M —rrT = vo”. Sampling m dice, two rolls per die, we get an estimate M for M. le., Misannxn symmetric
matrix, where My is half the fraction of die roll pairs that fell on s and ¢ (in any order). Using M (a very noisy
estimator of M), our reduction algorithm computes vectors 7 and v, and outputs the endpoints p, g of the interval
7 + Span(?) N A,. We show that the line 7 + Span(?) is sufficiently close to the line » + Span(v) to enable
the computation of a good estimate for . We now descrlbe in detall how to compute T and v. Letc > 0O bea
sufficiently large constant. Fix 4§, €, S > 0 such that § <S¢ <7 (n 75> S > G.andm > 55 -nlogn + cnS?
(recall m is the sample size). Our reduction proceeds as follows

(1) Forevery s € [n], compute 75 = > ., ; My

(2) Forj = 1,2,..., compute I; = {s : 279 < 7, < 27771} (We assume that for all s € [n], 75 < 1,
otherwise the problem is trivial.)

For ease of analysis, we now consider another empirical version M of M that is independent of M. There are 1
die samples from 8, where 1 is distributed Poisson (this can be emulated from the real data). Each die is rolled
twice. We put My, to be half the fraction of die roll pairs that landed on s and ¢ in any order.

(3) Forevery I = I;, where j =1,2,..., compute ijl = ijl — fﬁIT.
(4) Forevery I = I;,j =1,2,..., compute 9; € R, the principal eigenvector of Vi1, with lor]]2 = 1, and

compute A(I) = Ay (Vyx ).

(5) Compute J = {j eN: ||ij|]1 >e N M) > 26&'\} (we show that J # () in Lemma B.6).
J

(6) For any I C [n] and a vector z € R, put T+(x) = {s € I : x4, > 0}. For j € N, we use the notation
T = T(vy), T; = TH(~vp), Ij = T*(0p), and T; = T*(~0p). Pick an arbitrary jo € J.
Wlthout loss of generahty, assume that vgo ﬁfjo > 0and [0, 13 > %HUI H2 = 1. Forevery j € J put

Jo

Voety Liety, Mae = Fse) - if [0 12 > 3;
e; = s B
! Esefj— Ztefj_ﬂ; (TsTt - Mst) 0therw1se

(7) Finally, compute v € R™ as follows:

A(I;) - Os if dj € Js.t. s € Ijand e; > 0;
35 =< —/AI;) - s ifdjeJstseljande; <O0;
0 otherwise.

Let Tt = TH(v), T~ = TH(—v), TT = TT(9), and T~ = TF(—0). Theorem 1.3 is an immediate
corollary of Theorem 3.2: ¢ induces a low-cost transport between measures on [p, g| and measures on [p, ¢|, and
1), maps measures on [p, ] isometrically to [0, 1]. The proof appears in Appendix B.

Theorem 3.2. There exists a constant k > 0 and a mapping ¢ : R — R that satisfy the following conditions
with high probability. For every a € R such that v + « - v is a point in the simplex,

lo — p(a)| <¢72 -k -log(n/s) - \/l/S—i- Vv (nlnn)/(§-m); (1)

10




Zse:f+ (rs + a - vg) _ Zsef+ (7s + p(a) - Us) )
Dseriur- (s T avs) Y cqpeip (s + () 0s)

I+ v) = (F+ pla) 5) < 5 (cl 5+C2 log(n/8) - \/1/5 + \/<n1nn>/<5'm>) e

(@)
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A Proofs from Section 2

A.1 Proofs from Section 2.1

Proof of Lemma 2.2. There are two easy cases to dismiss before we reach the more subtle part of this lemma.
The first easy case is £ = 1. In this case -y is a single Lagrange interpolant:

k+1 T -
O
€T =
W) =11 o= o
Jj=2
For 0 <i < kletef(axa,...,a.q1) be the i’th elementary symmetric mean,

ef(ag,...,a,ﬁﬂ):(i) Z Haj

i Se({pt1yy jes

and observe that for all 7, 0 < e (g, ..., ox+1) < 1. Now
Kk+1 1 K K
_ K—1 K 7
’}/(.’E) - ]1_[2(11_&] Zz;(]') <i>6f{—i(a2)"'7aﬁ+1)x

2

S0 377 = (I aker ) S (e, auen)® < 525 (5) = ()52

The second easy case is £ = «; this is almost as simple. Merely note that the above argument applies to the
polynomial 1 — v, so that we have only to allow for the possible increase of || by 1. Hence 372 < 4(%)s72~,

We now consider the less trivial case of 1 < ¢ < k. The difficulty here is that the Lagrange interpolants of
may have very large coefficients, particularly if among a1, ..., oy or among o1, ..., o1 there are closely
spaced roots, as well there may be. We must show that these large coefficients cancel out in .

The trick is to examine not y but 9/dx. The roots of the derivative interlace the two sets on which  is
constant, which is to say, with aj < ... < a]._; denoting the roots of d/dx, that for j < ¢, a; < a; <

aji1, and for j > {, aji1 < o) < ajia. In particular none of the roots fall in the interval (o, apyq).

For some constant C' we can write 9v/0z = C'[]}2, Wz — o %) (with sign(C) = (—1)'**=%). Observe that
S N (z) dz = —1. So (~1)!*"~¢/C = S (=1 e]_[j e %) dx. Observe that if for any j <

l, a;- is increased, or if for any j > /, a;- is decreased, then the 1ntegral decreases. So (—1 )1+“ ¢ /C >

f:f“ (1) (x — )" (z — ayy1)" ¢ d. This is a definite integral that can be evaluated in closed form.

/aeﬂ(—l)”z(az — )N r — ap)  dr = (aupr — )" (0 —1)!(k — £)!/K!

ay
!
o < kK
(=1) sl —1)l(k —0)!
The sum of squares of coefficients of 5 is C? Y5 (“ZI)Q(ef_l(a’l, el 1)) < C?(*77). Integration

only decreases the magnitude of the coefficients, so the same bound applies to 7y, with the exception of the
constant coefficient. The constant coefficient can be bounded by the fact that  has a root in (0, 1), and that in
that interval the derivative is bounded in magnitude by C Z;':ol (“ ;1) = (C2". So || < C2%. Consequently,

Seec (7)) = (7)) (o)

262Kk—2 12—2n
5K“2 618

< 5/{2241‘6—48—2

= I

IN

IA
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which completes the proof of the lemma. |

Proof of Proposition 2.3. First, observe that GA = G\ + (G — G)A = (G — G)\. Also ||z < |[A1 =
Hle(l + a;) < 2F. The latter inequality follows since Py = Hf 1(z — ay); hence, || < (’f) So for any
i=1,. (G = @) A‘ < |IM||2]|Gs — Gill2 < 2F€. Thus, X is a feasible solution to (P), which implies
that H)\Hl < 2’f We have ”G)\Hl < [|GX|1 + (G = G)A|1 < 28¢ + (G — G)A||1. Forany i = 1,...,k,
(G = G)i- A < [1Gi — Gillal M2 < 286, 50 [ GAlly < 26(k + 1)€. n

Proof of Proposition 2.4. Since IGX||l2 < 2F(k + 1)€ (by Proposition 2.3), we have equivalently that the ||. |
norm of gA = 9Va A is at most 2 (k 4 1)£. We may write 9Va, A as

P;\(ozl) ale\(al) a’}i*le\(al)

~ _ _ P;(« ao P; (a P (o
IVoih = (9 Iy ) A(: 2) e f( 2 S f( 2)
Pi(on) apPs(ok) -+ of ' Py(ag)

which is equal to 'Vj,(a) where ¢ = (V1P (1), -+ , 9, P;(cu)). Thus, we are given that [|0' Vi [l2 < 2%(k +
1)&. Proceeding as in the proof of Theorem 2.1, we can also obtain the lower bound

oy _ _1 .k
19Vill2 > m?X(w;’.gm) = m?x<19i<g)k 131;[0’%_%‘) >max< ( ) H’O‘l Re(a;) )

The last inequality follows since complex roots occur in conjugate pairs, so if &y = a + bi is complex, then there
must be some ¢ such that &y = a — bi and therefore,

k k k
[Tl —ajl = ((@i—a)*+0*) - J] lei—ayl>(i—a)® ] loi—ayl.
Jj=0 J=0,j#L0 J=0j#6,0

Now, we claim that |o; — Re(a;)| > ||oy — &;| — € for every j. If both Re(&;) and Re(;) lie in [0, 1], or
both of them are less than 0, or both are greater than 1, then this follows since |@; — &;| < e and o; € [0, 1].
If Re(a;) ¢ [0,1] but Re(&;) € [0,1], or if Re(a;) € [0, 1] but Re(é;) ¢ [0, 1], then this again follows since
|&t; — &;| < e. Combining everything, we get that

rwwm>mw(() Iﬂm—%%d>

This implies that for every i = 1,...,k, there exists o(i) € {1,...,k} such that Jsc; — G| < % ((k +
1/k
)"

Proof of Proposition 2.5. Letn = % - ((k + 1)¢) YE " We will bound H;ng — gl|l2 by exhibiting a solution
€ [0,1]%, |ly|l1 = 1 such that HyV% —3ll2 < llg = gll + (8k)3/?n. Let o be the function whose existence
is proved in Lemma 2.4. For j = 1,...,k, sety; = > .. (i) ;Ui (if o~ 1(j) = 0, then y; = 0). We have

lyVar = ll2 < llg = gll2 + llg — yVQk”Q We expand g — szk = IVar — yVar = 4y 9i(Vawi — Varo(i))
where V5, ; and Vzk,z denote respectively the i-th rows of V5, and ng. For every i,

+ €. n

2k—1
7 || Vap,i — %k,cr(i)”% =7 Z( i (1)) <978k - n?.
=0
Therefore, ||g — yVar|l2 < (8k)3/%1. -
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A.2 Proofs from Section 2.2

Proof of Proposition 2.10. Since D is an isometry, the lemma is equivalent to showing that p has Lipschitz
constant bounded by K on 7y(.J). To establish this, we bound how far (1) can move (in ¢2) when ¥ is changed
by transporting a delta function. Specifically, for a > 0,—1 < 29 < 21 < 1, and with ¢, denoting the (Dirac)
measure assigning measure 1 to sets containing z and 0 to other sets, write ¥(a, 2o, z1) = ¥ + a(d,, — d5,). Now
we show || u(9) — p(9 + a(d2, — 84,))||, < Ka(z1 — 20), which follows from the following claim:

() = 9+ (Bt~ )|, < Ko

BSOSO RTEEED)
(5 e)))
u=0 2 2

H 0
ou
We establish this as follows:

2

LHS = Z(aau

—u 42 1—=2 % 1+Z Q(K_i) K—Zi 7 2
N 2 2 142z 1—2z

(505
() O
() () (s

(42)" - ()

(Ignoring isolated division by 0, which may be repaired by continuity.) Without loss of generality suppose

that z < 0.
1-2\2K  (1-2\2K—2 /1452 N K-1
. < Ka (2) (2) (2) —Ka<1 Z) < Ka.
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Proof of Lemma 2.7. Consider g € (u o D)~*(0). Let T},(x) denote the Chebyshev polynomials of the first
kind and let U, (z) = %HdT”C‘{; @) denote the Chebyshev polynomials of the second kind. We will expand
g € Jo in the basis of the Chebyshev polynomials {U,,} to obtain a coefficient bound that is inspired by a
classical bound, apparently due to J. E. Littlewood, on the Fourier coefficients of functions in Jy. (We cannot
make use of that classical bound but have followed the example of its proof. See Taibleson [38].) Let ¢, =

(n+1) fil g(x)Uy,(x) dz. We integrate by parts to get

%-guﬂun—a—wmen—/’nmww@mw——/:mmww@mw

-1 1

Now, for x € J, |T,,(z)| < 1, and D(g) is the difference of two probability measures on .J, so |c,| < 2.
The Chebyshev polynomials {U,,} satisfy the orthogonality relations % f_ll V1—22 Upy(x)Up(x) do =
Omn, Where ¢ denotes Kronecker delta. Therefore, the inversion formula is

g(z) = Z V1 ~Un( or equivalently #x)? = Z (n + 0 V1 - Un(

(n+1 1—2

The vectors summed on the RHS of the second expression are orthogonal, so

1 1 2 o0
[Lsera < [ | AL w = 3| e Vi )|
=27 ) =2
- __ " 21— 2.2 dr = __“m 4
I BT O wa @

Now we finally use the assumption that g € (y o D)~'(0). By the same integration by parts formula that
we used earlier, we see that ¢, is the n-th Chebyshev moment of the signed measure D(g). Forn < K + 1
these moments are linear combinations of the moments E [CL’K ] sy B [(1 — )k } By the assumption that

g € (po D)~1(0), all these moments are equal to 0. In combination with Equation (4), and the power-mean

inequality, we obtain: (f lg(z)] d:r) <2 [1g(x)? de < 2 ps T S R u

B Proofs from Section 3

Proof of Proposition 3.1.

1
11—z _ 14+x_ 1—2_ 14z _
o = [ () (e )

1 1 1 o
= =2+’ +p?) g+ (L4 2p+ 0% + %) @5 + 3 (1= 0% = 1) (id + Gipy)
1—p)? (14 1—p? ot
= (Zl)pipj + (quq] +— (piGj + @ip;) + Z(pipj + GiGj — DiGj — Gibj)

= Tﬂ'j—i-vﬂ)j

— 5 (= vy = 0) + i+ )5+ 0,)).

Fors € [n]and T' C [n], let My = >, . M and let My = ZteT

17



Proposition B.1. Let s € [n] and T' C [n]. For every w € N there exists ¢ > 0 such that for every § > 0 and for
every m > Cln" , the following event happens with probability at least 1 — n™%.

clnn ~ clnn
1—)——— | Mg < Mg < |1+ ——— | M.
( 4'm'M5T> sT > sT > ( + 4'm'MsT> sT (5)

Proof. Notice that m - M, s7 1s the sum of m iid Bernoulli trials with success probability M¢p. Using standard
large deviation bounds [3, Corolary A.1.14, page 268],

Pr HMST — Myt

> EMST:| < 2¢Cem-Mer,

where ¢, = min {— In (e“(1 + e)—(1+5)) , %} Plugging in € = 44%13\?»T’ and assuming that c is sufficiently

large, we get the claimed bounds. |

Proposition B.2. For every w € N there exists ¢ > 0 such that for every § > 0 and for every m > 5 - nlnn, the
following event happens with probability at least 1 — n~“. For all faces s such that rs > %,

(1— \/(c-nlnn)/(4-5-m)) crg < Tg < (1+\/(c'nlnn)/(4-5'm)) ‘T, (6)

and for all faces s such thatrs < §/n, 0 <75 <d&/n++/(6-c-lnn)/(4-n-m).
Proof. Use Lemma B.1 with 7' = [n] and the union bound over the faces s. |
Fix j € {1,2,...,log(n/d)}, and let I = I;. Let £ = My — Myy;. For s € I, write 7s = (1 +7s) - 7s.

(Assuming Equation (6), vs € \/64"51’71”n, +\/C4"5h;n” ) Since Myy; = rir¥ +vp?, Vikr = M[“—fﬁIT =

(fof — fof) + (Mrxr — TIT}F) + (rirf = 77T) = €+ vl — T, where Ty = (s + Y + VsVe) Tt
The following lemma is a consequence of the eigenvalue concentration bounds of [2, 41].

Lemma B.3. For every w € N there exist o, ¢ > 0 such that for every S > In®n, if E[in] = c- |I| - S, then with

w

probability at least 1 — n™,
o

M@ < g )

Proof. We may assume that with the desired probability, for every s,t € I, Mgy = rgry + vsvy < 215 <

s < | I|2 , as this follows from Equation (6), taking a sufficiently large c.

Consider the random symmetric matrix A = m - (M Il — My I). The entries Ay,

, are

independent random variables as 712 is a Poisson random variable. Also, for every s,t € [I], E[A4] = 0, and for
every w € N there exists x > 0 such that Pr[|Ay| > kInn] < n~“. Thus, with the desired probability, for some
k > 0, for every s,t € [I], |Aq| < klnn. Also, with the desired probability, 7 > 1 E[r].

Define a matrix B as follows. Let A be the truncated version of A with Ay = 0 if m < %E[m] and
min{Ag, k Inn} otherwise. Put B = A — E[A]. Notice that \; (E[A]) — 0 as ¢, k — 0.

Now, for every s,t € I, E[Bg] = 0. Furthermore, Notice that 17 - Mst is distributed Poisson with expectation
(and variance) E[m| - M. Therefore,

Q2
Var[By] < Var[Ay] = Var[in - (My, — My)] = Eli] - My < (c- 1] - §?) - ( 20 > _ 20c-§

[P ]
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We now use the following bound due to Alon et al. [2] and Vu [41]. If B is a random matrix as above then there
exists a constant 3 > 0 such that with the desired probability

20c - S? 20c - S?
/\1(B)§ﬂ-< VIl 2etony [ = -\4/|I\-ln|1\):O(S).

With the desired probablhty, 2 $E[m], A = A, and \(B) = O(S). Hence, for some constant o > 0,

wehave|)\1( )’ Py )\1(A) < 7] ()\1 ) Al(E[A])) < . [ |

Proposition B.4. |\{(7)| < 3 maxges [vs] - Y,e; 72

Proof. Let p € R! be given by ps = 7s7s. Then, T = pr}r +rp” + pp”. Therefore,

()] < | MlerD)] + [\ (rp")] + [Mpp”)| = ‘Z%Tﬂ + |ZV§T§
sel sel
< 3 Z’Ysrz < 3-maX|’ys| : T??
sel sel sel
as stipulated. |

Lemma B.5. Assuming Equations (6) and (7), there is a constant 3 > 0 such that

lorli3 = (1/8 + v/t /@ - m)) - 8/111 < MD) < llog I + (1/8 + V) /@ -m)) - 8/111; (®)
(6vr)” = lfogl13 = (1/ + VO lam) /G -m)) - B/l1];~ and ©)
if 9Tv; > 0 then H\/ﬁ.@f —UIHj < |1l H\/ﬁ-@, *”sz <8 <1/S+ \/W). (10)

Proof. Notice that

. Te T 2
AI) = 8TV 6, < 6TViu o vy Y29 _ (T A(E) + (T
(1) o Vixrvy < U1 wal—i—r;l%( Ty +I;123< /Ty (07 v7)” + IAL(E)] + [M(T)]

On the other hand, A(/) = max,g # > vFur — [A1(€)] — [A1(T)|. Combining the two inequalities,

we get that (@?01)2 > |log113 = 2|A1 ()] — 2|A1(T)|. By Equation (7), for some constant 31 > 0, we have
2\ (E)] < & \I\ . % Moreover, by Equation (6), maxgcs |vs| = O (\ / W) Furthermore

> ri<4 Zf2< Z"”S* Vil

sel sel sel

Therefore, by Proposition B.4 there is a constant 32 > 0 such that 2 |\ (7)] < ff‘ nii% - Thus we get

Equation (8) (as (07 vI) < |lv;||3) and Equation (9). Using the fact that v/1 — € > 1 — 2¢ for all € € [0, 1], we
get that for a constant 33 > 0,
1 |
(1, fan)
lvrll2 - 1]\ S §-m
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Let 9} = |lv;||2 - ;. Assuming that 67 v, > 0, we get that

R 2 . 203 1 nlnn
”U/I—UIH2:2'||UI|%—2‘||UI||2'UITUI§m'<5+ S-m |-

Also, by Equation (8), for a constant 54 > 0,

2 2 I} 1 1
L= (VA = vy 2) S‘)\(I)—\WH%‘S‘;'<S+ 1’;“”).

VA -6 5

-m

Thus, for a constant 35 > 0, we have

2 2
R R N R
2
< |f|-( o — vy + | VA@ oy -7 +2 @Q—UIHQ-HAUMI—vf||2)
1 nlnn
showing Equation (10). |

Given our bounds on 4, €,.S, m, and ¢ > 0 sufficiently large, Equations (6), (7), (8), (9), and (10) hold with high
probability.

Lemma B.6. J # () and for every j € J, 17}21)]]_ > 0.

Proof. We first show the first part of the claim. By Equation (6), for every s such that 7y > %, rs < 27,
and for every s such that 7y < %, rs < %‘5 Put Jo = {j e N: j > log(n/d)}; Jee = {j e N: j <
log(n/d§) A Zsefj 7s < epyand J>c = {j € N: j <log(n/d) A Zselj 7s > €}. We have that

ZZ|U3|§ZZ’I“S<25.

j€Jo s€l; Jj€Jo s€l;
Also,
E E lvs| < E E re < 2- E E Ts < 20.
Jj€J<c s€l; Jj€J<c s€l; Jj€J<e s€l;

Assume for contradiction that for all j € J>., > . I |vs| < €. Then,

n

STl =303 Tl + 3T Y e+ 30 Y el <20 +20 48 <,

s=1 j€Jo SGI]' jE€J<e SEIj jEJze SEIj

in contradiction to the definition of (. By Equation (8), there is a constant 3 such that for every j € J>,

HUI”% I} 1 nlnn HUIH%
A1) > . > I _—.
0) = 1Ll G\ S N ) 2 2|1

As we have shown that there exists j € J>. such that ||vz, |1 > e, this completes the proof.
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We now proceed with the second part of the claim. Consider j € .J such that ¢ UI vy, > 0and [ 13 > 2.
j

(The other cases have parallel proofs.) Let B; = TjJr A T;r and let A = I; \ B;. Notice that by Equation (9),

3 2 s 2 B 1 nlnn
loall 2 (0hva) 2 (20, 2|rv1jué—w-(5+ : )
J

-m

and therefore

1 nlnn
Jog, I < 1151 o, I3 < 5 (S + M) .

4

Also, as forevery s € I, |vs| < rg <275 < 1Ak using Lemma B.5 and previous arguments,
|15
H%f”l = TJ ||’UT*J_+H§
|11 / X N N
> TJ | )\(Ij)‘vfj+’\%—2'|| )\(Ij)'UT+||2'\| )\(Ij)'UT#—UTJHb
> WL (1 hap ap -2 o | vy
= 4 3 P2 UI 2" vr;ll2
< |1 A + nlnn
- 4 1) |I| S §-m
2
> —.
- 32
Therefore,
nlnn nlnn
o= X Xuenz ¥ T onen-o\i5) - X T woyfi)
seTt teTJ*0 seT;t teTfO seT;t teTJr
nlnn
395 JIAHEIEES 95 SIANAEEED 3 S AHAETINETD
seT tel;} s€B; 1eTh seT t€Bj,
1 1 nlnn
ol (5 T, I =2+ B ) + - (5 Tl = o 1) = 0 ( o m)
2
€ 1 nlnn nlnn
> R o | = - | = -0 > 0.
- (””TJ*||1+||UT$”1> 52\ <S+ 5-m> ( 5-m>
This completes the proof. |

Proof of Theorem 3.2. Put £ = log(n/J) - \/ﬂ~ (1/8 ++/(nlnn)/(6 - m)) Let B; = Tj+ A Tj+. Following
the proof of Lemma B.6 (in Appendix B), ZS€T+ vg > ZS€T+ Vs — D gy ZseTf Vs — D ey Zsij lvs| >
¢—50—¢&> % Similarly, — ZSET— Vs > § By seT+ (1)5 - f)s)‘ < 2567”‘ ‘Us - 6s| <

ZjeJ Hvlj_ﬁlel < ¢, and ‘Zseff (vs — ¥s)| <& Thus, Y se+ Us = (—50—2£ > Q,and—zsef, Vg > %

Ziiﬁ_(”(jix)v y and ola) = Z?;fg r:(i p; §5€T+ ~. Notice that 0 < p < 1 and p(«) is well-
sETTUT—\'$ s eT s seT™ Us

defined as we’ve shown that the denominator in its expression is non-zero. This verifies Equation (2).

Setp =
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PO sei—Ts—(1=D) D0 ci+ Ts
(1—P)'ZS€T+ Vs _p'zseff Vs

Also notice that o« = (Here, too, we’ve shown that the denominator is non-

zero.) We now upper-bound |a — ()| using the equality % — % = D + (D B) 4. By Equation (6),
|A=C| <p-Ysei s —Ts|+(1=p) D i ITs—Ts| < w/%. As argued above, B = (1—p)->_ 71 Us—

ZseT_ > %, and D = (1—=p) > it Vs =D D gei- Vs = % Also as argued above, |D — B| < (1 —p)-
|ZS€T+ Vs — Vs) sei— (Us — US)T < & Finally, |A| < p-Y° - rs+(1=p)-> 5+ 7s < 1. Therefore,
Equation (1) follows from |a — p(a)| < % 1/ 04”511;”” + Cg -log n/<5 \/ﬁ 1/S+ V(nlnn)/(0-m )

Let Iy = {S € [n] : i ZSGIO |Ts 7'5| + ngjo ‘Ts Ts‘ <
20 + w. As the L distance between any two points in the simplex is at most 2 and ||v|; = 2¢, it
must be that || < % Similar to the argument above, [[v — o[1 = >, oy, = o1l + digd logll <

= 2jes ol < 2jes v+ 2256 1o, — vl < 1+ & Using Equation (1), as
[(r +a-v) = (F+ () - 0)h < [lr =7l +]al - [lo = olls + o = ()] - [[0]1, we get Equation (3). W

C Transportation distance for discrete distributions

Definition C.1. Let (91, 1) and (92, a2) represent k-spike and ¢-spike distributions respectively. The trans-
portation distance between these two distributions, denoted by Tran (11, a1; 92, ), is the optimum value of the
following minimum-cost flow linear program:

k 0
min E E a:ij\au — Ozzj‘ subject to

i=1 j=1
k

inj:’ﬁu Vizl,...,k; Zl‘ij:192j ijl,...,g; iL'ijZO V’L,j
j =1

This is the transportation LP, one of the early examples of a linear program [12]. Note that Z xip = 1.
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