KATAN & KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers

Orr Dunkelman

Département d'Informatique École Normale Supérieure

France Telecom Chaire

Joint work with Christophe De Cannière and Miroslav Knežević

Outline

- 1 Introduction
 - Why the AES is not Suitable for Low-end Devices
 - Other Solutions for Constrained Environments
- 2 Design Goals
 - What do you expect of a cipher?
 - Really Low-end Devices
- 3 Building Blocks
 - Bivium
 - LFSR Counter
 - Two Round Functions
- 4 The KATAN Block Ciphers
 - Key Schedule Algorithm
 - Taps
- 5 The KTANTAN Block Ciphers
- 6 Performance Analysis
- 7 Security Analysis

Why the AES is not Suitable for Low-end Devices

- ► The AES was selected at the end of a very long development effort.
- ▶ It is deemed as the block cipher to answer all symmetric keys needs in the 21st century.

AES

Why the AES is not Suitable for Low-end Devices

- The AES was selected at the end of a very long development effort.
- ▶ It is deemed as the block cipher to answer all symmetric keys needs in the 21st century.

Is it?

AES

Why the AES is not Suitable for Low-end Devices

- ► The AES was selected at the end of a very long development effort.
- It is deemed as the block cipher to answer all symmetric keys needs in the 21st century.

Is it?

- ► AES can be efficient in hardware, but the smallest implementation is 3.1 Kgates.
- ▶ AES may not be suitable in constrained environments due to other considerations.
- Cache-timing attacks may render AES unsuitable to some software environments.

AES

Other Solutions for Constrained Environments

Stream ciphers

Other Solutions for Constrained Environments

- ▶ Stream ciphers
 - ► To ensure security, the internal state must be twice the size of the key.
 - ▶ No good methodology on how to design these.

Other Solutions for Constrained Environments

- ▶ Stream ciphers
 - ► To ensure security, the internal state must be twice the size of the key.
 - ▶ No good methodology on how to design these.
- Block ciphers

Other Solutions for Constrained Environments

- ▶ Stream ciphers
 - ► To ensure security, the internal state must be twice the size of the key.
 - ▶ No good methodology on how to design these.
- Block ciphers
 - ▶ HIGHT, mCrypton, DESL, DES, PRESENT.

Other Solutions for Constrained Environments

- ▶ Stream ciphers
 - ➤ To ensure security, the internal state must be twice the size of the key.
 - ▶ No good methodology on how to design these.
- Block ciphers
 - HIGHT, mCrypton, DESL, DES, PRESENT.
 - Can we do better?

Design Goals

- Secure block cipher
 - Differential/Linear cryptanalysis very large safety margins.
 - Related-Key/Slide attacks foil using no constants.
 - ▶ Related-Key differentials do not exist.
- Efficient block cipher
 - Small foot-print
 - Low power consumption
 - ► Reasonable performance (+ possible speed-ups)

Goals

Really Low-end Devices

Does an RFID tag really needs to support key agility?

- ➤ Some low-end devices have one key throughout their life cycle.
- ▶ Why to waste good gates on their key-agility features?

Low-end

Really Low-end Devices

Does an RFID tag really needs to support key agility?

- ➤ Some low-end devices have one key throughout their life cycle.
- Why to waste good gates on their key-agility features?
- Some low-end devices are going to encrypt very little data throughout their life cycles.
- ▶ Why to waste good gates on their ability to encrypt more messages than that?

Low-end

Introduction Goals Blocks KATAN KTANTAN Performance Security Bivium LFSR Tw

The Basic Building Blocks

- Bivium (Trivium with two registers) in a block cipher mode.
- ▶ LFSR counts rounds (rather than a counter).
- ► Two round functions (the one to use is controlled by a bit of the LFSR).

Introduction Goals Blocks KATAN KTANTAN Performance Security Bivium LFSR Two

The Basic Building Blocks — Bivium

The Basic Building Blocks — LFSR counter

▶ When counting the number of rounds, you can use a counter.

The Basic Building Blocks — LFSR counter

- When counting the number of rounds, you can use a counter.
- ▶ *n*-bit counter $\Rightarrow n-1$ -long carry chain.
- ▶ *n*-bit LFSR a bit of control logic.

LFSR

The Basic Building Blocks — LFSR counter

- When counting the number of rounds, you can use a counter.
- ▶ *n*-bit counter $\Rightarrow n-1$ -long carry chain.
- ▶ n-bit LFSR a bit of control logic.
- ► Checking end conditions: overflow in counter (carry chain longer) or special internal state (LFSR/counter).

LFSR

Two

Introduction Goals Blocks KATAN KTANTAN Performance Security Bivium LFSR Two

The Basic Building Blocks — Two Round Functions

- ► *IR* is a bit which defines which of the two round functions to use.
- ▶ It toggles between two functions.

Introduction Goals Blocks KATAN KTANTAN Performance Security Bivium LFSR Two

The Basic Building Blocks — Two Round Functions

- ► *IR* is a bit which defines which of the two round functions to use.
- It toggles between two functions.
- Prevents any slide attacks, and increases diffusion.
- Uses the MSB of from the LFSR to pick the function (another advantage of an LFSR over counter).

The KATAN Block Ciphers

- KATAN has 3 flavors: KATAN-32, KATAN-48, KATAN-64.
- ▶ Block size: 32/48/64 bits.
- Key size: 80 bits.
- ► Share the same key schedule algorithm, and the only difference in the encryption — tap positions.
- Share same number of rounds 254 (LFSR of 8 positions).

The KATAN Block Ciphers — Key Schedule

- ▶ Key is loaded into an 80-bit LFSR.
- ▶ Each round, the LFSR is clocked twice, and two bits are selected k_a and k_b .
- (Polynomial: $x^{80} + x^{61} + x^{50} + x^{13} + 1$).

Key

The KATAN Block Ciphers — Tap Positions

X1

19

25

Cipitol	1-1	~1	7.2	~``	7.4	^5
KATAN32	13	12	7	8	5	3
KATAN48	19	18	12	15	7	6
KATAN64	25	24	15	20	11	9
C: I						
Cipher	y_1	y_2	<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆
KATAN32	18	7	12	10	8	3

21

33

Xa

Xa

13

21

 X_A

15

14

ΧE

6

9

Cipher

KATAN48

KATAN64

28

38

The KATAN Block Ciphers — Final Touches

► KATAN32 is clocked once in each round.

The KATAN Block Ciphers — Final Touches

- KATAN32 is clocked once in each round.
- ▶ KATAN48 is clocked twice in each round (k_a and k_b are the same for both invocations).

The KATAN Block Ciphers — Final Touches

- KATAN32 is clocked once in each round.
- ▶ KATAN48 is clocked twice in each round (k_a and k_b are the same for both invocations).
- ▶ KATAN64 is clocked three times in each round (k_a and k_b are the same for the three invocations).

The KTANTAN Block Ciphers

- ► KTANTAN has 3 flavors: KTANTAN-32, KTANTAN-48, KTANTAN-64.
- ▶ Block size: 32/48/64 bits.
- Key size: 80 bits.
- ► KATAN-*n* and KTANTAN-*n* are the same up to key schedule.
- ► In KTANTAN, the key is burnt into the device and cannot be changed.

The KTANTAN Block Ciphers — Burnt Key?!?

- Many devices are deployed in such a manner that the key is initialized once and never changed.
- Maintaining key agility is not important.

The KTANTAN Block Ciphers — Burnt Key?!?

- Many devices are deployed in such a manner that the key is initialized once and never changed.
- Maintaining key agility is not important.
- ► And it saves about 80 bits of memory + 4 XOR gates for the feed back.

The KTANTAN Block Ciphers — Burnt Key?!?

- Many devices are deployed in such a manner that the key is initialized once and never changed.
- Maintaining key agility is not important.
- ► And it saves about 80 bits of memory + 4 XOR gates for the feed back.
- ► For such devices, we allow the key to be burnt once, and the key schedule algorithm is composed of picking the next bit.

The KTANTAN Block Ciphers — Key Schedule

- Main problem related-key and slide attacks.
- ▶ Solution A two round functions, prevents slide attacks.
- Solution B divide the key into 5 words of 16 bits, pick bits in a nonlinear manner.

Goals

Blocks

Security

The KTANTAN Block Ciphers — Key Schedule

- Main problem related-key and slide attacks.
- ▶ Solution A two round functions, prevents slide attacks.
- ▶ Solution B divide the key into 5 words of 16 bits, pick bits in a nonlinear manner.
- ▶ Specifically, let $K = w_4 ||w_3||w_2||w_1||w_0$, $T = T_7 ... T_0$ be the round-counter LFSR, set:

$$a_i = MUX16to1(w_i, T_7T_6T_5T_4)$$

$$k_a = \overline{T_3} \cdot \overline{T_2} \cdot (a_0) \oplus (T_3 \vee T_2) \cdot MUX4to1(a_4a_3a_2a_1, T_1T_0),$$

$$k_b = \overline{T_3} \cdot T_2 \cdot (a_4) \oplus (T_3 \vee \overline{T_2}) \cdot MUX4to1(a_3a_2a_1a_0, \overline{T_1T_0})$$

- ▶ A standard D flip-flop uses 8 NAND gates.
- It can be squeezed down a bit in the real layout.

- A standard D flip-flop uses 8 NAND gates.
- ▶ It can be squeezed down a bit in the real layout.
- Many just copy the standard flip-flop of their library.

- A standard D flip-flop uses 8 NAND gates.
- ▶ It can be squeezed down a bit in the real layout.
- Many just copy the standard flip-flop of their library.
- Not so good idea, especially as the internal state of low-end devices takes most of the area!

- A standard D flip-flop uses 8 NAND gates.
- ▶ It can be squeezed down a bit in the real layout.
- Many just copy the standard flip-flop of their library.
- Not so good idea, especially as the internal state of low-end devices takes most of the area! We use a scan flip-flop (6.25 GE/bit).

Performance Analysis — A Story of a Memory Bit

Implementation Results

- ▶ We used $fsc0l_d_sc_tc$ 0.13 μm family standard cell library tailored for UMC's 0.13 μm Low Leakage process.
- ► Aimed for lowest possible foot print (but also explored more throughput in exchange for more hardware).

Performance Analysis — Implementation Results (cont.)

Cipher	Block	Key	Area	GE/bit	Throughput	Logic
AES-128	128	128	3100	5.8	0.08	$0.13~\mu\mathrm{m}$
DES	64	56	2309 [†]	12.19	44.4	0.18 μ m
DESL	64	56	1848^{\dagger}	12.19	44.4	0.18 μ m
PRESENT-80	64	80	1570	6	200	0.18 μ m
PRESENT-80	64	80	1000	N/A	11.4	0.35 μ m
Grain	1	80	1294	7.25	100	0.13 μ m
Trivium	1	80	749	2♦	100^{\ddagger}	0.35 μ m
KATAN32	32	80	802	6.25	12.5	0.13 μ m
KATAN48	48	80	902	6.25	18.8	0.13 μ m
KATAN64	64	80	1008	6.25	25.1	$0.13~\mu\mathrm{m}$
KTANTAN32	32	80	462	6.25	12.5	$0.13~\mu\mathrm{m}$
KTANTAN48	48	80	562	6.25	18.8	0.13 μ m
KTANTAN64	64	80	662	6.25	25.1	$0.13~\mu\mathrm{m}$

Implementation Results (cont.)

Cipher	Block	Key	Area	GE/bit	Throughput	Logic
KATAN32	32	80	802	6.25	12.5	$0.13~\mu\mathrm{m}$
KATAN32	32	80	846	6.25	25	$0.13~\mu\mathrm{m}$
KATAN32	32	80	898	6.25	37.5	0.13 μ m
KATAN48 [†]	48	80	916	6.25	9.4	$0.13~\mu\mathrm{m}$
KATAN48	48	80	927	6.25	18.8	0.13 μ m
KATAN48	48	80	1002	6.25	37.6	0.13 μ m
KATAN48	48	80	1080	6.25	56.4	0.13 μ m
KATAN64 [†]	64	80	1027	6.25	8.4	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1054	6.25	25.1	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1189	6.25	50.2	$0.13~\mu\mathrm{m}$
KATAN64	64	80	1269	6.25	75.3	$0.13~\mu\mathrm{m}$

Implementation Results (cont.)

Cipher	Block	Key	Area	GE/bit	Throughput	Logic
KTANTAN32	32	80	462	6.25	12.5	$0.13~\mu\mathrm{m}$
KTANTAN32	32	80	673	6.25	25	0.13 μ m
KTANTAN32	32	80	890	6.25	37.5	$0.13~\mu\mathrm{m}$
KTANTAN48 [†]	48	80	571	6.25	9.4	0.13 μ m
KTANTAN48	48	80	588	6.25	18.8	0.13 μ m
KTANTAN48	48	80	827	6.25	37.6	0.13 μ m
KTANTAN48	48	80	1070	6.25	56.4	0.13 μ m
KTANTAN64 [†]	64	80	684	6.25	8.4	0.13 μ m
KTANTAN64	64	80	688	6.25	25.1	0.13 μ m
KTANTAN64	64	80	927	6.25	50.2	0.13 μ m
KTANTAN64	64	80	1168	6.25	75.3	0.13 μ m

Security Analysis — Security Targets

- ▶ Differential cryptanalysis no differential characteristics with probability 2^{-n} for 127 rounds.
- Linear cryptanalysis no approximation with bias $2^{-n/2}$ for 127 rounds.
- ► No related-key/slide attacks.
- No related-key differentials (probability at most 2^{-n} for the entire cipher).
- ▶ No algebraic-based attacks.

Security Analysis — Differential Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round char. has prob. at most 2⁻¹¹.
- ► KATAN48: Best 43-round char. has prob. at most 2⁻¹⁸.
- ► KATAN64: Best 37-round char. has prob. at most 2⁻²⁰.

Security Analysis — Differential Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round char. has prob. at most 2⁻¹¹.
- ► KATAN48: Best 43-round char. has prob. at most 2⁻¹⁸.
- ► KATAN64: Best 37-round char. has prob. at most 2⁻²⁰.
- ► This also proves that all the differential-based attacks fail (boomerang, rectangle).

Security Analysis — Linear Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round approx. has prob. at most 2⁻⁶.
- \blacktriangleright KATAN48: Best 43-round char. has prob. at most 2^{-10} .
- ► KATAN64: Best 37-round char. has prob. at most 2^{-11} .
- ▶ This also proves that differential-linear attacks fail.

Security Analysis — Slide/Related-Key Attacks

- Usually these are prevented using constants.
- ▶ In the case of KATAN/KTANTAN solved by the irregular function use.
- ▶ In KATAN the key "changes" (no slide).
- ▶ In KTANTAN order of subkey bits not linear.

Security Analysis — Related-Key Differentials

▶ No good methodology for that.

Security Analysis — Related-Key Differentials

- No good methodology for that.
- ► In KATAN32 each key bit difference must enter (at least) two linear operations and two non-linear ones.
- ► Hence, an active bit induces probability of 2⁻², and cancels four other difference bits (or probability of 2⁻⁴ and 6).

Security Analysis — Related-Key Differentials

- No good methodology for that.
- ▶ In KATAN32 each key bit difference must enter (at least) two linear operations and two non-linear ones.
- ► Hence, an active bit induces probability of 2⁻², and cancels four other difference bits (or probability of 2⁻⁴ and 6).
- ➤ So if there are 76 key bits active there are at least 16 quintuples, each with probability 2⁻².

Security Analysis — Related-Key Differentials

- No good methodology for that.
- ▶ In KATAN32 each key bit difference must enter (at least) two linear operations and two non-linear ones.
- ► Hence, an active bit induces probability of 2⁻², and cancels four other difference bits (or probability of 2⁻⁴ and 6).
- ➤ So if there are 76 key bits active there are at least 16 quintuples, each with probability 2⁻².
- ► The key expansion is linear, so check minimal hamming weight in the code.
- ▶ Current result: lower bound: 72, upper bound: 84.

Security Analysis — Related-Key Differentials (cont.)

- ▶ In KATAN48 each key bit difference must enter (at least) four linear operations and four non-linear ones.
- ▶ Hence, an active bit induces probability of 2^{-4} , and cancels four other bits (or probability of 2^{-8} and 6).
- ▶ Need 61 active bits in the expanded key. We have them.
- For KATAN64 need 56.

Security Analysis — Related-Key Differentials (cont.)

- ▶ In KATAN48 each key bit difference must enter (at least) four linear operations and four non-linear ones.
- ▶ Hence, an active bit induces probability of 2^{-4} , and cancels four other bits (or probability of 2^{-8} and 6).
- ▶ Need 61 active bits in the expanded key. We have them.
- ► For KATAN64 need 56.
- ► Conclusion: no related-key differential in KATAN family.

Security Analysis — Related-Key Differentials (cont.)

- ▶ In KATAN48 each key bit difference must enter (at least) four linear operations and four non-linear ones.
- ▶ Hence, an active bit induces probability of 2^{-4} , and cancels four other bits (or probability of 2^{-8} and 6).
- ▶ Need 61 active bits in the expanded key. We have them.
- ► For KATAN64 need 56.
- ► Conclusion: no related-key differential in KATAN family.
- ▶ KTANTAN family: still checking computer simulations.

Questions?

Thank you for your attention!