
Toward Debugging Programs Written in
Multiple Domain Specific Aspect Languages∗

Yoav Apter
Open University of Israel

1 Univeristy Rd.,
Raanana 43107, Israel
yoav.ap@gmail.com

David H. Lorenz
Open University of Israel

1 Univeristy Rd.,
Raanana 43107, Israel
lorenz@openu.ac.il

Oren Mishali
Open University of Israel

1 Univeristy Rd.,
Raanana 43107, Israel

omishali@openu.ac.il

ABSTRACT
Debugging an application written in multiple domain-specific
aspect languages (DSALs), one for each domain, is a com-
plex task. Each DSAL introduces its own source level ab-
stractions, which should be visible and traceable during the
debugging process. A debugging infrastructure for multi-
ple DSAL applications should also enhance the viewing and
tracing of the interactions between aspects implemented in
the different DSALs. We report on initial steps to define and
implement a debugger for Awesome, a co-weaving frame-
work for composing multiple DSALs. The problem is illus-
trated through several scenarios, and design principles for a
multiple DSAL debugging infrastructure are highlighted.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; D.3.4 [Programming Lan-
guages]: Processors—Debuggers

General Terms
Design, Languages

Keywords
Aspect-oriented Programming, Domain-specific Languages,
Debugging

1. INTRODUCTION
A domain-specific aspect language (DSAL) is an AOP lan-

guage of limited expressiveness aimed at describing a spe-
cific crosscutting concern in the terminology of the domain.
Multiple DSAL development refers to programming in sev-
eral DSALs simultaneously. In addition, multiple DSAL
development usually involves programming in one or more
general-purpose languages.

∗This research was supported in part by the Israel Science
Foundation (ISF) under grant No. 926/08.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSAL ’11, Porto de Galinhas, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0648-5/11/03 ...$10.00.

An effective development environment for multiple DSAL
programming needs to support not only the execution but
also the debugging of multiple DSAL programs. While mul-
tiple DSAL execution is tackled by several works (e.g.,[5,
4, 2]), debugging has not attracted much attention. In this
paper, we focus on multiple DSAL debugging. In partic-
ular, we focus on making the different DSAL source code
abstractions visible and traceable. Visibility is the ability to
represent the executing software system in terms of the pro-
gramming language abstractions [1]. Traceability is the abil-
ity to trace a specific executing behavior back to its source
code segment [1, 3, 8].

Our work is in the context of a DSAL composition frame-
work called Awesome [5]. Awesome facilitates the inte-
gration of multiple DSAL weavers into a single composite
weaver. Awesome provides a composition platform and
plug-ins that support the AspectJ, AspectWerkz, and
Cool [6] AOP languages. Developers may add their own
DSALs by implementing additional Awesome plug-ins.

The Awesome framework handles two kinds of aspect in-
teractions:

• Foreign advising [7]: the manner in which an aspect in
one DSAL advises foreign aspects of other DSALs.

• Co-advising [7]: the manner of applying multiple DSAL
pieces of advice to the same join point.

Awesome offers a default resolution for these interaction
types, and in addition allows users of the framework, who
define the composite weaver, to customize the default inter-
action specification. However, errors in the specification of
the aspect interactions might result in unexpected behavior,
which is difficult to debug using current tools. Even if the
specification is correct, errors in the application itself may
be difficult to debug, because of the shortcomings of existing
debugging tools that support only single-language programs.
While it is possible to debug these programs using OOP de-
buggers, they do not reflect runtime visibility in terms of
AOP abstractions. They also expose unintentionally some
of the implementation details of the respective weavers [1].

The goal of our work is to extend Awesome to produce
not only a composite weaver, but also to provide debugging
facilities for the different DSALs being composed. This ex-
tension of Awesome builds on the work of De Borger et
al. [1] where a reflective aspect-oriented debugging archi-
tecture (AODA) is introduced that facilitates AOP enabled
debugging. A natural integration is for Awesome to lay
out the needed debug infrastructure for the different DSALs
involved, and for AODA to provide the debugging services

5

1 public class Stack {
2 public Stack(int capacity) {
3 buf = new Object[capacity];
4 }
5 public void push(Object obj){
6 buf[ind] = obj;
7 ind++;
8 }
9 public Object pop() {

10 Object top = buf[ind−1];
11 buf[−−ind] = null;
12 return top;
13 }
14 private Object[] buf;
15 private int ind = 0;
16 }

Listing 1: A Stack implementation in Java

themselves in the form of dedicated APIs. Unfortunately,
AODA supports only the debugging of single language pro-
grams (either AspectJ or JBoss only programs) and it is
not extensible to support the debugging of multiple DSAL
programs. Therefore, the APIs offered by AODA need to
be extended before they can be applied to multiple DSAL
development.

2. PROBLEM ILLUSTRATION
In this section we present debug scenarios that illustrate

the limitations of a standard debugger as well as the limita-
tions of the AODA debugger in handling multiple DSAL de-
bugging. We explain how a multiple DSAL debugger might
handle these scenarios. The scenarios are based on an exam-
ple given by Kojarski and Lorenz [5] in which the Awesome
framework is used to implement a composite weaver for the
AspectJ and Cool languages. Cool [6] is a DSAL de-
signed for adding synchronization capabilities to Java pro-
grams. The composite weaver for AspectJ and Cool is
denoted CoolaJ.

2.1 ASPECTJ/COOL Example
In Listing 1, a Java implementation of a bounded stack

is presented. Stack defines two public methods, push and
pop, where an ArrayIndexOutOfBoundsException is thrown
upon an attempt to pop objects from an empty stack or
push objects onto a full stack.

Suppose that this simple stack is to be non-intrusively
enhanced with the following features:

• Multi-threading safety (synchronization), and

• Logging capabilities.

By applying AOP to the job, the original code is left
unmodified. The core logic is separated from the added
concerns. The synchronization concern is implemented in
Cool. A separate Stack coordinator (an aspect in Cool
terms) imposes the synchronization logic over push and pop

in an aspect-oriented manner (Listing 2).
The coordinator enforces the following synchronization

policy for each instance of Stack:

1 coordinator Stack {
2 selfex {push, pop};
3 mutex {push, pop};
4 int len=0;
5 condition full=false, empty=true;
6 push: requires !full;
7 on exit {
8 empty=false;
9 len++;

10 if (len==buf.length) full=true;
11 }
12 pop: requires !empty;
13 on entry { len−−; }
14 on exit {
15 full=false;
16 if (len==0) empty=true;
17 }
18 }

Listing 2: A synchronization coordinator in Cool

1 public aspect Logger {
2 pointcut scope(): !cflow(within(Logger));
3 before(): scope() {
4 System.out.println("before" + thisJoinPoint);
5 }
6 Object around(): scope() {
7 System.out.println("around" + thisJoinPoint);
8 return proceed();
9 }

10 after(): scope() {
11 System.out.println("after" + thisJoinPoint);
12 }
13 }

Listing 3: A logging aspect in AspectJ

• Neither push nor pop may be executed by more than
one thread at a time (selfex declaration).

• push and pop are prohibited from being executed con-
currently (mutex declaration).

• push may be called only if the stack is not full (condi-
tion full).

• pop may be called only if the stack is not empty (con-
dition empty).

The on entry and on exit clauses express the bookkeeping
required to implement the last two items. The logging con-
cern is implemented by an AspectJ aspect (Listing 3).

Finally, the Awesome framework is used to define a weaver
for CoolaJ. The composite CoolaJ weaver is provided
with the Stack class (Listing 1), the Stack coordinator (List-
ing 2), and the Logger aspect (Listing 3), and produces
a composite program that implements a logged thread-safe
stack.

The weaving process in Awesome does not resolve to a
translation of coordinators to intermediate AspectJ code.
Such a translation would have introduced and exposed in
the target aspects (and in the Java classes produced from

6

them) synthetic join points that do not exist in the source,
and thus would potentially result in incorrect behavior [7].
Instead, a different approach is taken where Cool coordi-
nators are compiled directly. During the weaving process,
Cool’s synchronization is implemented by inserting a call to
a lock (unlock) method before (after) each guarded method.
Using this approach, any synthetic code is under our control
and can be filtered out by the framework.

2.2 Debugging Foreign Advising
In CoolaJ, a composition specification dictates how as-

pects from the two DSALs interact. One of the specified
restrictions that controls foreign advising states that an As-
pectJ aspect cannot around advise Cool lock/unlock com-
putations. This ensures that the COOL locking and unlock-
ing operations are always applied and not overridden by as-
pects. To demonstrate some of the problems that may arise
during the debugging of multiple DSAL programs, assume
a debugging scenario in which this restriction is ignored.
That is, we define such an AspectJ around advice, and in
addition, the advice does not call proceed. Consequently,
the lock computation is omitted, and the program might
behave unexpectedly.

A standard Java debugger severely limits the runtime vis-
ibility of the debugged program. Since the debugger is not
aware of AOP abstractions, it cannot link the current state
of the debugged program to the original source code abstrac-
tions. In our scenario, the developer may only indirectly
infer that the synchronization mechanism is not functioning
correctly, e.g., by stepping through the code and noticing
that the guarded code is accessed by several threads at the
same time. However, such an inference depends on a specific
execution order, and often a collision may not be present in
the examined execution. Moreover, when the same code is
accessed by different threads in parallel, stepping through
the code is difficult because at each step the current instruc-
tion is selected from a different thread. This causes the de-
bugger to skip between source code lines in an unpredictable
and confusing manner.

AODA lists several inspection features that can be applied
to a join point such as inspection of all applied pieces of ad-
vice, inspection of past pieces of advice, and inspection of
the program structure. Potentially, these features may help
in resolving the bug. The developer may mark a method
that is expected to be synchronized with an entry and/or
an exit join point breakpoint. Then, by inspecting the ap-
plied and actually executing pieces of advice, the bug may
be detected. However, since the AODA debugger does not
support multiple DSALs, the developer is not provided with
a complete picture. AODA does not consider the lock/un-
lock computation as an advice execution and thus will not
list it as not being executed.

On the other hand, in a multiple DSAL debugging envi-
ronment, the Cool extension will expose that computation
as an advice. Hence, the developer will see it in the list of
past advice as not executed and will conclude that the syn-
chronization was not applied. Consequently, the erroneous
around advice may be fixed, or the configuration may be
changed to avoid such errors.

2.3 Debugging Advice Code
Other bugs may be the result of coding errors in the Cool

coordinators themselves. For example, a bug may be acci-

dentally introduced in the Cool coordinator presented in
Listing 2 (line 9) by incrementing the ind variable instead
of len:

7 on exit {
8 empty=false;
9 ind++;

10 if (len==buf.length) full=true;
11 }

It would be difficult to locate this bug using a regular
debugger. The developer may notice that the ind variable
does not match the actual number of objects in the stack.
But the cause for that discrepancy will be unclear, since
the on exit block is not visible to the Java debugger. This
problem of visibility appears also when the AODA debugger
is used, since the on exit block is not considered an advice.

A multiple DSAL debugger recognizes the block as an
advice and thus the developer will see the on exit block as
a past advice that has been executed, thus identifying it as
a suspect. Then, the developer may either examine its code
and look for the error, or place a breakpoint inside it and
discover the error by running it step by step.

2.4 Debugging Co-Advising
According to the CoolaJ specification, when Cool and

AspectJ co-advise the same join point, the lock (unlock) ad-
vice of Cool is executed before (after) the before, around,
and after advice of AspectJ. Assuming this ordering is not
explicitly set, an AspectJ advice may unsafely access a
Stack object from multiple threads. If the advice actually
modifies the object, we will get unexpected results.

Using a Java debugger the developer may tell that the
Stack object is accessed without any locks. The developer
will see that the guarded variables are accessed simultane-
ously from different threads. However the developer will not
be able to tell why the lock computation was not executed.
The single language AODA debugger does not give any more
information here, as it does not consider the lock and unlock
computations as a (past) advice.

In a multiple DSAL debugger a breakpoint may be set in
the lock computation and it may help to realize that the As-
pectJ advice was executed before the computation. Conse-
quently, the developer will reorder the advice or change the
AspectJ advice code so it does not call any non thread-safe
methods.

3. DEBUGGING INFRASTRUCTURE
In this section, an overall design for a multiple DSAL de-

bugging infrastructure is described. As mentioned in Section
1, the infrastructure involves extending the Awesome frame-
work and the AODA infrastructure. Extending the AODA
infrastructure involves modifying the APIs to be multiple
DSAL aware. Extending the Awesome framework involves
the addition of debug information during the weaving pro-
cess of each DSAL. It also facilitates the retrieval of that
information during debugging.

3.1 Extending the AODA Infrastructure
De Borger et al. [1] suggest that anyone who is interested

in implementing an aspect-oriented debugger should use the
AJDI interface offered by AODA. AJDI is an aspect-oriented
extension to the Java Debugging Interface (JDI). It extends
some of JDI existing types and also introduces new ones.

7

AODA is divided into two layers. The first layer is abstract
and language independent. The second layer is concrete and
language specific. AJDI belongs to the first abstract layer.
Other interfaces that should be implemented by those inter-
ested in defining debugging support for a specific language
also belong to this layer. For example, writing a debugger
for AspectJ first involves the implementation of the above
mentioned interfaces in the abstract layer, where the imple-
mentation itself resides in the concrete layer. Only then the
debugger should be defined using AJDI.

The necessary adaptations to AODA include modifying
both the abstract and the concrete layers. In the abstract
layer, AJDI should be refined to meet the new requirements
that multiple DSAL development introduces. For instance,
AJDI introduces a generic Advice type, yet in a multiple
DSAL setup there is a need to distinguish between advices
from different DSALs. Hence, the Advice type should be
augmented with an indication about the originating DSAL.

AJDI was designed with AspectJ in mind and thus it
introduces types such as Aspect, Pointcut, and Advice. A
natural question is whether or not these AspectJ-like types
are suitable for representing DSALs in general. The advan-
tage of a common representation is obvious. Its limitation
is that it may hinder visibility of the various DSALs in-
volved. For example, when debugging programs developed
in CoolaJ, both Cool coordinators and AspectJ aspects
will be mirrored by the same Aspect type, instead of, e.g.,
using a dedicated Coordinator type for Cool. This is also
relevant for other Cool code blocks which will be mirrored
by generic types, e.g., an Advice.

Modifications to the concrete layer of AODA mainly in-
volve adjusting the different components that manage the
interfaces implemented by a debugger extension. Currently,
these components control the operation of a single debugger
extension. They should be refined to handle multiple ones.

3.2 Extending the AWESOME Framework
An Awesome weaver is composed of several plug-ins, each

corresponds to a specific DSAL. The platform provides weav-
ing services shared by all plug-ins where in addition each
plug-in provides its own unique weaving process. The de-
bugging infrastructure shares similar characteristics:

• A central platform component handles the debugging
work common to all DSALs.

• A DSAL extension, in addition to introducing its spe-
cific weaving process, may provide additional debug-
ging functionality and metadata.

More specifically, the Awesome contribution to the de-
bugging infrastructure is made up of two parts, a front-end
and a back-end. The front-end is in the form of a compiler
agent that is added to the compiler and weaver code. It
adds debugging related metadata (e.g., line numbers, start
and end of join points) to the bytecode during compile and
weave time. This can be in the form of tags or annotations.
The central platform component adds common debug infor-
mation to the class files. In addition, each extension, when
weaving its corresponding bytecode may provide additional
extension specific information needed for debugging it.

The back-end is responsible to parse the metadata added
by the front-end and to interpret the appropriate events gen-
erated by AJDI during the debug session at runtime. Here,

the central platform component handles the common meta-
data, and dispatches extension specific events to the spe-
cific back-ends of the DSALs. Each back-end interprets the
metadata generated by the front-end by directly reading the
compiled class files. Using this metadata the debugger can
build the static AOP relationships it needs. The back-end
uses the real-time events generated by AJDI and the static
AOP relationships to build the dynamic state of the de-
bugged process in terms of AOP abstractions. For example,
when entering the bytecode generated for an on exit block,
it will match it with the source code and add or remove
the appropriate AJDI elements. This protocol between the
front-end and the back-end is specific to each extension and
is specified by the author of the DSAL extension.

4. CONCLUSION
The development of an application with multiple DSALs

requires appropriate tool support, one of which is a dedi-
cated debugger. The debugger should be aware of the dif-
ferent abstractions introduced by the DSAL extensions, and
support their visibility and traceability during the debug-
ging process. It should also facilitate the understanding of
the various aspect interactions involved. In this paper the
problem of debugging programs in a multiple DSAL envi-
ronment was illustrated, and a corresponding extension to
the Awesome framework and AODA was described. We
believe that such a DSAL debugger is necessary to making
a significant progress toward realizing the multiple DSAL
vision.

5. REFERENCES
[1] W. D. Borger, B. Lagaisse, and W. Joosen. A generic

and reflective debugging architecture to support
runtime visibility and traceability of aspects. In
AOSD’09, pages 173–184, Charlottesville, Virginia,
USA, 2009.

[2] T. Dinkelaker, M. Eichberg, and M. Mezini. An
architecture for composing embedded domain-specific
languages. In AOSD’10, pages 49–60, Rennes and
Saint-Malo, France, 2010.

[3] M. Eaddy, A. Aho, W. Hu, P. McDonald, and
J. Burger. Debugging aspect-enabled programs. In
SC’07, number 4829 in Lecture Notes in Computer
Science, pages 200–215. Springer Verlag, 2007.

[4] S. Kojarski and D. H. Lorenz. Pluggable AOP:
Designing aspect mechanisms for third-party
composition. In OOPSLA’05, pages 247–263, San
Diego, CA, USA, 2005.

[5] S. Kojarski and D. H. Lorenz. Awesome: An aspect
co-weaving system for composing multiple
aspect-oriented extensions. In OOPSLA’07, pages
515–534, Montreal, Canada, 2007.

[6] C. V. Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, Northeastern University,
1997.

[7] D. H. Lorenz and S. Kojarski. Understanding aspect
interactions, co-advising and foreign advising. In
ADI’07, pages 23–28, Berlin, Germany, 2007.

[8] G. Pothier and É. Tanter. Extending omniscient
debugging to support aspect-oriented programming. In
SAC’08, pages 266–270, Fortaleza, Ceara, Brazil, 2008.

8

