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Abstract

Distance based phylogenetic reconstruction methods use the “evolutionary distances” be-
tween species in order to reconstruct the tree spanning them. This paper continues the line of
research which attempts to adjust to each given set of input sequences a distance function which
maximizes the expected accuracy of the reconstructed tree. We demonstrate both analytically
and experimentally that by deliberately assuming an oversimplified evolutionary model, it is
possible to increase the accuracy of reconstruction.

1 Introduction.

Distance based reconstructions of phylogenetic trees from a set of n genetic sequences (DNA or
protein) usually consist of the following four steps: (1) a substitution model of sequence evolution
is assumed; (2) a substitution rate (SR) function ∆ is selected (∆ typically corresponds to additive
distances in the assumed model); (3) the

(
n
2

)
interspecies distances defined by ∆ are estimated from

alignments of the input sequences; (4) a tree spanning the n species which best fits the estimated
distances is constructed.

Models of DNA evolution used for step (1) are usually based on Markovian processes [22]. Among
the more common models are the Jukes-Cantor (JC) model [17], Kimura’s two-parameter (K2P)
model [18], the Tamura-Nei model [34], the Hasegawa-Kishino-Yano (HKY) model [15] and the
General Time-Reversible (GTR) model [36, 19]. These models differ in the degree of symmetry
imposed on the associated rate matrices R, with the GTR model imposing the least symmetry.
Methods and software for selecting the most likely model for a given set of aligned sequences can be
found in [35, 14]. Further information on substitution models can be found in [6, 8, 28].

There are two main sources for inaccuracies in the 4-steps phylogentic reconstruction described
above: (a) a wrong model chosen in (1) could imply that the function ∆ selected in (2) is not additive
for the true model; (b) stochastic errors associated with the estimation of distances from alignments
of finite length in (3). In previous works [12, 13] we have shown that most common DNA substitution
models (eg, all the above mentioned models except for Jukes-Cantor) have many different additive
SR functions with different patterns of stochastic errors. We demonstrated that selecting a function
that is expected to be least noisy for the given input leads to significant improvement in the accuracy
of the reconstructed tree. In this paper we extend this line of research to cases where the selected
model is not the true model. Somewhat surprisingly, we show both analytically and via experiments
on real and simulated data, that by deliberately assuming an oversimplified evolutionary model
and using a non-additive but less noisy SR function, it is possible to increase the accuracy of
reconstruction. In a sense, this is the “distance-methods” analogue of the following well known
phenomenon: the Maximum Parsimony reconstruction method, which is not statistically consistent
in general, provides a higher reconstruction accuracy in certain cases compared to reconstruction
methods that are statistically consistent (see, e.g., [31, 29, 9]).
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In Section 2 we present the required background, and introduce affine-additive mappings - a
simple generalization of additive distances needed for our analysis. In Section 3 we present the
concept of deviation from additivity which measures the deviation of an SR function which is not
affine-additive from the closest affine-additive one, and then prove a general upper bound on this
deviation. Then we compare this deviation with the stochastic noise in the case that the true model
is Kimura’s two-parameter [18] and the simplified model is Jukes-Cantor. Section 4 demonstrates the
possible advantage of using oversimplified model on the reconstruction of quartets by the four-points
method ([39, 5]), and then presents a useful heuristic, based on Fisher’s linear discriminant ([10, 2]),
for identifying scenarios in which such oversimplification is useful. In Section 5 we extend this study
to reconstruction of phylogenies based on the Hasegawa tree [15, 8], and Section 6 demonstrates our
approach in reconstruction of phylogenies from real biological sequences.

2 Background.

2.1 Substitution Models.

We start with a brief presentation of the concepts used in this paper. A more detailed exposition of
these concepts can be found in [12] and in standard textbooks [8, 28]. rewrote this

subsection
SM110629

A DNA substitution model M consists of a set of stochastic 4×4 transition matrices (describing
possible substitution patterns) closed under matrix product (i.e., P,Q ∈ M → PQ ∈ M). These
matrices serve to describe the substitution process along evolutionary paths in a phylogenetic tree.
Each transition matrix has a unique (row) stationary vector Πstat such that ΠstatP = Πstat. P is
time-reversible if ΠstatP is a symmetric matrix, where Πstat be the diagonal matrix representation
of Πstat. Most common substitution models assume that transition matrices are time-reversible.

In this paper we consider time-reversible substitution models which are based on Markovian
processes [22], and in which all transition matrices share the same stationary vector Πstat. In such
models there is a natural notion of evolutionary time (or just time), based on the notion of unit
rate matrix, defined as follows. A rate matrix is a 4 × 4 matrix whose off-diagonal elements are
non-negative substitution rates, and whose rows sum to 0. A rate matrix R is a unit rate matrix
iff trace(RΠstat) = −1. Each transition matrix in the model is given as a matrix exponentiation
P(R, t) = etR where R is a unit rate matrix and t is (evolutionary) time. A homogeneous substi-
tution model is a model defined by a fixed unit rate matrix R, that is: MR = {etR : t ∈ R+}.
Specifically, in a homogenous model there is one to one correspondence between transition matrices
and evolutionary time. Homogeneous models are useful in practice, and in fact are assumed by
common phylogenetic software packages like PHYLIP [7].

A model tree in a substitution model M is an undirected tree T = (V, E) in which each edge
e ∈ E is associated with a transition matrix Pe(te) ∈ M. A model tree T implies an inter-leaf
transition matrix Pij ∈M for each pair of leaves {i, j} ⊂ L(T ).

The Kimura’s two-parameter (K2P) model [18] is defined by rate matrices R with two parameters:
α, which is the rate of transition-type (ti) substitutions (A↔ G, C↔ T), and β, which is the rate of
transversion-type (tv) substitutions ({A,G} ↔ {C,T}). The unique stationary vector in this model
is uniform: Πstat = ( 1

4 , 1
4 , 1

4 , 1
4 ). Hence R = Rα,β is a unit rate matrix iff α + 2β = 1.

MK2P =
{
etRα,β | t > 0, α ≥ β > 0, α + 2β = 1

}
; Rα,β =




− α β β
α − β β
β β − α
β β α −


 (1)

Transition matrices in the K2P model are defined by two parameters: pα(t) indicating the
probability of a transition-type substitution and pβ(t) indicating the probability of a transversion-
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type substitution in time t. The transformations between (αt, βt) and (pα(t), pβ(t)) are given by:

αt = −1
2

ln(1− 2pβ(t)− 2pα(t)) +
1
4

ln(1− 4pβ(t)) βt = −1
4

ln(1− 4pβ(t)) . (2)

pα(t) =
1
4

(
1 + e−4βt − 2e−2αt−2βt

)
pβ(t) =

1
4

(
1− e−4βt

)
. (3)

A homogeneous sub-model of MK2P is defined by the set of all K2P rate matrices that share the
same ti-tv ratio R = α

2β ≥ 1
2 . The Jukes-Cantor (JC) model [17], MJC, is a special homogeneous

sub-model of MK2P in which α = β (and consequently pα(t) = pβ(t)), corresponding to a ti-tv ratio
of R = 1

2 .

2.2 Substitution Rate Functions.

A substitution rate (SR) function for a modelM is a non-negative continuous1 function ∆ : M→ R+

that maps each transition matrix onto a numerical value of “substitution rate”. An SR function
∆ induces the following dissimilarity mapping over the leaves of a model tree T in M: DT

∆(i, j) =
∆(Pij), for all {i, j} ⊂ L(T ). Of particular interest in phylogenetic reconstruction are additive SR
functions.

Definition 2.1 (Additive SR function). An SR function ∆ is said to be additive for a substitution
model M if for all P,Q ∈M, ∆(PQ) = ∆(P) + ∆(Q).

In this paper we study the possible advantages of using non-additive SR functions for phylogenetic
reconstruction. In the case study of MK2P, we will analyze two specific SR functions:

∆K2P(pα, pβ , t) = −1
2

ln(1− 2pβ(t)− 2pα(t))− 1
4

ln(1− 4pβ(t)) = αt + 2βt = t . (4)

∆JC(pα, pβ , t) = −3
4

ln
(

1− 4
3
(pα(t) + 2pβ(t))

)
= − 3

4
ln

(
1
3
(e−4βt + 2e−2αt−2βt)

)
.(5)

∆K2P is the common (additive) SR function used in the general context of MK2P, as suggested
in [18], because it estimates the evolutionary time t. ∆JC coincides with ∆K2P when the ti-tv ratio
is R = 1

2 , but it is non-additive in all other homogeneous sub-models of MK2P.

2.3 Consistent Reconstruction and Near Additivity.

The core idea behind distance-based phylogenetic reconstruction is that a phylogenetic tree T can
be accurately and efficiently reconstructed given pairwise distances which are additive with respect
to T [27].

Definition 2.2 (Additive metric). A metric D defined over the leaf-set L(T ) of a tree T is T -additive
(or additive w.r.t T ), if there exists an edge-weighting function w : E(T ) → R+ which assigns
strictly positive weights to all edges, such that for each i, j ∈ L(T ), D(i, j) =

∑
e∈pathT (i,j) w(e). D

is additive for a set S if it is T -additive for some tree T where L(T ) = S.

It is well known that additive SR functions imply additive metrics: If ∆ is an additive SR function
for a model M, then for any model tree T ∈ M, DT

∆ (the dissimilarity mapping induced by ∆ on
T ) is a T -additive metric.

The inherent difficulty in reconstructing phylogenies from additive SR functions is that computing
the implied T -additive metric requires the exact values of the inter-taxon transition matrices {Pij},

1Continuity is assumed under any common matrix norm.
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and getting these exact values from alignments of finite length is practically impossible. Therefore, a
distance-based reconstruction algorithm is useful in a realistic setting only if it has some robustness
to error in distance estimation. In [1], Atteson observes that the topology of a phylogenetic tree T changed

description
of Atteson’s
SM110629

can be accurately (and efficiently) reconstructed from any dissimilarity mapping D which satisfies
the following: For some T -additive metric D?, the maximal difference between D and D?, i.e.
maxi,j{|D(i, j)−D?(i, j)|}, is smaller than half the length of the shortest internal edge2 in T . For
our results we need a simple generalization of this criterion, in which D? can be any affine-additive
mapping, defined below.

Definition 2.3 (Affine-additive mapping). Let D be a T -additive metric over a leaf-set L(T ),
associated with edge weights {w(e) : e ∈ T}. For each a ∈ R+ and b ∈ R, the affine T -additive
mapping Dab is given by Dab(i, j) = aD(i, j) + b. A mapping D? is affine-additive if it is affine
T -additive for some T .
An SR function ∆? is affine-additive if, for some a ∈ R+, b ∈ R, it holds that ∆?(M) = a∆(M) + b
for some additive SR function ∆ (and for all model matrices M).
Note that if ∆? is an affine-additive SR function, then DT

∆? is an affine T -additive mapping for each
model tree T .

Let Dab be any affine-additive mapping, and let wab be the edge weighting defined by wab(e) =
aw(e) for internal edges, and wab(e) = aw(e) + 1

2b for external edges. Let further Dab(i, j) =∑
e∈pathT (i,j) wab(e). Note that if wab(e) > 0 for all e ∈ T , then Dab is in fact an additive metric.

However in general it is possible that wab(e) < 0 for some external edges e, and hence it is possible
that Dab(i, j) < 0 for some i, j ∈ L(T ). Nevertheless, the internal edge weights defined by Dab are
positive and proportional to these defined by D, and therefore Atteson’s criterion applies to D iff it
applies to Dab. This implies the following extension of the concept of “near-additive metric” of [1]:

Definition 2.4 (Near-additive mapping). A dissimilarity mapping D on L(T ) is said to be near-
additive w.r.t. T iff there exists an affine T -additive mapping D? s.t.

||D,D?||∞
(

4
= max

{i,j}⊂L(T )
{|D(i, j)−D?(i, j)|}

)
<

1
2
wmin(D?) ,

where wmin(D?) is the minimal weight assigned to an internal edge by the edge weighting function
corresponding to the affine-additive mapping D?.

changed the
discussion
here SM

Assume now that ∆ is an SR function s.t. DT
∆ is a near-additive metric for a model tree T .

Then ∆ implies a statistical consistent distance-based reconstruction of T by the following line of
argument:

1. As the input sequences length grows, the estimated transition matrices P̂ij converge (w.h.p.)
to the exact matrices Pij .

2. Hence, the estimated values ∆(P̂ij) converge (w.h.p) to the exact values ∆(Pij).

3. The near-additivity of the mapping {∆(Pij) : i, j ∈ L(T )} implies that, for long enough
sequences, the mapping {∆(P̂ij) : i, j ∈ L(T )} are also near-additive.

4. Finally, the near-additivity of {∆(P̂ij)} guarantees accurate reconstruction of the correct tree
topology.

By the above, near-additivity implies statistical consistency. This suggests the following:

Definition 2.5 (Consistent SR function). An SR function ∆ of a substitution model M is said to
be consistent w.r.t. a model tree T in M if DT

∆ is near-additive w.r.t T .
2An edge e is called internal if both its endpoints are internal vertices, otherwise it is called external.
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Clearly, an SR function ∆ which is affine-additive for M is consistent for all model trees in M.
However, ∆ might be consistent for many model trees of interest even if it is not affine-additive.
In fact, as we demonstrate later, a deliberate selection of consistent functions which are not affine-
additive but have smaller stochastic noise (since they assume an oversimplified model) often increases
the accuracy of the reconstruction.

3 Deviation from Additivity in Homogeneous Substitution
Models.

In order to decide whether a given SR function ∆ is consistent w.r.t. a given model tree T , one has
to find an affine-additive mapping D? which minimizes the ratio ||DT

∆,D?||
wmin(D?) (see Definition 2.4). This

task seems hard in a general setting, but in the special case of a homogeneous substitution model it
is tractable.

In the rest of this section we assume some fixed homogeneous substitution model MR, defined by
a unit rate matrix R. Each evolutionary time t > 0 in this model is associated with a unique model
matrix P(t) = etR. It is thus useful to view an SR function for MR as a function ∆ : R+ → R+

which maps the evolutionary time t (rather than the matrix etR) to a dissimilarity measure ∆(t).
It can be shown that such ∆ is affine-additive for the model if and only if ∆(t) = at + b for some
a ∈ R+, b ∈ R. The deviation of an SR function ∆ from a given affine-additive function at + b in
an interval [t0, t1] is defined as 1

a max{|∆(t) − at − b| : t ∈ [t0, t1]} (the factor 1
a normalizes the

deviation to units of evolutionary time). The deviationfrom additivity of ∆ within [t0, t1] is the
minimum deviation of ∆ from any affine-additive function in that interval:

Definition 3.1 (Deviation from additivity in homogeneous models). Let ∆ : R+ → R+ be an SR
function in a homogeneous substitution model, and let [t0, t1] be an interval. The deviation from
additivity of ∆ in [t0, t1] is defined by:

dev(∆, [t0, t1])
4
= inf

a∈R+,b∈R

{
max

t∈[t0,t1]

{ |∆(t)− at− b|
a

} }
. (6)

Lemma 3.2 below presents a basic relation between deviation from additivity and consistency,
which is used throughout this paper. In Section 4 we demonstrate the tightness of this Lemma.

Lemma 3.2. Let M be a homogeneous model, and Let T be a model tree in M with edge lengths
(measured in time units) indicated by {te}. Let tmin = min{te : e ∈ T}, and assume that all
inter-leaf distances in T fall within the interval [t0, t1]. Then any SR function ∆ in M for which
dev(∆, [t0, t1]) < 1

2 tmin is consistent w.r.t. T .

Proof. We need to show that DT
∆ is near-additive w.r.t. T . Since dev(∆, [t0, t1]) < 1

2 tmin, there are
a ∈ R+, b ∈ R which satisfy

max
t∈[t0,t1]

{ |∆(t)− at− b|
a

}
<

1
2
tmin.

For all i, j ∈ L(T ), let tij =
∑

e∈pathT (i,j) te be the distance (sum of edge lengths) between i and
j. The mapping Dab(i, j) = atij + b is an affine-additive mapping on L(T ), corresponding to edge
weighting wab satisfying wab(e) = ate for each internal edge e (see the discussion following Definition
2.3). Thus we have:

||Dab, D
T
∆||∞ ≤ max

t∈[t0,t1]
{|∆(t)− at− b|} <

1
2
atmin =

1
2
wmin(Dab) .
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Lemma 3.3 completes the picture by providing an analytic bound for dev(∆, [t0, t1]). For this, it
assumes that ∆ is a monotone increasing continuous function of t, with well-defined first and second
derivatives. The lemma uses the linear interpolation of a the given SR function ∆ in the given interval
[t0, t1], given by ∆int(t) = At + b0, where A = ∆(t1)−∆(t0)

t1−t0
and b0 = ∆(t0)−At0 = ∆(t1)−At1.

Lemma 3.3. Let ∆ : R+ → R+ be an SR function in a homogeneous substitution model, and let
[t0, t1] be an interval. Let ∆int(t) = At + b0 be the linear interpolation of ∆ in [t0, t1] defined above,

and let B
4
= maxt∈[t0,t1]{|∆′′(t)|}. Then

dev(∆, [t0, t1]) ≤ max
t∈[t0,t1]

|∆(t)−∆int(t)|
2A

≤ (t1 − t0)2B
16A

. (7)

Proof. Let us start by introducing a couple of auxiliary notations:

ψ(a, b, t) = ∆(t)− at− b ψ(a, b) = max
t∈[t0,t1]

{|ψ(a, b, t)|} .

We are looking for a ∈ R+ and b ∈ R which minimize 1
aψ(a, b). Let ψmin = mint∈[t0,t1]{ψ(A, b0, t)},

ψmax = maxt∈[t0,t1]{ψ(A, b0, t)}, and let b∗ = b0 + 1
2 (ψmax +ψmin). Then ψ(A, b∗) = 1

2 (ψmax−ψmin). changed - to
+ in def of
b∗. SM

A bound for dev(∆, [t0, t1]) will thus follow by showing that ψmax − ψmin ≤ (t1−t0)
2B

8 .
Since ∆int(t) = At+b0 is a linear interpolation of ∆ in [t0, t1], we have ψ(A, b0, t0) = ψ(A, b0, t1) =

0. Let tmin be arbitrary point in the interval [t0, t1] s.t. ψ(A, b0, tmin) = ψmin ≤ 0 and let (t2, t3)
be the maximal open interval in [t0, t1] containing tmin in which ψ(A, b0, t) < 0 (this interval can
be empty if ψmin = 0). We define a similar interval (t4, t5) in which ψ(A, b0, t) > 0 around some
arbitrary tmax s.t. ψ(A, b0, tmax) = ψmax. Note that the intervals (t2, t3) and (t4, t5) are disjoint, and
that ∆int is the linear interpolation of ∆ in both these intervals (since ψ(A, b0, t2) = ψ(A, b0, t3) =
ψ(A, b0, t4) = ψ(A, b0, t5) = 0). Therefore, the bound on the error of polynomial interpolation (see
eg [16], p. 187) implies that

ψmin ≥ − (t3 − t2)2B
8

and ψmax ≤ (t5 − t4)2B
8

,

Combining these, we get

dev(∆, [t0, t1]) ≤ 1
A

ψ(A, b∗) =
1

2A
(ψmax−ψmin) ≤

(
(t5 − t4)2 + (t3 − t2)2

)
B

16A
≤ (t1 − t0)2B

16A
.

(8)

Note: In Appendix A we prove that if ∆ does not intersect its linear interpolation ∆int = At + b0 Rewrote the
note to relax
the optimal-
ity claim etc.
SM

within the interval (t0, t1), then the function At + b∗ presented in Lemma 3.3 is the affine-additive
function which minimizes the deviation from additivity of ∆ in [t0, t1]. This means that, in such
cases, the first inequality in (8) holds in equality. The last inequality in (8) also holds in equality
in such cases, because we are guaranteed to have either [t2, t3] = [t0, t1] (when ∆ is bounded from
above by its linear interpolation) or [t4, t5] = [t0, t1] (when ∆ is bounded from below by its linear
interpolation). These cases are important, since they hold when ∆ is either convex or concave, which
holds for many SR functions of interest.

We now consider the case where the homogenous model is K2P with ti-tv ratio R > 1
2 . The SR

function which defines the time t in the K2P model is ∆K2P (since ∆K2P(etR) = t for all unit rate
matrices R). We compare the performance of ∆K2P with that of ∆JC, which is not affine-additive
in this model. First, we express ∆JC as a function of the ti-tv ratio R and the time t.
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∆JC(R, t) = −3
4

ln
(

1− 4
3
(pα(R, t) + 2pβ(R, t))

)

= −3
4

ln
(

1
3
e−

2t
R+1 +

2
3
e−t 2R+1

R+1

)

= −3
4

ln
(

1
3
e−

2t
R+1

(
1 + 2et 2R−1

R+1

))

=
(

3
2(R + 1)

)
t− 3

4
ln

(
1
3

(
1 + 2e−t 2R−1

R+1

))
. (9)

Note that the homogenous K2P sub-model with R = 1
2 is the JC model; in this case the second

term of (9) nullifies, leaving ∆JC(1
2 , t) = t. For other homogeneous sub-models of K2P, where R > 1

2 ,
∆JC is not affine-additive (i.e. not of the form at+ b for a > 0), and we can use the result in Lemma
3.3 to bound the deviation of ∆JC(R, t) from additivity. Denoting ρ = 2R−1

R+1 , we get

∂∆JC(R, t)
∂t

=
3

2(R + 1)
+

3
2
ρ

e−ρt

1 + 2e−ρt
> 0 . (10)

∂2∆JC(R, t)
∂t2

= −3
2
ρ2 e−ρt

(1 + 2e−ρt)2
< 0 . (11)

∂3∆JC(R, t)
∂t3

=
3
2
ρ3 (1− 2e−ρt)e−ρt

(1 + 2e−ρt)3
. (12)

We get that for any given ti-tv ratio R > 1
2 , ∆JC(R, t) is a concave monotone increasing function,

and its second derivative attains a global minimum of − 3
16ρ2 at t = ln(2)

ρ . By the note following
Lemma 3.3, dev(∆JC, [t0, t1]) = 1

2 maxt∈[t0,t1]{|∆JC(t) −∆int(t)|} (where ∆int is the linear interpo-
lation of ∆JC in [t0, t1]). A bound on this deviation from additivity can obtained through Lemma
3.3 with the following values for A and B:

A =
∆JC(R, t1)−∆JC(R, t0)

t1 − t0
. (13)

B = max
t∈[t0,t1]

{∣∣∣∣
∂2∆JC(R, t)

∂t2

∣∣∣∣
}

=





−∂2∆JC(R,t0)
∂t2 if ln(2)

ρ < t0
3
16ρ2 if ln(2)

ρ ∈ [t0, t1]

−∂2∆JC(R,t1)
∂t2 if ln(2)

ρ > t1

. (14)

Rewrote the
following
paragraph.
SM110703

Next, we evaluate the stochastic noises of ∆JC and of ∆K2P in a given interval [t0, t1]. Informally,
the value of the random variable ∆K2P(P̂) depends on the estimation of the ti-tv ratio R from the
input matrix P̂, and hence it has a larger stochastic noise than ∆JC(P̂), which assumes that R = 1

2 .
To put the stochastic noises of ∆K2P and of ∆JC in the same scale, we replace ∆K2P by the affine-
additive function which minimizes dev(∆JC, [t0, t1]). By the note following Lemma 3.3, this function
is of the form At + b∗, where A is given in (13) above and b∗ ∈ R. The stochastic noises of these
functions are expressed as their standard deviations, σ(∆JC) and σ(∆int) = Aσ(∆K2P). We use the
result in [12] to get a first order approximation (based on the delta method [21]) of σ(∆K2P) for
sequences of length k and model parameters R, t: replaced

α, β in (15)
by R, t.
SM110627

σ(∆int) = Aσ(∆K2P) ≈ A

√
(e

4t
R+1 − 1) + 4(e

2t
R+1 − 1) + 2(e

4Rt
R+1 (e

4t
R+1 + 1)− 2)

16k
. (15)
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By a similar application of the delta method to ∆JC, we obtain:

σ(∆JC) ≈
√

p(t)(1− p(t))
k(1− 4

3p(t))2
, (16)

changed α, β
to R also
here. SM

where k is the sequence length and p(t) = pα(t) + 2pβ(t) = 3
4 − 1

4e−
2t

R+1 − 1
2e−

(2R+1)t
R+1 (see (3)).

Figure 1 provides an illustrative comparison of the deviation-from-additivity and the stochastic-
noise in the case where the ti-tv ratio is R = 10, and the interval [t0, t1] is [0.8, 2]: Figure
1a depicts ∆JC and its linear interpolation ∆int in that interval. X in that figure denotes the
value max{|∆JC(t) − ∆int(t)| : t ∈ [0.8, 2]}. Note that, by Lemma 3.3 and the subsequent note,
dev(∆JC, [0.8, 2]) = 1

2X. Figure 1b shows ∆JC in the same setting with its closest affine-additive
function ∆int + 1

2X. Figure 1b also shows the stochastic error margins of ∆JC and ∆int + 1
2X.

These stochastic error margins are defined by the above mentioned first-order approximations of the
standard deviations of these functions, and are inversely proportional to the sequence length, which
is taken to be 500 bp. Note how the margins of ∆JC are actually more tightly concentrated around
its affine-additive approximation ∆int + 1

2X than the margins of that affine-additive approximation.
This implies that in this setting, distances obtained by using the non-affine-additive function ∆JC

are actually more likely to be near-additive than distances obtained by using the additive one ∆K2P.
Additional demonstrations of this phenomenon are presented in the next three sections.

Figure 1: Deviation from additivity and stochastic error. (a) ∆JC is portrayed (green) in the
homogeneous sub-model of MK2P with R = 10 in the interval t ∈ [0.8, 2]. Its linear interpolation
in that interval, ∆int = At + b0, is plotted in blue, and the maximum difference between the two
functions is designated by X. The deviation of ∆JC from additivity within this setting is X

2A (A
being the slope of ∆int). (b) The affine-additive SR function minimizing its deviation from ∆JC is
∆int + 1

2X. The stochastic error margins for the two SR functions, assuming sequence length of 500
bp, are indicated by the area between dashed lines.
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4 Performance of Non affine-additive SR Functions in Quar-
tet Resolution

In this section we demonstrate the advantage of using non-affine-additive SR functions which have
small stochastic noise for quartet reconstruction. We assume that the true model is a homogeneous
K2P tree with ti-tv ratio R > 1

2 , and compare the performance of the function ∆JC (which is
not affine-additive) with the performance of ∆K2P. The topology of a quartet spanning four taxa
{1, 2, 3, 4} is represented by split notation (ij|kl) (where {i, j, k, l} = {1, 2, 3, 4}), indicating that
the internal edge of the quartet separates i, j from k, l. All quartet resolution algorithms essentially
reduces to the four-point method (FPM) [39, 5], which resolves this split using the six observed
pairwise distances {d̂ij : {i, j} ⊂ {1, 2, 3, 4}}: it first partitions the six observed distances into three
sums d̂12 + d̂34, d̂13 + d̂24, and d̂14 + d̂23, and then determines the quartet split according to the
minimal sum (the sum d̂ij + d̂kl corresponds to the split (ij|kl)). We first discuss the impact of
deviation from additivity on the values of these three sums under different quartet configurations.

Figure 2: Performance of the Four Point Method using ∆JC on K2P quartets with ti-tv
ratio R = 2. The concave non affine-additive SR function ∆JC is shown (solid red line) in the interval
[t0, t1], where t0 and t1 are the smallest and largest of the six pairwise distances (resp.). The solid blue
line shows the linear interpolation ∆int = At+ b0 of ∆JC in the interval [t0, t1], as defined in Lemma
3.3. Horizontal bars correspond to half of each of the three sums computed by FPM under the two SR
functions (see legend to the right). (a) In quartets of type A, t0 = ∆int(1, 2) = ∆JC(1, 2), and t1 =
∆int(3, 4) = ∆JC(3, 4), and so ∆int(1, 2)+∆int(3, 4) = ∆JC(1, 2)+∆JC(3, 4). However, for i ∈ {1, 2}
and j ∈ {3, 4}, ∆int(i, j) < ∆JC(i, j). Therefore, the deviation from additivity of ∆JC increases its
FPM separation, compared to that of ∆int. (b) In quartets of type B, t0 = ∆int(1, 3) = ∆JC(1, 3),
and t1 = ∆int(2, 4) = ∆JC(2, 4), and so ∆int(1, 3) + ∆int(2, 4) = ∆JC(1, 3) + ∆JC(2, 4). However,
∆int(1, 2) = ∆int(3, 4) < ∆JC(1, 2) = ∆JC(3, 4), and so ∆int(1, 2)+∆int(3, 4) < ∆JC(1, 2)+∆JC(3, 4).
Therefore, the deviation from additivity of ∆JC decreases its FPM separation, compared to that of
∆int.

Figure 2 demonstrates the effect of the concavity of ∆JC on the accuracy of the FPM on two
types of quartets. Both types have an internal edge of length ti, two long external edges of length
tl, and two short external edges of length ts. In both types the quartet split is (12|34). In type
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A quartets (Fig. 2a), the short edges are on one side of the split and the long edges are on the
other side. In this case, the sum associated with the split (d12 + d34) is of the smallest and largest
interleaf distances. The concavity of ∆JC increases the separation between this sum and the other
two competing sums, leading to an improvement in reconstruction accuracy. The other quartet
configuration (type B; Fig. 2b) has a short edge and a long edge on both sides of the split. In
this case, the interval of inerpolation is [d13, d24], and the distance d12 = d34 is in the center of
this interval. Thus the concavity of ∆JC decreases the separation between the sums d13 + d24 and
d12 + d34 by approximately twice the deviation from additivity of ∆JC in that range. When the
deviation from additivity exceeds half the length of the internal edge, the sum d13 + d24 becomes
the minimal sum, and ∆JC becomes inconsistent. Note that this demonstrates the tightness of the
bound of Lemma 3.2, and in this sense, type B quartets provide a worst case scenario for quartet
resolution by a concave SR function3.

Interestingly, ∆JC ends up performing better than ∆K2P on many of its “worst case scenario” type
B quartets, since its smaller stochastic noise compensates for its deviation from additivity (see also
Fig. 1). This is demonstrated in the experiment described in Figure 3a, where series of homogeneous
K2P quartets of type B with ti-tv ratio R = 5 are considered as follows: The edge lengths were
set to ti = 0.2, tl = 1.0, and ts varied in the interval [0.2, 1.0]. A total of 100,000 simulations were
generated per quartet, using 1000 bp long sequences. For each simulated instance, two versions of
pairwise distances were computed: one version using ∆JC and another version using ∆K2P. The
four-point method was invoked on both versions of the pairwise distances, and the resulting quartet
split was compared to the original one. For each quartet, we recorded the number of times (out of
100,000) it was accurately resolved from either method. Despite its deviation from additivity, ∆JC

outperforms the additive SR function ∆K2P on many of these quartets. Only when the deviation
from additivity is sufficiently large (tl/ts > 3.6 in these experiment), ∆K2P outperforms ∆JC. changed

the analysis
here. SM

3Types A and B quartets correspond to Farris zones and Felsenstein zones (resp.) - see eg [8], Chapter 9.
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Figure 3: Performance of ∆JC and ∆K2P on a series of quartets of type B. A series of
homogeneous K2P quartets is considered (left illustration), with ti-tv ratio of R = 5, and edge lengths
ti = 0.2, tl = 1, and ts ∈ [0.2, 1]. (a) Reconstruction accuracy using FPM and either ∆JC (red) or
∆K2P (blue) plotted against tl/ts. Accuracy ratio is estimated using 100,000 independent replicates
for each parameter setting and sequences of length 1000 bp. (b) Fisher’s Linear Discriminant
(FLD) for the sums corresponding to splits (12|34) and (13|24) under either ∆JC (red) or ∆K2P

(blue) plotted against tl/ts.
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The trends observed in Figure 3a can be explained as follows. As ts shrinks, the minimal
estimated distance decreases and the maximal estimated distance is unchanged, hence the constant
B in Lemma 3.3 cannot decrease. Hence the bound of Lemma 3.3 on the deviation from additivity
of ∆JC is at least proportional to (t1−t0)

3

∆JC(t1)−∆JC(t0)
. This last value increases as ts decreases, in

correlation with the deterioration of the performance of ∆JC relative to that of ∆K2P.

4.1 Using Fisher’s Linear Discriminant.

In order to provide a better understanding (and ability to predict) the results of similar experiments,
we present a simple and general framework based on Fisher’s linear discriminant (FLD). FLD mea-
sures the separation between normal random variables X ∼ N(µ1, σ1) and Y ∼ N(µ2, σ2) using the
following measure ([10, 2]):

FLD(X,Y ) =
|µ1 − µ2|√

σ2
1 + σ2

2

. (17)

We use FLD to measure the separability of the distance sum corresponding to the true split
(which should be the minimal sum for consistent SR functions) from the two remaining sums. For
the expectation µ of each sum we use the true distances as computed by the SR function on the
actual model parameters. For the variance σ2, we use the sum of the approximate variances of the
two distances involved in the sum. We expect that an SR function which provides a larger separation
of the smallest sum from the two other sums will imply a better reconstruction probability. ”We note

that...” re-
quires some
expert vali-
dation..SM

We note that FLD requires that the random variables X, Y are independently distributed normal
random variables, and this is not the case here: The three sums are not normally distributed,
neither are independent (since they are correlated through the substitution process along the external
edge). Nonetheless, as Figure 3 shows, FLD provides a quite reliable comparison of the expected
performance of ∆JC and ∆K2P on the given quartets. Figure 3b plots FLD of ∆JC and ∆K2P

associated with the comparison of the true split (12|34) and the “∆JC favored split” (13|24) along the
quartet series considered in Figure 3a. As shown, the equilibrium point of the Fisher discriminants
of ∆JC and ∆K2P is pretty close to the equilibrium point of the accuracy of reconstructions of these
two functions.

Perhaps the most useful feature of this framework is the natural way in which it teases apart the
stochastic error from the deviation from additivity. If we denote the enumerator of FLD by SEP
and its denominator by NOISE, then a comparison of FLD estimates between two SR function
∆1,∆2 can be represented as a ratio of ratios:

FLD(∆1)
FLD(∆2)

=
SEP (∆1)
SEP (∆2)

/
NOISE(∆1)
NOISE(∆2)

. (18)

Comparison of the SEP and NOISE ratios for ∆JC and ∆K2P is demonstrated for four series of
homogeneous K2P quartet in Figure 4. The bottom-left series is the same one considered in Figure
3. The main trends shown in this figure are quite the expected ones: (a) the NOISE ratio favors
∆JC as the maximal distance increases (hence it is almost constant at the left two plots, where the
maximal distance is fixed, and monotone decreasing at the right ones): the larger is the effect of
the noise, the more it favors ∆JC; (b) the NOISE ratio also favors ∆JC as the ti-tv ratio increases,
since ∆K2P becomes more noisy but ∆JC is less affected (this is why the NOISE ratio for R = 5
is consistently smaller than for R = 2); (c) the SEP ratio favors ∆K2P when the quartet becomes
unbalanced, since the gap between the minimal and maximal distances increases, and the factor
(t1− t0)2 in the bound of Lemma 3.3 becomes larger (this is why the SEP curve is decreasing in all
four sub-figures); (d) the SEP ratio favors ∆K2P also as the ti-tv ratio increases, since the deviation
from additivity of ∆JC increases, ie the implied value of B in the bound of Lemma 3.3 becomes
larger (this is why the SEP curves for R = 5 are lower than for R = 2). Analysis of this type, using
FLD to predict relative accuracy of quartet reconstruction, are likely to be easily extended to more
complex homogeneous models and SR functions.

11
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Figure 4: SEP and NOISE ratios. SEP (∆JC)/SEP (∆K2P) (dashed) and
NOISE(∆JC)/NOISE(∆K2P) (dotted) plotted against tl/ts for four series of homogeneous
K2P quartets of type B. Top two series have ti-tv ratio of R = 2, and bottom two series have
ti-tv ratio of R = 5. Left two series have external edge lengths tl = 1 and ts ∈ [0.2, 1], and right
two series have external edge lengths tl ∈ [0.2, 1] and ts = 0.2. The length of the internal edge is
constant ti = 0.2 in all four series.

5 Simulations on Hasegawa’s Tree

In this section we explore the effects of deviation from additivity and stochastic noise on the tree
assembled by Hasegawa, Kishino, and Yano in 1985 [15, 8], which spans seven eutherian mammals,
and whose original reconstruction was based on mitochondrial DNA sequences. This tree (Fig. 5(a))
has a caterpillar topology (meaning that every internal node touches an external edge), and it has
long external edges and short internal edges, making it a suitable representative of small phylogenetic
trees spanning moderately distant species. These features also make it particularly challenging for
distance-based reconstruction.

In our study we use the tree structure and edge lengths to generate simulated data sets. We
consider the tree in various scales, by setting the tree diameter (largest inter-taxon path length) to
values in the interval [0.1, 2.0]. For each scale considered, 10,000 simulations were carried out, where
in each simulation 500 bp sequences were evolved along the tree according to a homogeneous K2P
substitution model with ti-tv ratio of R = 2. For each simulated data set, estimated values of the
K2P statistics pα and pβ , denoted by p̂α and p̂β , were extracted for all

(
7
2

)
pairs of taxa. Subsequently,

several distance matrices were computed for each data set by applying different SR functions to these
estimated statistics. Reconstruction accuracy was evaluated by applying the Neighbor Joining (NJ)
algorithm [26, 32] to these distance matrices and recording the Robinson-Foulds (RF) [24] distance
between the reconstructed tree and the Hasegawa tree. Sequence simulation was performed using
SeqGen [23] (by choosing the HKY model with uniform base frequencies), and tree reconstruction
was performed using the version of NJ implemented in the PHYLIP package [7].

In our results, we compare four different SR functions: ∆JC, ∆K2P, ∆tv, and ∆R=2. The first
two are as described in Equations (5) and (4), respectively. The third SR function, ∆tv, considers
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Figure 5: Simulations on Hasegawa’s Tree. (a) Hasegawa’s tree spanning seven eutherian
mammals [15]. (b) A semi-symmetric caterpillar tree spanning seven terminal taxa with uniform
internal edge lengths tint and uniform external edge lengths text = 5tint. (c) Reconstruction accuracy
of four different SR functions on different scaled versions of Hasegawa’s tree. (d) Reconstruction
accuracy of four different SR functions on different scaled versions of the semi-symmetric caterpillar
tree. In both plots, the scale of the tree (X axis) is measured by its diameter, and reconstruction
accuracy (Y axis) is measured by the average normalized RF distance between the reconstructed
tree and the true tree.

only tv-type substitutions: ∆tv(pβ , t) = − 1
4 log (1− 4pβ(t)) = βt, and the fourth SR function, added some

more on
∆R=2

SM110630

∆R=2, is based on a maximum likelihood (ML) estimator of the time t = αt+2βt from the estimated
values p̂α(t), p̂β(t), given that R = 2. Informally, this function is not more noisy than ∆JC, and it is
also additive since it assumes the correct model parameters.

The performance of these four SR functions is traced across the different tree scales in Figure
5(c). For each SR function ∆ and scale s, we record the average normalized RF distance of trees
reconstructed using ∆ from the 10,000 data sets generated under scale s. RF distance is normalized
by its maximum value which is twice the number of internal edges in the tree (in our case 2×4 = 8).
As observed previously in [12], we see that ∆K2P performs well in shorter scales, and ∆tv performs
well in longer scales. However, both additive SR functions are significantly outperformed in nearly
all cases by ∆JC. Surprisingly, ∆JC even slightly outperforms ∆R=2, which is additive in this case
(since the simulated ti-tv ration is R = 2) and is supposed to have minimal stochastic error. We
hypothesize that this happens since Hasegawa’s tree structure posses a bias whose nature is similar
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to that of type A quartets, which improves the performance of concave SR functions such as ∆JC,
as we discussed in Section 4.

To test this hypothesis, we went through a similar experiment with a more symmetric seven-taxon
caterpillar tree, with internal edges of uniform length tint, and external edges of uniform length
text = 5tint(Fig. 5(b);5(d)). The three additive SR functions show similar performance trends
in both trees. However, ∆JC performs much poorly on the second caterpillar tree, presumably,
since deviation from additivity is inhibiting its accuracy in this case. Despite this fact, ∆JC still
outperforms ∆K2P in all scales and ∆tv in the smaller scales (s < 1.1). Clearly, when the ti-tv ratio
is known (say, R = r), the SR function ∆R=r is the optimal choice for distance computation, since
it combines additivity with reduced stochastic noise. However, these experiments provide additional
evidence for the usefulness of ∆JC in reconstructing homogeneous K2P trees with unkown ti-tv ratio.

6 Inferring Trees from Genomic Sequences

In this section we explore the performance of three SR functions when reconstructing trees from
genomic DNA sequences. Next to ∆JC and ∆K2P we also computed distances using the well kown
LogDet SR function [30, 20], denoted here as ∆LogDet. Extending our discussion to this setting is
challenging in two respects. First of all, unlike in the simulated case, the true tree is not known
with complete confidence, and accuracy of reconstruction can only be determined by using a well-
accepted reference tree that may contain some errors. Secondly, the true substitution model is also
unkown and is likely to violate the assumptions of both JC and K2P models and even the relaxed
assumptions of the general time-reversible model (in which ∆LogDet is additive). Hence, we have
to assume in this case that ∆JC, ∆K2P, and ∆LogDet are non affine-additive, where ∆JC and ∆K2P

are still likely to exhibit higher deviation from additivity than ∆LogDet, since they make stronger
assumptions on the substitution model.

6.1 The Genomic Data Set

In building the genomic data set, we made use of a set of 31 clusters of orthologous groups (COGs)
which was compiled by Ciccarelli et al. and used for inferring phylogenetic relationships between a
large number of species in [3, 37]. These 31 gene families were selected to capture the evolutionary
history of the species from which they are extracted. This was done in [3] by making sure that the
genes in these families have the following properties: (1) they are highly conserved across species,
(2) they have a small number of paralogs, and (3) they are weakly affected by horizontal gene
transfer. We scanned the NCBI genome database and found 199 bacterial genomes that contained
all annotated COGs. For each of the 31 COGs, we extracted the appropriate protein sequence in
each of the 199 bacterial species, choosing an arbitrary paralog in cases of multiple hits. We followed
a procedure similar to the one described in [3, 37] to obtain reliable multiple-sequence alignements
for each COG4. We computed a 199-way multiple alignment of the protein sequences of each COG
using HMMalign [4] and then mapped each protein sequence back to its coding DNA sequence. The
conserved parts of each of the 31 DNA alignments were extracted using GBLOCKS [33] to filter out
alignment columns with 50% or more gap symbols. The alignments were manually scanned, and 36
species which contribute a large number of gaps to the alignments were removed from subsequent
analysis. The 31 different alignments were concatenated to form one long 163-way multiple sequence
DNA alignment.

For the reference tree we used the phylogenetic tree of microbial species provided by the Living
Tree Project [38]. This tree, spanning 8,029 species at the time of writing, is based on widely
accepted analysis of the small subunit (SSU) 16S RNA. A subtree spanning our 163 bacterial species
was extracted from this tree and treated as the true phylogenetic tree in our analysis.

4Our procedure differs from that of [3, 37] in that we have to convert the alignments to DNA sequence alignments.
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Figure 6: Evaluation against PhyML Tree. The 40,000 subsets of size 10 were partitioned
according to the the RF distance of the tree reconstructed by PhyML from the LTP tree (X axis).
The Y axis describes the difference between the RF distance associated with a particular SR func-
tion (∆K2P, ∆JC, or ∆LogDet) and the RF distance associated with PhyML. The bar plot in the
background depicts the proportional number of subsets in each partition.

6.2 Reconstruction Accuracy for Ten-species Subsets

We used the base set of 163 species to generate 40,000 random 10-species sub-alignments. The
random selection process was guided to generate species subsets corresponding to a wide range of
diameter scales (a blind random selection process is biased toward subsets with large diameters).
For each of the 40,000 subsets, a 10-way subalignment was extracted from the original 163-way
alignment, and in this alignment we extracted only columns corresponding to four-fold degenerate
sites that do not have any gap symbol. This is done to make sure the sites used for distance
estimation have undergone a substitution process that is as uniform as possible along the different
lineages and across the different sites. Each sub-alignment was used to compute three distance
matricess – one under ∆JC, one under ∆K2P, and one under ∆LogDet. The latter was calculated
by the version that is implemented in the PHYLIP package. The NJ algorithm was then applied
to the three matrices and the resulting trees were compared to the true tree (as depicted by the
appropriate LTP subtree) according to the RF distance. slightly

changed here
in response
to REVIEW
1 comment
SM110630

In order to study trends among the 40,000 subsets, we attempted to sort them according to
“hardness of reconstruction” by a fourth independent reconstruction technique. For this, we applied
PhyML [14], using the BIONJ reconstruction algorithm [11] on distances obtained under the general
time-reversible model with invariant sites and Gamma distribution of rates across sites (GTR+Γ+I)
[19, 25]. The GTR+Γ+I model is a highly general substitution model, which is expected to provide
an increased fit to the sequence data. Consequently, ∆LogDet should feature a much lower deviation
from additivity under the assumed model since it is additive in the GTR model. The 40,000 sampled
subsets of the alignment were partitioned according to the RF distance between the PhyML tree
and the true (LTP) tree. Subsets corresponding to low PhyML RF distance are considered to be
easier to reconstruct compared to subsets corresponding to high PhyML RF distance.

Results are shown in Figure 6. Of the 40, 000 trees inferred under ∆JC, 83.1% show an equal
or lower RF distance to corresponding subsets of the LTP tree than those reconstructed by PhyML
under the GTR+Γ+I model. Moreover, ∆JC outperforms ∆K2P and ∆LogDet on average in all
partitions, and ∆LogDet shows by far the worst performance with 48.7% of all reconstructed trees
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achieving higher RF distances to the reference trees than those inferred by PhyML. This result
endorses our line of argument, since the SR functions with lower stochastic error but inferior fit
perform best. Thus the deviation from additivity caused by by choosing models that deviate further
from the assumed underlying model, is small compared to the gain in accuracy achieved by the
reduced variance in distance estimation.

7 Discussion and Outlook

In this paper we study basic properties of evolutionary distance estimation using SR functions and
how they affect the accuracy of phylogenetic reconstruction. When studying accuracy of statistical
estimates, it is important to consider both the bias of the estimate and its variance (referred to
as stochastic noise). In some cases it might be worth trading off variance for bias, resulting in a
slightly skewed estimate which is less noisy. A challenge in carrying out such a study for statistical
estimation of evolutionary distances is that bias is not completely well-defined in this case, since the
“true” evolutionary distances can take many forms; any affine-additive SR function is a valid one
for the purpose of phylogenetic reconstruction.

We introduce the concept of deviation from additivity to quantify the bias of an SR function in
a homogeneous substitution model. We demonstrate this analytic framework by studying the bias
of the Jukes-Cantor SR function (∆JC) in Kimura’s two parameter model when the ti-tv ratio is
significantly larger than 1

2 . We show that even when the ti-tv ratio is as high as 5 or 10, this bias is
small enough such that the reduced variance of ∆JC makes it overall more accurate than Kimura’s
SR function (∆K2P), which has no bias. We show this using analytic bounds as well as detailed
simulation experiments on quartet trees. We also introduce a useful, simple and general heuristic,
based on the Fisher’s linear discriminant (FLD), for predicting scenarios in which a simplified, non
affine-additive function is likely to perform better than an additive one. added here

SM110628Experiments on simulated data, simulating evolution along the Hasegawa’s tree, show that for
this specific tree, the deviation from additivity increases the reconstruction probability even w.r.t.
an additive SR function which is not more noisy than the non-affine-additive one. Finally, our
results were also affirmed in a round of experiments on real biological sequences. In the case of real
data, the true substitution model is likely to be very complex, and all common distance formulas are
expected to have some bias. Our results show that simpler SR functions with lower variance lead
to more accurately reconstructed trees on average, compared to SR functions that are expected to
have reduced bias but higher variance.

With the devised framework at hand, the study of distance estimation can be extended in different
directions. More complex models and non-additive SR functions could be studied, and improved
methods for the analysis of biological sequences could be established. Additionally, there is a need for
extending the FLD-based heuristic to trees larger than quartets. Finally, incorporating our methods
in existing software for phylogenetic reconstruction looks like a promising venue for increasing the
accuracy of distance-based phylogenetic reconstruction at low (or even negative) computational cost.

References

[1] K. Atteson. The performance of neighbor-joining methods of phylogenetic reconstruction. Al-
gorithmica, 25:251–278, 1999.

[2] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[3] Francesca D. Ciccarelli, Tobias Doerks, Christian von Mering, Christopher J. Creevey, Berend
Snel, and Peer Bork. Toward automatic reconstruction of a highly resolved tree of life. Science,
311(5765):1283–1287, March 2006.

16



[4] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
July 1999.

[5] P. Erdos, M. Steel, L. Szekely, and T. Warnow. A few logs suffice to build (almost) all trees
(I). Random Structures Algorithms, 14:153–184, 1999.

[6] W. J. Ewens and G. Grant. Statistical Methods in Bioinformatics: An Introduction. Springer,
2005.

[7] J. Felsenstein. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5:164–166,
1989.

[8] J. Felsenstein. Inferring Phylogenies. Sinauer Associated, Inc., Sunderland, MA, 2004.

[9] J. Felstenstein and E. Sober. Parsimony and likelihood: an exchange. Systematic Zoology,
35:617–626, 1986.

[10] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7:177–188, 1936.

[11] O Gascuel. BIONJ: an improved version of the NJ algorithm based on a simple model of
sequence data. Mol Biol Evol, 14(7):685–695, 1997.

[12] I. Gronau, S. Moran, and I. Yavneh. Towards optimal distance functions for stochastic substi-
tution models. J Theor Biol, 260(2):294–307, 2009.

[13] I. Gronau, S. Moran, and I. Yavneh. Adaptive distance measures for resolving K2P quartets:
Metric separation versus stochastic noise. J Comp Biol, 17(11):1391–1400, 2010.

[14] S. Guindon and O. Gascuel. A simple, fast and accurate algorithm to estimate large phylogenies
by maximum likelihood. Systematic Biology, 52:696–704, 2003.

[15] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting by a molecular clock
of mitochondrial DNA. J Mol Evol, 22(2):160–174, October 1985.

[16] L.W. Johnson and R.D. Riess. Numerical Analysis. Addison Wesley, 1977.

[17] T. Jukes and C. Cantor. Evolution of protein molecules. In H. Munro, editor, Mammalian
Protein Metabolism, pages 21–132. Academic Press, New York, 1969.

[18] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. J Mol Evol, 16(2):111–120, December 1980.

[19] C. Lanave, G. Preparata, C. Saccone, and G. Serio. A new method for calculating evolutionary
substitution rates. J. Mol. Evol., 20:86–93, 1984.

[20] P. Lockhart, M. Steel, M. Hendy, and D. Penny. Recovering evolutionary trees under a more
realistic model of sequence evolution. Mol Biol Evol, 11(4):605–612, 1994.

[21] G. Oehlert. A note on the delta method. The American Statistician, 46(1):27–29, 1992.

[22] A. Papoulis and S. U. Pillali. Probability, Random Variables and Stochastic Processes. McGraw
Hill, 4th edition, 2002.

[23] Andrew Rambaut and Nicholas C. Grass. Seq-Gen: an application for the monte carlo sim-
ulation of DNA sequence evolution along phylogenetic trees. Computer applications in the
biosciences, 13(3):235–238, June 1997.

17



[24] F. Robinson and R. Foulds. Comparison of phylogenetic trees. Math Biosci, 53:131–147, 1981.

[25] F. Rodriguez, J. L. Oliver, A. Marin, and J. R. Medina. The general stochastic model of
nucleotide substitution. J. Theor. Biol., 142:485–501, Feb 1990.

[26] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylo-
genetic trees. Mol Biol Evol, 4:406–425, 1987.

[27] S. Sattath and A. Tversky. Additive similarity trees. Psychometrica, 42(3):319–345, 1977.

[28] C Semple and M Steel. Phylogenetics. Oxford, 2003.

[29] Elliot Sober. A likelihood justification of parsimony. Cladistics, 1:209–233, 1985.

[30] M. Steel. Recovering a tree from the leaf colourations it generates under a Markov model. Appl
Math Lett, 7(2):19–24, march 1994.

[31] M. Steel and D. Penny. Parsimony, likelihood, and the role of models in molecular phylogenetics.
Mol. Biol. Evol., 17:839–850, Jun 2000.

[32] J. Studier and K. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei. Mol
Biol Evol, 5(6):729–731, 1988.

[33] G. Talavera and J. Castresana. Improvement of phylogenies after removing divergent and
ambiguously aligned blocks from protein sequence alignments. Syst. Biol., 56:564–577, Aug
2007.

[34] K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in the control
region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 10(3):512–526, May
1993.

[35] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. MEGA5: Molec-
ular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and
Maximum Parsimony Methods. Mol Biol Evol, May 2011.
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A Tightness of Lemma 3.3.
tried to
make the
opening sen-
tence more
”general”
SM110630

Let f(t) be a (continuous) function on some interval [t0, t1]. We prove below that if f does not
intersect its linear interpolation At + b in that interval, then for some b∗, the linear function closest
to f in that interval under the L∞ norm is At+ b∗ (f represents the function ∆ in Lemma 3.3). We
use the following notations, conforming to the notations in the proof of Lemma 3.3:

ψ(a, b, t) = f(t)− at− b ψ(a, b) = max
t∈[t0,t1]

{|ψ(a, b, t)|} ψ(a) = min
b∈R

{ψ(a, b)} .
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Figure 7: Proof of Lemma A.1. A function f(t) is portrayed (bold) with its linear interpolation
At + bA (green) in the interval [t0, t1], s.t. f(t) ≥ At + bA for all t ∈ [t0, t1]. Equation (19) is
illustrated for a < A on the right, and equation (20) is illustrated for a > A on the left.

Lemma A.1. Let f(t) be a monotone increasing function in the interval [t0, t1] and let At + b be
its linear interpolation in [t0, t1]. If either f(t) ≥ At + b for all t ∈ [t0, t1] or f(t) ≤ At + b for all
t ∈ [t0, t1], then for all a > 0, we have 1

aψ(a) ≥ 1
Aψ(A).

Proof. We prove the minimality of 1
Aψ(A) in the case when f(t) ≥ At + b for all t ∈ [t0, t1]. The

other case (when f(t) ≤ At + b for all t ∈ [t0, t1]) can be proven in an identical fashion.

For a > 0, let ba be the maximum value of b′ s.t. ψ(a, b′, t) ≥ 0 for all t ∈ [t0, t1]. It is not
difficult to then see that ψ(a) = 1

2ψ(a, ba). If A is the slope of the linear interpolation of f(t) in
[t0, t1], then the offset of that interpolation is given by bA. We need to show that for every a > 0,
it holds that Aψ(a, ba) > aψ(A, bA). Let tA be a point in [t0, t1] s.t. ψ(A, bA, tA) = ψ(A, bA). Note
that if a < A, then the two linear functions At+ bA and at+ ba intersect at (t0, f(t0)), and if a > A,
then they intersect at (t1, f(t1)) (see Fig. 7).

For a > A, we get the following equality (Fig. 7; right):

ψ(A, bA, tA) + A(tA − t0) = f(tA)− f(t0) = ψ(a, ba, tA) + a(tA − t0) . (19)

Hence, since ψ(a, ba) ≥ ψ(a, ba, t) for every t ∈ [t0, t1], and since a < A, we get

aψ(A, bA, tA) + aA(tA − t0) < Aψ(a, ba, tA) + Aa(tA − t0) ⇒ aψ(A, b) < Aψ(a, b′) .

Similaly, if a > A, we get the following equality (Fig. 7; left)

A(t1 − tA)− ψ(A, bA, tA) = f(t1)− f(tA) = a(t1 − tA)− ψ(a, ba, tA) , (20)

and a > A implies that

aA(t1 − tA)− aψ(A, b) > Aa(t1 − tA)− aψ(a, b′) ⇒ aψ(A, b) < Aψ(a, b′) .
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