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Let V be a set of n points in R k. Let d(V) denote the diameter of V, and I(V) 
denote the length of the shortest circuit which passes through all the points of V. 
(Such a circuit is an “optimal TSP circuit”.) Z”(n) are the extremal values of l(V) 
definedbyIk(n)=max(l(V)IVEV~],whereV:,={VIVcRk,IVI=n,d(V)=1). 
A set V E V: is “longest” if I(V) = l”(n). In this paper, first some geometrical 
properties of longest sets in R* are studied which are used to obtain 1*(n) for small 
n’s, and then asymptotic bounds on Ik(n) are derived. Let S(V) denote the minimal 
distance between a pair of points in V, and let: 6’(n) = max(a(V) ] V E Vi}. It is 
easily observed that sk(n) = O(n-I”). Hence, ck = lim SUP.,~ sk(n) n’lk exists. It 
is shown that for all n, ckn -I” < sk(n), and hence, for all n, r’(n) > ckn’-lik. For 
k = 2, this implies that I’(n) > (z2/12)3’4n3’2, which generalizes an observation of 
Fejes-Toth that limn+, I’(n) n- I’* > (7r2/12)“4. It is also shown that Z”(n) < 
[(3 - &)k/(k-- l)] mSk(n) + O(n’-l’k) < [(3 - fi)k/(k- l)] n’-‘I’ + o(n’-I”). 
The above upper bound is used to improve related results on longest sets in k- 
dimensional unit cubes obtained by Few (Mathematika 2 (1955), 141-144) for 
almost all k’s For k = 2, Few’s technique is used to show that l’(n) < 
(7t$)“’ + O(1). 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

Let R denote the set of the real numbers. The Euclidean traveling 
salesman problem (TSP) in Rk is the following: Given n points xi,...,x, in 
Rk, find the shortest circuit (i.e., closed curve) which passess through them. 
Such a circuit is an “optimal TSP circuit.” It is easily verified that an 
optimal TSP circuit is a polygonal line through x, ,..., x,. In some 
applications it is required that the distance between any 2 points in the given 
set is bounded by some constant D (e.g., when the points represent nodes in 
a communication network. D represents the maximal distance at which 2 
nodes can communicate. An optimal TSP circuit in this case corresponds to 
a most efficient communication protocol [6].) 
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The problem addressed in this paper is the following: Given n, k, and D, 
what is the maximal length of an optimal TSP circuit through n points in Rk, 
the distance between any pair of which is at most D. Denote this length by 
Ik(n, D). It is not hard to verify that Ik(n, D) = D . Ik(n, 1). Hence, we can 
restrict ourselves to the case where D = 1. For brevity, we denote Zk(n, 1) by 
Ik(n). We shall be interested in both the values I”(n) and the properties of 
points sets of “maximal length” which realize these values. 

It had been noted (see [5]) that this problem is closely related to the 
following problem of “optimal packing”: Allocate n points in Rk such that 
the distance between any pair of them <I, and the minimal distance between 
any pair of them is maximized. Denote this “maximal minimal distance” by 
Sk(n). It is easily observed that Ik(n) > risk(n). Thue and others (see [4, 
pp. 160-166; 71) had shown that a2(n) is asymptotically equal to 
(x2/1 2) 1’4n2-1’2. The exact value of d2(n) for n < 7 (and the geometrical 
properties of the corresponding configuration) are given in [ 11. For k > 2, 
even the asymptotic values of Jk(n) are not known (see, e.g., [2, 
pp. 405-4 11 I). 

The paper has 5 sections. The rest of this section includes the necessary 
definitions and notations. In Section 2 some geometrical properties of sets of 
maximal length in R2 are proved. These properties are then used to compute 
l*(4) and to give some results concerning Z’(5). In Section 3 we give lower 
bounds on I”(n), which generalize the observation mentioned above about the 
connection between dk(n) and Ik(n). In that section we also give a result on 
Jk(n) which seems to be of independent interest (Theorems 3.2 and 3.2’). In 
Section 4 upper bounds on Zk(n) are given: first we give an upper bound for 
arbitrary k, which improves a result on longest sets in unit cubes obtained by 
Few in [5], and then we use the technique of Few to give a better bound on 
Z’(n). In Section 5 two related results are discussed. 

Notations and Definitions 

Let V = {xi ,..., x,} be a set of n points in R k (for some k). A path in V is 
a sequence P = (xi, - xi2 - . . a -xi,) of points of V. For j= l,..., k - 1, 
(xij - xij+,) is an arc of P. An arc (x - y) will be identified with the straight 
line segment connecting x and y. The length of a path P is defined by 

m-1 
l(P) = &Xi, - ’ * * -x*,) = C 6(xij9 xij+,)’ 

j=l 

where 6(x, y) is the Euclidean distance between x and y. 
A Hamiltonian circuit or a TSP circuit in V is a path 

H= (Xl -xi*- -*- - xi, - x,) in which ij # ik for j # k. We shall identify 2 
Hamiltonian circuits if one is obtained from the other by reversing the order 
of the points. Thus, for n > 3, there are (n - 1)!/2 distinct Hamiltonian 
circuits on sets of n points. 



OPTIMAL TSP CIRCUITS 115 

DEFINITION 1.1. Let V= {x, ,..., x,}. Then the lenght of V, I(v) is 
defined by 

I(v) = min{l(H) 1 H is a Hamiltonian circuit in V}. 

For a set V and a point x, d(x, V) = max{6(x, y) 1 y E V}. The diameter of 
I’, d( I’), is defined by 

d(V) = max{d(x, V) ( x E V}’ 

For positive integers n and k, let 

Vf:= {I’ VsRk,d(V)= 1, ]v]=n}. 

DEFINITION 1.2. For a positive integer n 

Zk(n) = max{Z(v) ] I/E V:}‘. 

A set V,* is a “longest set” if 

(i) v,*EVf:; 

(ii) I( V,*) = Ik(n). 

DEFINITION 1.3. Let VG Rk for some k. Then 

S(V) = min{b(x, y) I x # y, x, y E V}. 

For positive integers n and k 

dk(n) = max{d( v) ] V E Vz}. 

The numbers ak(n) are sometimes called “packing constants” [3]. 

Most of the proofs in the paper are given for the case k = 2, and it will be 
clear from the text when they generalize to arbitrary k. Vi will be denoted by 
V,, and V,, will denote a set in V,. Similarly, I(n) and d(n) will denote r’(n) 
and 6’(n), respectively. 

2. SOME PROPERTIES OF LONGEST SETS IN R* 

In this section we prove lemmas which provide some insight on the 
structure of planar longest sets. We then use these lemmas to find a longest 

’ The diameter of V is sometimes denotes as “the maximal chord length of V.” 
* The use of the term “max” (and not “sup”) in the definition bf r”(n) is justified by the fact 

that Vi is homeomorphic to a compact subset of Rk” and that I(v) is a continuous function. 
Similar remarks apply to a few other definitions in the paper. 
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FIGURE 2.1 

set Vf of cardinality 4, (and thus to compute l(4)), and to give some results 
concerning Vf and l(5). Note that trivially I( 1) = 0, l(2) = 2, a.nd Z(3) = 3. 
V,* for n = 1, 2, 3 are given in Fig. 2.1. 

LEMMA 2.1. Let V,, = {x , ,..., x,) be a set of n points in the plane 
(n > 4), not all of them on the same line. Then an optimal TSP circuit in V, 
is a simple curve (that is: a curve which does not intersect itsea. 

Proof: Let H=(x,-Xiz-... - Xi, - x,) be a TSP circuit in V,,. We 
shall show that if H intersects itself, then H is not optimal. For simplicity, 
assume that (i, ,..., i,) = (2 ,..., n). 

Suppose that for some i and j (Ii - jl > l), the arcs (xi -xi+ ,) and 
(xi - Xj+ r) intersect (see Fig. 2.2). 

Assume first that x,, xi+r, x,,xj+r are not collinear. Then by replacing 
(Xi -Xi+ r) and (Xi - Xj+ r) by (Xi - Xj) and (Xi+ r - Xj+ r) we obtain a TSP 
circuit which is shorter than H (due to the triangle inequality). The proof for 
the case where Xi, x,+~, Xi, x~+~ are collinear is also not hard and is 
omitted. I 

DEFINITION 2.1. Let V be a set of points. Then CON(V) is the boundary 
of the convex hull of V (i.e., the boundary of the smallest convex figure 
which contains V.) 

, / i I , \ ._. /’ 

FIGURE 2.2 
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FIGURE 2.3 

LEMMA 2.2. Let V,* E V,. If V,* is longest, then for each x in V,*, 
d(x, V,*) = 1 zflx E CON(V,*). 

Proof: Since d( V,*) = 1, if x E V,* and d(x, V,*) = 1, then x must in 
CON(V,*). Hence, it suffices to show that for every x in CON(V,*), 
d(x, V$) = 1. For contradiction, assume that for some x E CON(V,*), 
d(x, V,*) < 1. We shall show that there is a VA E V, such that l(VJ) > l(V,*): 
Let L be a supporting line of V,X through x (i.e., a line tangent to CON(V,*) 
at x, see Fig. 2.3). VA is obtained by removing x a small distance h in a 
direction perpendicular to L, as shown in Fig. 2.3. By doing this, 6(x, y) is 
increased for all y E V,*, and hence I( VA) > I( V,*). On the other hand, if h is 
small enough, d(x, Vi) is less than 1 (since d(x, Vz) < l), and hence 
d( Vi) = 1. Thus, VA is in V,. This completes the proof of the lemma. 1 

DEFINITION 2.2 Let x, y E V. Then the arc (x - y) is essential if it 
participates in every optimal TSP circuit in V. (x - y) is redundant if it 
participates in no optimal TSP circuit in V. (x - y) is nonessential 
(nonredundant) if it is not essential (redundant). A point x of V is internal in 
V if its not in CON(V). 

LEMMA 2.3. Let V,* be a longest set, and let x be an internal point in 
V,*. Then 

(a) For all y E V,*, (x - y) is nonessential. 

(b) Let L be any line through x. Then there are y, z E V,* such that L 
separates y and z and both (x - y) and (x - z) are nonredundant. 

Proof. (a) Assume that for some y E V,*, (x - y) is essential. We 
derive a contradiction by showing that V,* is not longest. Suppose first that 
there is no z in V,* such that x lies on the arc (y - z) as in Fig. 2.4. Then, by 

.Y 

FIGURE 2.4 

582b/37/2-2 



118 SHLOMOMORAN 

L 

..? 

:_‘1_; 

x v: 

FIGURE 2.5 

removing x a distance h away from y along the line containing (x - y), 
6(x, y) increases by h, while for any u E V,*, if 6(x, U) decreases, it decreases 
by less than h, and if x 6% {u, u}, 6(u, V) remains unchanged. It follows that 
the length of any TSP circuit which contains (x - y) (and hence of any 
optimal TSP circuit) increases by some positive value. By making h small 
enough, d(x, V,*) remains smaller than 1 and the lengths of the nonoptimal 
TSP circuits remain larger than the length of the previously optimal circuits 
and hence I(V,*) is increased, in contradiction with the assumption that V,* is 
longest. 

The argument above does not work if there is a point z such that x lies in 
(y - z) as in Fig. 2.4, because then removing x as before does not increase 
the length of the TSP circuits which use the path (y -x - z). In this case, x 
can be removed away from y in a direction which forms a small but positive 
angle a with (x-z), and a similar argument does apply. 

(b) For contradiction, assume that there is a line L through x as in 
Fig. 2.5, such that for all nodes y on the left side of L, (x - y) is redundant. 
Then, by removing x in a direction perpendicular to L as shown in Fig. 2.5, 
6(x, z) increases for all z which are not on the left side of L, and hence, for 
all z such that (x - z) is nonredundant. Hence, similarly to the proof of (a), 
one can increase S(V,*) by removing x a small distance h in that 
direction. 1 

COROLLARY. Let V,* be a longest set, and let x be an internal point of 
V,*. Then there are at least 3 points yl, y,, and y, in V,* such that (x - yi) 
is nonredundant (i = 1, 2, 3). 

ProoJ Since every TSP circuit must pass through x, there are yr, yz in 
V,* such that the path (y, -x - y2) is in an optimal TSP circuit. Hence, 
(y, - x) and ( yz - x) are nonredundant. If there is no y3 such that (y, - x) 
is nonredundant, then both (y, -x) and (y, -x) occur in every optimal 
circuit, which means that (y, -x) and (y, -x) are essential, in 
contradiction to Lemma 2.3(a). 

DEFINITION 2.3. Let C be a closed curve in the plane and let D be a real 
number. Then C is a curve of constant width D if for each x E C, 
d(x, C) = D. 



OPTIMAL TSP CIRCUITS 119 

FIGURE 2.6 

A “figure of constant width” is a convex figure whose boundary is a curve 
of constant width. Examples of curves of constant width D are a circle of 
diameter D and a Reuleaux triangle of side length D (see Fig. 2.6). For more 
about curves of constant width see (91. We shall use the following lemma 
concerning these curves. 

LEMMA 2.4. (a) Every curve of constant width D has a perimeter nD. 

(b) The area of a figure of constant with D is at most lrD2/4. 

ProoJ Part (a) is Barbier’s theorem; (b) follows from (a) by the 
isoperimetric theorem [9, pp. 51-581. 1 

Since every set of points of diameter 1 can be embedded in a figure of 
constant width 1, Lemma 2.4 implies 

LEMMA 2.5. Let V, be in V,. Then 

(a) The perimeter of CON( V,) is less than K. 

(b) There is a convex figure whose area is less than 7114 which 
contains V, . 

DEFINITION 2.4. Let k, n be given, 2 < k < n. Then 

V,,,={V,~V,,EV,,~V,,nCON(V,,)~=k}; 

Kn, k) = supMV,J I V, E V,,,]. 

LEMMA 2.6. l(4) = 2(1 + fi/3) = 3.1547... . 

Proof: Let Vt be a longest set of 4 points. Then V,* is either in V,,, or 
in V,,,. Hence, l(4) = max{1(4, 3), 1(4,4)}. We shall prove first that 
1(4,4) < X, and then that 1(4,3) = 2(1 + G/3) > 71. 

Let V, be in V,,,. Then I( V,) is the perimeter of V, , which by Lemma 2.5 
is less than rr. Hence, 1(4,4) < z3 

Let Vi = {x, y, z, u}, where x, y, and z are the vertices of an equilateral 
triangle of side length 1, and u is the center of this triangle (see Fig. 2.7). 

3 In fact, one can show that 1(4,4) = 2 + l/cos 15’= 3.0353’-I... . 
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FIGURE 2.7 

Then, as one can easily verify 

l(Vi) = l(u - y - x - z - 2.4) = 2(1 + &3) > rc. 

Hence, l(4) > /(Vi) > [(4,4). Therefore, a longest set in V, must be in V,,, . 
It remains to show that Vi is, in fact, a longest set: Let VT = (x’, y’, z’, u’} 
be a longest set, and let u’ be the internal point of Vz. Using the same 
technique that was used in the proof of Lemma 2.2, one can show that 
{x’, y’, z’} are the vertices of an equilateral triangle of side length 1. Also, 
by Lemma 2.3 and its corollary, each of the arcs (x’ - y’), (x’ -z’), 
(x’ - u’) is nonredundant. Hence, all of the possible 3 TSP circuits have the 
same length, which implies that 6(u’, y’) = 6(u’, z’) = 6(u’, x’) and hence 
that u’ is the center of the triangle. The lemma follows. 1 

An interesting corollary to the last two lemmas is the following: Let n > 4, 
and let V,* be a longest set in V,. Then V,* is not in V,,,. 

Deriving I(n) and V,* for n > 5 seems to be hard. Using Lemmas 2.1-2.5, 
we have been able to prove some results concerning l(5) and Pt. These 
results are stated below. 

LEMMA 2.7. 1(5,3) z 3.2175(-j... . Moreover, 1(5, 3) = l(Vf,J where 
Vf,,3 is defined by (see Fig. 2.8): 

(1) {x, y, z} are the vertices of an equilateral triangle of side length 1. 

(2) u is the center of the triangle. 

(3) v lies on the height from x to (y-z) and 6(v, z) - 6(v, u) = 
1 -&3 = 0.4226’+‘... . 

The proof that the set Vf,,3 defined in Lemma 2.7 above is indeed longest 
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FIGURE 2.9 

(in V,,,) is rather involved, and is postponed to the Appendix. Let a = buzy. 
Then one can check that, by (3): 

S(u, z) - &I, u) = l/(2 cos a) - [G/6 - (tg a)/21 

= (@OS a + tg a - fi/3)/2 = 1 - fi/3. 

This implies that a longest set in this case is obtained when a x 19.79O. The 
value for 1(V&) follows by computing the length of one of the optimal 
routes- (x-u-v-y-z-x), say: 

Z(x - u - u - y - z -x) z d/2 - (tg 19.79’)/2 + l/(2 cos 10.79’) + 2 

z 3.2175. 

LEMMA 2.8. Let Vf be a longest set in V,. Then VF E V,+,. 

ProoJ: In view of Lemma 2.7, we have the show that there is a Vi E V,,, 
such that /(Vi) > 1(5, 3) z 3.2175. Such a Vi is given in Fig. 2.9: x, y, and z 
form an equilateral triangle of side length 1, u and D lie on the bisector of 
Qzxy, 6(x, U) = 1, and 

6(u, u) = S(y, u)/2 = l/(4 cos 15O) = l/(2(3”’ + 2)“‘) = (2 - &)“‘/2. 

In V’, all the 4 circuits which do not intersect themselves, are optimal. (Note 
that, by Lemma 2.1, these are the only candidates for optimal circuits.) 

I( Vi) = 6(x, y) + 6( y, 24) + qu, u) + @I, z) + &, x) 

= 1 + l/(2 cos 150) + l/(4 cos 150) + d(u, z) + 1 

rz 2 + 3/(4 cos 150) + 0.5 153505 

F-Z 3.291807 > 1(5,3). m 

We conjecture that Vs is a longest set, though we do not yet have a formal 
proof for this. 
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3. A LOWER BOUND ON l"(n) 

In this section we derive a lower bound on Z”(n). The results are stated and 
proved for k = 2, but are easily generalized to arbitrary k. 

Let V,, E V, be such that for all x, y in V,, 6(x, y) > r. Then clearly, 
I(V,) > nr. Taking r to be 6(n), we have that I(n) > &(n). Let 

c, = lim sup 6(n) fi. 
n-m2 

Then, by the discussion above 

cZ < lim sup I(n)/fi. 
n-e* 

We shall generalize this observation to the following stronger result: 

THEOREM 3.1. For all n, l(n) ) czfi. 

Theorem 3.1 follows easily from 

THEOREM 3.2. For all n, 6(n)fi > c,. 

Theorem 3.2 seem to be of independent interest, since it implies not only 
that c, = lim,,, S(n) fi, but also that c2 is a lower bound of 6(n) fi. The 
k-dimensional version of Theorem 3.2 is 

THEOREM 3.2’. Let ck = lim sup P(n) n’lk. Then for all n, 
dk(n) nllk > Ck. 

The key lemma for the above theorems is Lemma 3.2, which uses a 
relation between the “packing constants” and densities of “sparse sets,” as 
described below: 

Let R be a planar figure of area A, and let S be a finite set of points 
contained in R. Then the density of S in R is ISl/A. The set S is “sparse” if 
for each pair of points X, y in S, 6(x, y) > 1. The packing constants 6(n) 
correspond to the density of sparse sets of points in certain planar figures in 
the following way: Suppose that for some n and c, 6(n) > c/\/;;. Then, by 
using appropriate scaling, one can obtain a planar figure R of diameter fi/c 
which contains a sparse set of n points. Using the fact that, by Barbier’s 
theorem, the area of R cannot exceed nn/(4c*), we have that the density of S 
in R is at least 4c2/7r. On the other hand, if we can embed a sparse set S in a 
circle C of diameter &/c such that the density of S in C > 4c2/7r, then, 
since the area of C is n7r/(4c2), S contains at least n points. This implies 
(again by scaling), that 6(n) > c/fi. The next lemma summarizes the above. 
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LEMMA 3.1. (a) If 6(n) > c/fi, then there is a sparse set S of n points 
contained in afigure R of diameter G&/c, and (hence) the density of S in R 
is at least 4c2/n 

(b) If a sparse set S is contained in a circle C of diameter fi/c such 
that the density of S in C is at least 4c2/a, then 6(n) > cl&. 

Due to the fact that for all k, the k-dimensional set of given diameter and 
maximal volume is a k-dimensional sphere4, Lemma 3.1 has a simple 
generalization to the k-dimensional case. In this generalization, fi/c is 
replaced by nllk/c, and 4c2/7r is replaced by c’/Wk, where wk is the volume of 
the k-dimensional sphere of diameter 1. 

In view of Lemma 3.1(b) above, Theorem 3.2 will follow if we show that 
for each r, there is a circle C of radius r which contains a sparse set S, such 
that the density of S in C is at least 4&/7r. (Recall that 
c2 = lim SUP~+~ 6(b)fi.) This will follow from Lemma 3.2, for which we 
need the following definitions: 

DEFINITION 3.1. For each positive real number t, let R, be a set of 
diameter t and area A,, and let S, be a finite set of points contained in R,. 
For a given r >, 0, R,,, is the set obtained by deleting from R, all the points 
whose distance from the boundary of R, is less than r. Let A,,, be the area of 
R I,r, and let S,,, = S, n R,,,. We say that the family {(R,, S,)} is blanced if 
for each fixed r, the following hold: 

A lim t,r= 1. 
t+cc A, ’ 

(3.1.1) 

1st rl piI Is,I = 1. 

DEFINITION 3.2. A family {(RI, St)} as above has density e if it is 
balanced and 

lim Sup !E!!= e. 
t-co A, (3.2) 

EXAMPLE 1. Let m be a positive integer, and let G, be the lattice 

G,,,= I(&,:) 1 p,q are integers/. 

For each t, let R, be a set of constant width t, and let G,,, = G, r\ R,. Then 
{R,, G,.,)} has density m2. 

4 The author is indebted to M. Perles for bringing this fact to his attention. 
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EXAMPLE 2. For each t, let R, be as in Example 1, and let S, be a sparse 
set of maximum possible cardinality contained in R,. Then {(RI, S,)} has a 
density >4c:/7r (this follows from Lemma 3.1(a) and the definition of c,). 

DEFINITION 3.3. Let G, be as in Example 1, and let B be a bounded 
region of the plane. Then 

N(B,m)=IG,nBI. 

The proofs of the following propositions are easy and omitted. 

PROPOSITION 3.1. Let B be a convex figure of area F > 0. Then 

lim N(B’ m, = F 9 m+oo m2 

and the convergence is uniform (i.e., it does not depend on the specific 
location of B in the plane). 

PROPOSITION 3.2. Let {(R,, S,)} be a family of density e and let r be a 
fixed number. Then 

lim supy=e. 
t+m t 

LEMMA 3.2. Let {(Rt, St)} be a family of density e. Then for each F > 0, 
there is a circle C of area F and a number t such that 1 C n St) > [eFIJ. 

Prooj For simplicity, let e = 1. Assume for contradiction that for all C 
of area F, and for all t, 1 C n S,j < F. Let F = I + h, where I is an integer and 
0 < h & 1, and let 6 = h/F > 0. Then for each t, each circle of area F 
contains at most I = F(l - 6) points of S,. Let E > 0 be such that 
(1 - E)~ > (1 - 6)( 1 + E), and let r = (F/x)“~ (i.e., zr2 = F). By 
Propositions 3.1 and 3.2 there exist t and m (m depends on t) such that, 

(i) IN(C, m)/m2 - FI < EF for every circle C of area F; 

(ii) I IS,;,I/4 - 1 I < E; 
(iii) lN(R,, m)/m’ -AtI < EA,. 

Let G,,, = G, n R, and let C,,, be the set of all circles of radius r (and 
area F) whose centers belong to G,,, . For each x E S, and C E C,,, let 

n, = HC I C E Cm,,, x E CII, 
t2,=I{xIx~S,nc)l. 

5 1x1 denotes the smallest integer not smaller than X. 
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Note that if x is in R,,,, then 

n, = I{u I u E G,, Q, x) < r}l, 

and that, under the assumption that the lemma is false, n, < F( 1 - 6) for all 
c E Gw Finally, let 

P={(x,C)~CEC,~t,xECns,} and let p= [PI. 

We derive a contradiction by computing p by two different methods: 

Method 1: 

P= cgk<F(l -WG,,l <F(l -mv +&I&* 

The last inequality follows from (iii), since IC,,,] = N(R,, m). 

Method 2: 

p= 2 n,> c n,>IS,,,~m2F(l -&)>At(l -.s)mZF(l -E). 
XG, XSS,,, 

The second inequality follows from (i), and the last inequality from (ii). 
By combining the above result and cancelling equal terms, we get 

(1 - E)* < (1 - 6)(1 + E), which contradicts the assumption on E. 1 

Proof of Theorem 3.2. By Lemma 3.1(b), it is enough to show that for 
every circle C there is a sparse set S whose density in C > 4c:/7r. For each 
positive real number t, let S, be a sparse set of width t and of maximum 
possible cardinality, and let R, be a set of constant width containing S,. 
Then, by Lemma 3.1 (a) and the definitions, the family {(R [, S,)} has density 
>4c:/n (see Example 2). Let C be a given circle of area F. Then by 
Lemma 3.2, there is a replica C’ of C and a number t such that 
] C’ n S,] > IF. 4cz/n] > F a 4c:/n. This implies that the density of C’ n S, 
in C’ is at least 4c:/7r. Since S, is a sparse set. so is C’ n S,. The theorem 
follows. I 

COROLLARY. For each n, 

6(n) > (7r2/12)1’4m-1’2 and l(n) > (7r2/12)1’4n1’2. 

Proof By Theorems 3.1 and 3.2, using the result (due to Thue and 
others, see [2]) that lim,,, 6(n) fi = (a2/12)1’4. I 
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4. AN UPPER BOUND ON I"(n) 

In this section first we derive an upper bound on I”(n) expressed in terms 
of ak(n), and then derive from it an upper bound expressed in terms of k and 
n only. We show that our result improves a result of Few on longest sets in 
unit k-dimensional cubes [5] for almost all k’s, and then use the technique of 
Few to improve our result for k = 2. 

LEMMA 4.1. For each k and n (k, n > 2), 

Zk(n) < Zk(n - 1) + (3 - fi) P(n). 

ProojI As before, we shall prove the lemma for k = 2, since the 
generalization to arbitrary k will be obvious. Let I’,, E V,. We shall prove 
that 

Z(V”) Q Z(n - 1) + (3 - fi> 6(n). 

Let x, y E V, be such that 6(x, y) is minimized. Then 6(x, JJ) < 6(n). Let z be 
the median of the interval (x, y) and let V,-, = [V,, - {x, u}] U {z}. Then 
Z(V,-,) < Z(n - 1). Hence, it suffices to prove that 1(V,) < 1( V,- i) + 
(3 -fi) 6(x, y). Let H be an optimal TSP circuit in V,-, , and let 
U, u E V,- i be such that the path (U - z - v) is included in H (see Fig. 4.1). 
A TSP circuit H’ for V, is obtained by replacing (U - z - v) in H by either 
(u - x - y - U) or (U - y - x - v), whichever is shorter. 

Without loss of generality assume that (U -x - y - v) is the shorter one, 
that is, 

Z(u-x-y-u)&Z(u-y-x-u). (1) 

Then 

I( V,) < l(H’) = l(H) + I(u - x - y - v) - l(u - z - v). 

Hence, it suffices to show that 

l(u-x-y-+~(y-z-zJ)<(3-~)6(x,y). 

” 
: 

I 
c-- -- 

t 

x I 3 \ \ 
” 

FIGURE 4.1 
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FIGURE 4.2 

Note also that x and y were chosen so that 

6(x, y) = min{b(s, t) 1 s # t, {s,t} G {u, u, x, y}}. (2) 

For a given pair of points (u, u), letf(u, V) = I(u - x - y - u) - I(u - z - v), 
and let A4 = max{f(u, u) 1 U, u satisfy (1) and (2). (Note that even if U, u, x, y 
are not restricted to be coplanar, f(u, u) is maximized when U, u, x, y are 
coplanar.) To prove the lemma, it suffkes to show that M < 
(3 4) 4x9 u>* 

Let rZ, U be such that ii, x, 6, y form a parallelogram, in which s(ti, x) = 
6(U; y) = d(& x) = d(u; y) = 6(x, y) (see Fig. 4.2). Then 

f(l-4 6) = 36(x, Y) - fi &x, Y) = (3 - fi) &x, Y>. 

Hence, the lemma will follow if we can show that A4 = f(z& 0). To prove this, 
we prove the following claim: 

Claim. S(zi, 5) >f(u, u) for all U, u which satisfy (1) and (2). 

Proof of the Claim. Note that f(u, u) can be written as 

f(k u) = fib> + .Mu) + m VI9 

where 

f*(t) = @, x) - @, 2); .Mt) = @, v) - 46 z). 

The claim now follows by the following observations: 

Observation (a). Let t be any point, and let t’ be in the arc (t - z), (see 
Fig. 4.3). Then, by the triangle inequality,f,(t’) >f,(t) andf,(t’) >f,(t). 

t 
0. 

'. t' 
-\ 

'\ 
'\ *-----)---+ 

x L Y  

FIGURE 4.3 
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FIGURE 4.4 

Observation (b). Let r = 6(x, JJ), and let C, (C,) be circles of radius r 
and centers x (u), respectively. Let D, (D,) denote the discs bounded by C, 
(C,). Then, by (2), u and tr cannot lie in the interior of D, (D,) (see 
Fig. 4.4). 

Let D = D, U D,, and let C be the boundary of D. Observations (a) and 
(b) imply that f,(u) and&(u) (and hence also f(u, u)), are maximized for u 
and u which satisfy (2) when both u and v are in C. 

Observation (c). Let L be the line containing (x - y), and let a be the 
unique point in C, n C n L, and b be the unique point in C, n C n L (see 
Fig. 4.4). Then, when u moves from a to b along C, fi(u) increases 
monotonically and fi(u) decreases monotonically. 

Observation (d): If both u and v are in C, then 2(u-x-y-u)< 
I(u - y -x - u) is equivalent to 6(u, x) < S(u, x). This, together with Obser- 
vations (b) and (c), implies that under constraints (1) and (2), flu, u) is 
maximized when 6(u, x) = 6(v, x), that is, when u is the reflection of v in L. 
Note that in this case fi(u) =fi(v) and f2(u) =fi(v). Moreover, by 
symmetry, f(u, v) attains its maximum for some u, v in C n C,. Thus, the 
problem of computing A4 reduces to the following maximization problem: 

maximize fl@> + fi@)(=fl(u) + .f&)), 
subject to u E C n C,. 

Using polar coordinates by substituting u = (r, a) (see Fig. 4.9, we get 

maximize r( 1 + 2 cos(a/2) - (5 + 4 cos a)l”) = f(a), 
subject to 0 Q a < 2x/3, (r = 6(x, y)). 

FIGURE 4.5 



OPTIMAL TSP CIRCUITS 129 

(In polar coordinates, 6(u, x) = r, S(U, y) = 2r cos(a/2), and S(u, z) = 
r(5 + 4 cos a)“‘/2). Taking the derivative with respect to a, we get 

f’(a) = r(-sin(a/2) + 2 sin a/(5 + 4 cos a)l’*). 

Sincef’(a) > 0 for a E (0,2n/3],f attains its maximum when a = 2rr/3, i.e., 
when u = zi, v = 6. This completes the proof of the claim, and hence of the 
lemma. I 

THEOREM 4.1. For all k and n 

l”(n)/(nsk(n)) < (3 - fi) k/(k - 1) + o( 1). 

ProoJ: Let ck = lim,,, fJk(n) n Ilk (the existence of ck follows from 
Theorem 3.2’). Then 

ak(n) = ckn-‘lk + o(n-l’k). 

The theorem will follow if we can show that 

l”(n) < [(3 - &)k/(k - l)] cknl-l’k + O(nl-l’k). 

By Lemma 4.1, lk(n) < Ik(n - 1) + (3 - fi) dk(n). Hence, 

l”(n) < (3 - fi)[Sk(2) + ..a + sk(n)] = (*). 

Let ak(x) be a continuous, nonincreasing real extension of dk(n). Then 
dk(X) = CkX - “k + 0(x- 1’k). We get that 

l”(n) < (*) < (3 - fi) 1’ dk(x) dx 
2 

= (3 - fi)l; [C&Ilk t O(X-l'k)] dx 

= [(3 - &)k/(k - l)] cknl-‘lk + o(nl-‘lk). a 

THEOREM 4.2. For all k, lk(n) < [(3 - fi)k/(k - l)] nl-l/k t 
o(n 1 - Ilk). 

ProoJ In view of Theorem 4.1, it is enough to show that for large 
enough n, iSk(n) < npllk. 

Let Jk(n) = d. Then it is possible to pack n disjoint k-dimensional spheres 
of diameter d in a k-dimensional sphere of diameter 1 + d/2. It is known that 
the ratio between the sum of the volumes of the small spheres and the 
volume of the large sphere cannot exceed some constant E, < 1. The ratio 
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between the volume of one small sphere and the volume of the large sphere is 
[d/( 1 + d/2)]] ‘. Hence 

or, equivalently, 

dk < (1 + d/2)kEk/n. 

For large enough n, (1 + d/2)kEk < 1 (recall that d = ak(n)) which implies 
that, for large enough n, ak(n) < n-‘lk. 1 

A problem similar to the one discussed in this section was discussed in 
[5,8], where a bound on the length of the shortest road through n points in 
the k-dimensional unit cube was investigated. In [5] it was shown that this 
bound cannot exceed 

[k(2(k - 1))‘1-k”2k + o(l)]nl-l’k. (4.1) 

Using an argument similar to the one in Theorem 4.2, but replacing the k- 
dimensional sphere of diameter 1 + d/2 by a k-dimensional cube of side 
length 1 + d/2, and using the fact that the volume of the k-dimensional 
sphere of radius 1 is 7r”“/r(k/2 + l), one can show that this bound cannot 
exceed 

{ [2(3 - &k/(k - l)](T(k/2 + l))1’k(a-“2) + o(l)} nl-‘lk. (4.2) 

For large k we have 

and 

(4.1) z [(k/2)“’ + o(l)] n’-‘lk z 0.70714 nl-l’k 

(4.2) z [(3 - fi)(2k/m)“’ to(l)] nl-‘lk z 0.6136fi nl-“k. 

In fact, (4.2) gives a better bound than (4.1) already for k = 7 (a constant of 
2.370(-j vs. a constant of 2.413’+‘). However, for k < 7 the technique used 
in [5] provides a better bound on lk(n). In particular, one can use that 
technique to prove 

THEOREM 4.3. l(n) = (7rn/2)‘/* + O(1). 

Proof (sketch). Let I’, E V, be given. Then V, can be embedded in a 
figure C of diameter 1 which, by Barbier’s theorem, is of area @/4. 

Let t = (n/2n)“‘, and let L, , L, be the sets of lines defined by 

L, = {(x, y) ] y = nt for some integer n}; 

L,={(x,y)]y=(n+f)tforsomeintegern}. 
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For a point u in R’, let a(~, Lj) be the shortest distance from u to a line in 
Li. Then for each u, 6(u, L,) + 6(u, L,) = f/2. Hence, 

c &u,L,) + c 6(u,L,) =nt/2. 
UCV, VGV” 

Hence, for i = 0 or i = 1, it holds that 

c S(u, LJ < a/4. (4.3.1) 
VCV, 

Without loss of generality, assume that (4.3.1) holds for i = 0. Consider the 
TSP circuit composed of: 

(a) The line segments in L, n C. 

(b) Portions of the boundary of C connecting these line segments to a 
path. 

(c) For each point u in V,, the shortest line segment connecting u to 
the path described above, each such segment counted twice. 

(d) A segment connecting the first and last points of V, traversed 
along the described path. 

The sum of the lengths of the line segments described in (a) is equal 
approximately to the area of C divided by t, and hence it is at most 
7q4t + O(1). 

The sum of the lengths of the segments in (b) is 0( 1). The sum of the 
lengths of the segments in (c) (each taken twice) is nt/2, and the segment (d) 
is of length <l. Altogether, the total length of the described circuit is lr/4t + 
nt/2 + O(1). The theorem follows. I 

5. Two RELATED RESULTS 

Two problems which are related to the problem discussed in this paper 
are: 

(1) Minimal tree: Given a set V of n points in R k, find a tree (i.e., a 
connected graph without circuits) on V such that the length of the tree, 
defined as the sum of the lengths of its arcs, is minimal. Denote this length 
by [k,(V)- 

(2) Steiner tree: Given a set V as above, find a set V’ 2 V such that 
Z”,( V’) is minimal. Formally, for a given V, the length of the Steiner tree of V 
is defined by 

m7 = ;g IW’)~. 
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Note. The existence of a set V’ 2 V such that Ik,(V’) is minimal follows 
from the observation that for every set V’ which contains I/ there exists a set 
V” which contains V such that 

Z”,( V”) < Z”,( V’) and /v”\<2/v1-2. 

(Thus, in the definition of a Steiner tree we can add the restriction: 
I~‘I<21~1-2, which implies that the minimum is attained.) Y” is 
constructed from V’ in the following manner: Let T be a tree of minimal 
length on V’. Delete from V’ all the points which are not in V and have 
degree at most 2 in T. In the resulting tree every point not in V has a degree 
at least 3. The observations follows. 

The corresponding problems for graphs of bounded diameter are: For each 
n find: 

THEOREM 5.1. For each k and n, 

W> 1 - l/n < 7 
nd (n) 

<(3-fi)k/(k-1)+0(l). 

ProoJ The upper bound follows immediately from the upper bound on 
I’(n) (Theorem 4.1). The lower bound follows from the fact that a tree on n 
points has n - 1 edges and from the definition of dk(n). 1 

THEOREM 5.2. For each k and n, 

zks(n) <k/(k- 1)+0(l) 
risk(n)’ 

Proof: The upper bound follows from the observation that 
I:(n) < Z$I - 1) + dk(n). (In the proof of Lemma 4.1, simply add (z -x) 
and (z - y) to the Steiner tree for V,- i , see Fig. 5.1.) 

” 
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FIGURE 5.1 
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The lower bound follows from the lower bound on l”(n), by the fact that 
the existence of a Steiner tree of length 1 implies the existence of a 
Hamiltonian circuit of length <21. 1 

APPENDIX 

Proof of Lemma 2.7. Let V= V& = {x, y, z, u, u} be a longest set in 
v . We shall prove that V satisfies conditions (l)-(3) of Lemma 2.7. As in 
Limma 2.6, we may assume that {x, y, z} are the vertices of an equilateral 
triangle, T. There are 12 Hamiltonian circuits in V, each uses either one or 
two sides of T. We denote as (x - y)-circuit a circuit that intersects T with 
the edge (x - y), as (x - y - z)-circuit a circuit that intersects T with the 
edges (x - y) and (y - z), etc. The 12 circuits are listed below: 

(x - y - z)-circuits: C, = (x - y - z - u - u - x) 

C,=(x-y-z-u-u-x) 

(y - z - x)-circuits: C, = (x - u - v - y - z - x) 

C,=(x-u-u-y-z-x) 

(z - x - y)-circuits: C, = (x - y - u - u - z - x) 

C,=(x-y-u-u-z-x) 

(x - y)-circuits: C, = (x - y - u - z - 0 - x) 

C,=(x-y-u-z-u-x) 

( y - z)-circuits: C, = (x - u - y - z - u - x) 

C,,=(x-u-y-z-u-x) 

(z - x)-circuits: C,, = (x - u - y - u - z - x) 

C,,=(x-u-y-u-z-x) 

Conditions (l)-(3) of Lemma 27 are equivalent to the following 
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FIGURE A.2 

statement: In the longest set V, u and u lie on one of 7”s heights, such that 
the lengths of all the (Hamiltonian) circuits that do not intersect themselves 
are equal to I(v). (If that height is h, and u lies above u, then these circuits 
are C,, C,, C,, C,, C,, and C,, .) The proof of the lemma proceeds by the 
following two claims: 

Claim 1. Both u and v lie on one of Ts heights. 

Proof We shall assume that Claim 1 is false, and derive a contradiction. 
Denote by N, the set of points t in T s.t. &t, x) Q min{6(t, y), 6(t, z)}. NY 
and N, are defined similarly (see Fig. A.l). We consider three cases: 

Case (i). For some t E {x, y, z}, exactly one out of {u, v} is an interior 
point of Nt (see Fig. A.2). Without loss of generality we may assume that u 
is an interior point of N,, and that u is in N,, (not necessarily as an interior 
point). Then we have the following inequalities: 

&u, z> < min{&u, y), Q, x)) 

&A v) < min{b(u, x), &4 z)]. 

The above inequalities imply that C,, C,, C,, and C, are longer than C,, 
and hence are not optimal. They also imply that C, and C,, are longer than 
C,, hence C, and C,, are not optimal either. But all the remaining circuits 
use the edge (U -z), which must therefore be an essential edge, in 
contradiction with Lemma 2.3(a)6. 

Case (ii). Both u and u are interior points of some Nl for some t. 
Without loss of generality t = z. Then 

G, z) < mink% y), &4x)1 

664 z) < min(W.4 Y), &4 xl}. 

6 Actually, with the straightforwards generalization of Lemma 2.3(a) to longest sets in V,,,. 
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We may also assume that 

Then C, is shorter than C,, Ci,,, C,, , C,, and is not longer than C,. C, and 
C, are longer than C, and C,, respectively. Thus, the only candidates for 
optimal circuits are C, , C,, C, , C, , C,, and C, . To show that this yields a 
contradiction we use an extension of the idea in Lemma 2.3(a): Let 
S={(z-u),(z-u)} and L={(.x-u),(x-v),(y-u),(y-v)}. Each of 
the candidate circuits above uses one or two edges of S, and the same 
number of edges of L. By removing u and v a small distance h away from z 
along (z - U) and (z - v), respectively, the lengths of the edges in S increase 
by h, the lengths of the edges in L decrease by less than h, and the lengths of 
the rest of the edges do not decrease. Hence, the lengths of all the candidate 
circuits above increase. By taking h small enough, a set I” which is longer 
than V is obtained, a contradiction. 

Case (iii). u and u are not interior points of any Nt ; that is, u and ZJ lie 
on different heights of T, as shown in Fig. A.3, with u on h, and v on h,. In 
this case we have: 

I(C,) = l(C,) = i(C,) < mW(C~)~ WJ9 WJI 
and 

i(c8) < ltci) ’ for i= 7,9, 10, 11, 12. 

Subcuse (iii.1) I(C,) < I(C,). In this case C, is a unique optimal 
circuit, in contradiction to Lemma 2.3(a), (b). 

Subcase (iii.2). I(C,) < 1(C,). In this case the optimal circuits are 
C,, C,, C,. This means that (u - u) is essential, in contradiction the Lem- 
ma 2.3(a). 

Subcase (iii.3). I(C,) = 1(C,). The proof of this case is a little more 

x 

A 

Q1 ” 
0 

4 ” 
Q 

Y 7. 

FIGURE A.3 
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involved, and is sketched below. The equality above is easily seen to be 
equivalent to 

qz, u) + 6(z, u) = 1 + 6(u, u) 

It also implies that C, is optimal and hence 

(*) 

l(v) = 1 + 2(6(u, z) + qv, z)). (**I 

Hence, if V is longest then (**) is maximized under the constraint (*). We 
shall show that this cannot happen if both u and u are different from the 
center 0. 

Let a = KuzO, /I = 0~0, a I = 2cvu0, p, = zluv0 (see Fig. A.3). Assume 
first that a =/I (and hence a, = /.I,). Then’ 

a u> = 4z9 VI = 2 cos(;o _ a) 

J(z.4, u) = 2&z, u) sin a = cosy$o- a) 

Thus, by (*) 

1 
=l+ 

sin a 
co430 - a) cos(30 - a) 

and hence a z 5.2644, which implies that 1(V) = I(C,) z 3.2020, which is 
smaller than 1(V*) (z 3.2175), where Y* is the set defined in Lemma 2.7. 

Second, assume that a > /I, and hence a, < /I,. For a small h, let u(h) and 
u(h) be the points on h, and h, for which 

6(z, u(h)) = d(z, u) + h 

6(z, v(h)) = 6(z, 0) - h 

For infinitesimal h we have 

Wh), u) 73 
h 

sin(30 - a) ’ 

and 

6@(h), v(h)) - 6(u, II) z S(u(h), u) cos PI - 6@(h), u) cos a,. 

’ All angles are measured in degrees. 
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Thus, if we define 

137 

then we get 

cos PI cos a, 
= sin(30 -/I) - sin(30 - a) 

< 0. (since a > /I and ai < /I,). 

Let V(h) = {x, y, z, u(h), v(h)}, and let C,(h) be C, in V(h). For small 
negative h, C,(h) and C,(h) are shorter than all other circuits in Y(h). By the 
definition of u(h) and u(h), l(C,(h)) = I(C,) and by the inequality above, 

KC,(h)) = z(G) + Mh), v(h)) - 4~ v> > KC,). 

Since I(C,) = I(C,), this implies that [(C,(h)) > l(C,(h)). Thus 

V(h)) = l(W)) = 4G) = V-l 

and hence, by the assumption on V, V(h) is longest. But V(h) has a unique 
optimal circuit-C,(h)-in contradiction with Lemma 2.3. This completes 
the proof of Claim 1. 

Note. The proof above implies not only that 1( and v lie on one of the 
heights, but also that they are not interior points of Nt for t E {x, y, z} (see 
Fig. A.4). 

Assume that a and v lie on h,, and that u lies above u (as in Fig. A.4). It 
is easily observed that the (x - y - z)-circuits are reflections through h, of 
the (y - z - x) circuits, that the (x - y)-circuits are (similar) reflections of 
the (z -x)-circuits, and that C, is a reflection of C,. Using this, one can 
verify that the only candidates for optimal circuits are C2, C,, C,, and their 

FIGURE A.4 
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reflections. If all of them are optimal, then (2) and (3) of Lemma 2.7 must be 
satisfied, and hence the set I’ is the one described in Lemma 2.7 (and shown 
in Fig. 2.8), as claimed. Thus, it remains to show that the circuits C,, C, , 
and C, are optimal. 

Claim 2. C,,C,, and C, are optimal in I’. 

Proof: Assume that the claim is false. Then the longest set in V5,3, V, 
differs from the set Y* in Fig. 2.8. Let Y* = {x, y, z, u*, u*}. By the note 
above u cannot lie above u*. We consider three cases, according to the 
locations of u and v. 

Case (i): u = U* and v lies above n *. Then, by the triangle inequality 

6(u*,v*)+6(v*,z)>6(u,v)+6(u,z), 

hence 

l(v) < I(&) < l(Cf) = f(v*) 

which contradicts the assumption on V. 

Case (ii). u = U* and v lies below v *. Then 

4Y, u> < &YY o*)T 

hence 

1(y) < l(G) < l(Cs*) = z(v*), 

which again contradicts the assumption on V. 

Case (iii). u lies below u*. In this case 6(u, x) > 6(u, y), which implies 
that C, is longer than C,, and hence is not optimal. Hence, the only 
candidates for optimality are C,, C, and their reflections through h,. If any 
of them is not optimal then Lemma 2.3 is violated. It follows that both C, 
and C, must be optimal. Thus 

I(C,) = 2 + 6(y, ?I) + qt.4 v) + 6(u, z) = l(G) 

= 1 + 26(y, v) + 6(u, z) + qu, z) + 6(u, x). 

In order to use the Lagrange multipliers theorem we restate the above 
equality, after rearranging and cancelling equal terms, in terms of the scalar 
variables U’ and U’ whose range of definition is h, as follows: The constraint 

6@“, 2) + iqu’, x) = 1 + d(U’, v’) (&I 

is satisfied at U’ = u and u’ = ZI. The constraint (&) is also satisfied at 
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U’ = ui and v’ = vi, where U, is at the bottom B of h, (see Fig. A.5), and U, 
satisfies tg(<u, yz) = (fi - 1)/2 (we leave the verification of this fact to the 
reader). Let V, = {x, y, z, u,, u,}. Then since [(V,) < I( V*), V, is not 
optimal; hence V, # V, which implies that z)~ # U. It follows that both u and 
u are internal points of the segments (0, B). Hence, by the assumption that V 
is longest, the function 

l(v) = l(C,) = 2 + 6(y, u’) + 6(u’, u’) + 6(u’, z) = j-(24’, u’) (8&c) 

attains a local maximum, under the constraint (&), at u’ = u and V’ = ZJ. Let 
a’ = WJJZ, /I’ = ~u’yz, a = ~uyz and p = ~uyz. Then multiplying (&) and 
(a&) above by 2 and expressing them in terms of a’ and /I’, we get (after 
rearranging terms) that under the constraint 

1 
- - 2 tg a’ + tg /I’ = Const, 
cos p 

the function 

1 
-+ 
cos p’ 

---& + tg a’ - tg /I’ + Const, 

attains a local maximum at a’ = a and /I’ =/I. Thus, by the Lagrange 
multipliers theorem there exists a constant 1 for which the partial derivatives 
of the function G(a’, p’) defined below with respect to a’ and /I’ vanish at 
a’=a andp’=/X 

G(a’,P)=---&+ --&+tga’-tg/?‘+1 
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Taking derivatives, we get that at a’ = a and p’ = p: 

dG sinc~+l-U=~ 
da’= cos* a 

dG 
dp’= 

(1 tL)sinPtA- 1 =. 
cos* p 

Thus, we get 

sina=2il- 1, 

1-I 
sin@=- 

l-IA' 

u- 1 
tga= 2&p 

2G cosp=- 
1t1 

l-1 
tgp=-. 

2G 

Given a and j?, the length of C, as a function of 1 is 

1t 
1 1 

-t- cos p 2cosa 
+ fi-tga 

2 

1t1 1 =1+- *fit 4&x+ -- fi u- 1 

2 4j/m 

= 2t& ltIz+ l-1 

2 2G 2dx=T - 

In a similar way, the length of C, is shown to be 

2t 
Iz 

2&=F 

Since I(C,) = Z(C,), we obtain 

tG -. 
2 

fi-2=0. 
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Solving the above for 1, we get 

2. cz 0.7089055 

which implies that a z 24.70, /? zz 9.81, and that 

I(v) = I(C,) = 1(C,) FZ 3.201257 < I(V*) zz 3.2175 

and hence V is not longest. This contradiction completes the proof of 
Claim 2, and hence of Lemma 2.7. I 
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