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Abstract. A general approximatiorl technique for a large class of NP-hard optimization problems 
which involve arithmetic calculations is given. This technique guarantees a V, arst case relative error 
smaller than E in time which is polynomial both in the size of the problem instance and 1 /E. It is also 
shown that problems in that class which are not apprckmable by ::Gs technique are not 
approximable in polynomial time at all, provided P # NP, and hence ‘his technique :is tk most 
general approximation technique applicable to this class. 

Le<t 2’ denote the class of nonnegative integers. There is a large cllass of algorith- 
mic problems which are generally stated as follows: 

On, input a = (al,. . . , a,, bl, . . . , b,) E (Z+),+“‘, find the maximal (or minimal) 
integer k satisfying: 

(a) k is the result of some specific arithmetic operations on {aI, . . . , a,}, to be 
executed according to specific rules given together with the problem, while 

(b) the above operations should be executed according !s given restriction, 
depending on {bI, . . . , b,}. 

A simple and well-known example of such an ‘arithmetical combinatorial prob- 
lem’ is the ‘subset sum’ problem: given (aI, . . . , a,, 61, . . . , b,, b), find the maximal 
integer k satisfying: 

(a) k = CyE1 EiLZi, where Ei E (0, 1) for i = 1, . . . , n, while 
(bj Cyz1 Eibi s b. 

Other examples are ‘Job sequencing with de:adlines’ [7, 1:3], many scheduling 
problems [ 13,9,5,4], the ‘subset product’ problem [IO], etc. 

hen viewed as recognition problems, the problems m<ntioned are in 
provided that the arithmetical operations and the verifications of the restrictions car; 

omial time bounded algorithms. Some of those 
-complete, and (hence) it is unlikely that there a 
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On the other hand, for some of those problems fast approximation algorithms have 

recently been found, which guarantee 3 cs .+- XvCrst cast relative error sma 
arbitrarily small positive E, in time polyn iai in both the length of the input and 1 /e 
[6,13,5,2,18]. Such problems are call proximable’ [12], or are said to 

have a ‘full polynomial time approximation SC 131. (A charactesi. ;at 
pro&ms is given in [12].) We note Gat all of the NP-CO etlt optimization 
problems, which appear in the literature (see e.g. [2]), and wh arc: known to be 
fully approximabie, are ‘arithmetical combinatorial problems in the sense described 
above. 

In [12] it was shown that if a problem is fully approximabie, then it must sati*;fy a 
certain condition, denoted as ‘P-simplicity’. This condition (to be defked rigormsiy 
in the next section), is shown to be equivalent the existence of an algorithm to find 
the optimal solution in time polynomial in bo the length of the ut and the value 
of the optimal solu:ion. The goal of this paper is to produce a gen 1 approximetion 
scheme, which will produce a full approximation algorithm for many problems which 
satisfy the condition of P-simplicity. This scheme is based on 2 technique called 
‘&condensation’, which ‘condense’ several partial solutions of The problems which 
nre ‘within distance 8’ (in a sense to be defined) each from the others, into one part.iai 
solution. The numerical value of 6 is determined by the specific problem and by the 
desired accuracy, E. 

For a large class of optimization problems it will be shown that they ar, either fully 
appvoximabie by the scheme introduced, or are not fully approximabie at all 
(provided P # NP). It follows that the scheme given is the most general approxima- 
tion scheme for prrlbiems in that class. 

aries 

The following definitions are adopted (with minor changes! from i 121: For a set ;h, 
let PO(A) denote the set of all finite subsets of A: 

. An NP optimization problem (NPOP) is a labelied pair (A, f)l~~~, 
where: 

(1) Ext = Max or Ext = Min, 
(2) A c C* is a g4ynomiai time recognizable set. 
(3) t is a function t : A + &(Z+), which can be computed by a nondeterministic 

polynomial time bounded algorithm. 
For ? given a, Ext[t(a)) (the optimum of a) is denoted as op(a). 

. An aI~~orithm sol is cT,id to solve (A, e)E,, if for all a E A, soi = 
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.An algorithm Ap is said to be an ‘E approximation algoritl-& for 
(A, fjMax if for’all a E A, Ap(a) E t(a) and Ap(a) 3 (I- &p(a). 

. (A, f)~~ is a proximable if for all e > 0, tkre is a polynomial time 
algcrithm which e approximate (A, t)Max. 

, t)Max is fully approximable if for all E :a 0 there is an E-approxi- 
mation algorithm to (A, t) Max with time complexity Q(l(a), l/e), where (2 is some 
fixed polynomial in two variables, and C(a) is the length of a. 

. (A, t)Ext is simple if for all k E Z’, the set {a E ,sl. lop(a) s k} is in P. 
(A, d)Ext is rigid if it is not simple. (Note’ that if P = NP, then there are no rigid 
NPOPs.) 

nition 2.7. (A, t) Ext is P-simple if for all k E z’, the set (a E A 1 op(a) G k} is 
recognizable in Q(E(a), op(a)) time, for some fixed polyncmial Q. 

Eemrnrsa 2.1. The following co:rditions are equivaknt: 
(a) (A, t)Ext is P-simple. 
(b) For each a E A, op(a) :ari be found in &l(a ), op(a )) t’me, for some polynomial 

6. 

root. (a) + (b): If (A, t)Ext is P-simple, then there exists a polynomia!! 0(x, v) which 
is blalndecreasing in both its variables, such tha, for each a E A, the problem ‘is 
op(a) > K?’ can be solved in &Z(a), k) time. Thus, it is easy to see that the foilowing 
algorithm finds op(a) in op(a)&(a), op(a)) = &l(a), op(a)) time: 

. 

Begin 
k 4 
whileop(a)>k do k+k+l 
op(a) + k 

(b) + (a) : suppose (b) holds. Then there is an algorithm sol which, for each a E A, 
find opba) in Q(l(a), op(a)) time, where Q is nondecreasing in its both variables. The 
following algorithm will recognize the set {a E A lop(a) s k} in &(a), k) time for 
some polynomial 0: 

Start the execution of Sol on input a 
Sol does not stop during the first &l(u), k) steps t reject 
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The following results were obtained in [l? j and are given here without proofs: 

If (A, t)Exr is rigid, then (A, t)Ext is not approxintable. 

2. rf (A, t)Ext is fulSy approxtmable, then (A, t)Ext is P-sir .rp/e. 

(In [12] it is shown that P-simplicity does not imply full approximribihty.) 

By Theorem 2.2. and Lemma 2.1, if t)Ext is fully approximable, then there 

exists an algorithm Sol, which solves ( t)Ext in &(a), op(a)) time, for some 
polynomial 6. In this paper algorithms such as Sol above will be modified to full 

_ approximation algorithms for a large class of (A, t)Ext problems. This is done by using 
a general ‘condensing’ technique, whiich is incorporated into certain stages of Sol. 
This technique is a generalization of the one appearing in [lo], whisk was itself a 
variant of some techniques of [13] and o hers. It will be shown tha 
dealt with in this paper, which are not in P nd which cannot be a projiimated by the 
above technique, must be rigid (see Definition 2.6), and hence, by Theorem 2.1, are 
not approximabie. 

To simplify the exposition we shall consider problems of the fAowing type: Given 

(a, . . . 9 a,, b), find the maximal integer k s 6, which can be obtained by certain 
arithmetic operations on (al, . . . f an), to be executed according to given rules. The 
generalization of the approximation techniques for this problem to the more general 
problem presented at the beginning of this paper, will usually be obvi ~~1s. 

e. For the sake of consistency with previous papers on full approximation 
algorithms, we use the ‘uniform cost’ criterion in analyzing the time complexity of 
algorithms, in which additions and multiplications of integers require constant time 
[ 1, Chapter 11. It should be clear that the use of a ‘logarithmic cost’ criterion would 
increase the time of computation by at most a polynomial factor, and hence would 
not affect the full approximabihty feature of the algorithms” 

rese e8 

We first consider a problem which is a gener&zation of the subset sum and subsei 
product probll;lms. Let (a 1, . . . 9 ak) E (2’)’ be given, and let pI(x, y), * . . , &-h, y) 

be k - 1 (not necessarily distinct) binary operations defined on the integers. With 
each sequence !,a I, ,&, a2, &, . . . , ak_1, &+ ak) we associate a ‘computation 
sequence’ (HZ~, . . . , mk) defined by: 

(a) m~ =a~, 
(i) for i = 1, . . . , k - 1, mi+l= @i(mi, ai+l). 
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e For a given set of binary operations 3, the problem Prl(%r) is the 
following: given (a 1, . . . , a,, b ), find the maximal integer k satisfying: 

(1) for some ioE(l,. . . , n}, k is a result of a computation of (a,, LS~+~~, m . . , a,) 

over 33, and 
(2) ksb. 

efine a binary operation ~1 by: U$ (x, y ) =: X. Pr 1 (ta 1, x + y ) is a version of thle 
well-known knapsack problem, usually called the maximal subset sum prcblem.: 
‘given (al,. . . , a,, b), maximize C &iQi(Ei E (0, I}), subject to C t7i&i G 6.’ A full 
approximation algorithm for this problem was first obtained by [ls]. Prl(ul, xy) is the 
subset product problem, for which a full approximatici; algoriihm was obtained in 

L.w . 

A binary operation @ is ‘increasing’ if p (x, y ) 3 x for all X, y > 0 

The operations x + y, xy, x ‘, y “, ~1, are increasing, while x - y and y - x are not. 

Lemma 3.1. If p contains only increasiflg operatioizs, thaw Pr 1 (p) is P-simple. 

Proof. By Lemma 2.1, it suffices to show the following: 
For each a = (al,. . . , a,, b), op(a) can be founi in ti,me polynomial in Z(a) and 

OP(O) (w.1.g. aiSb for i=l, . . . . n). Y&e following algorithm Sol finds op(a j in 
O(n op(a) log(op(a)) time: 

So!: Input a = (al,. . . , a,, b). Output: op(a) 
begin 

i+l;T+F; 
1. if T # 0 then [insert ‘partial computations’ whlich contain ai in Tj 

begin 
for each s in T 
TcTu(p(s,ai)IBE&h~CS,ai)~b)’ 

e 
T* T u(ai) 

ifi=n t I [halt; return max(T)] 
[i+i-tl;goto 1] 

It is easy to see that at the termination of Sol, T is equal to t(a), and hence 
max(T) = op(a). By using an appropriate data structure to represent T (e.g. 2-3 
trees, see [:I\, 4.9-4.10]), the execution time of lines 2-5 is O(l%YllTllo 

’ If u1 BS, then s should be deleted from T before the combining of t 
b} with T. 



execution time of the other lines is a constant. 191 is a constant, and since T contains 
only positive integers sop(a), 1 T\~op(a) all through the execution of the algorithm. 
It follows that the time ccmplexity of the algorithm as a whole is 
O[Yz op(a) log op(a’]. 

e, If for all p E 9, p also satisfies the following: For all xl, x2, y > 0, XI a x2 + 
3(x1, y) 2 9$(x2, y), then the time complexity of Sol above can be reduced to 0[n 
op(a)], by keeping T as an ordered list. (See e.g. [8, Section 21 for deta 
the increasing binary operations mention& in this paper satisfy the property above, 
we shall use tl+ b.3 fact In analyzing the time coFlplexity of the algorithms which will be 
given later in this paper. 

Lemma 3.1 provide us with a necessary condition for full approxi 
shall show that if 3 c {xy, x + y, ul}, then algorithm Sol introduce in Lemma 3.1 can 

be modified to a fu!l approximation algorithm for Prl(CB). First we need several 
!emmas. Let R denote the set of real numbers. 

For all r 2 2, for all n > I (r E R, n E ZI, if k G r*, then (1 - l/rn+l)k > 
l-l/r. 

aoof. Use the binomial expansion of (1 - I/?+‘)! 

The technique which is used to obtain a full approximation algorithm from a given 
algorithm Sol is the ‘S-condensation’, which is defined and investigated below. The 
role of this technique is to keep 17’1 relatively small, even when op(a) is large. This is 
done by deleting from T, at each stage, elements which are ‘S-close’ to some other 
element s in T. (That is:. to ‘condense’ those elements into s.) This S-condensation 
may cause that at the end of the computation Max( T(a)) is smaller than op(a), and it 
must be done in such a way that the difference cop(a)- Max(t (a)) remains sma11 
relatively to op(a). If B 7 (X + y, ur}, then the various rounding techniques o; 
[6, “13,8] form an appropriatt such condensation i’or Prl(B), which is the subset: sum 
problem. But those techniques fail for Prl [{x l y, 0,)) (that is: for the subset product 
problem) [ 10,111. The technique introduced here will be shown to be efficient for 
PrI(B), where 9 is any subset of {x + y, x l y, x ‘, y X, ur}, and for many other related 
problems. 

be the computation pequence of 
k_l,a~)andletO~S~~.Asequence(m~,m~,. w .,m 

a S-condensation of (ml, . . . , mk) if there exists a sequence (hl, . . . , hk) E 
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. Let (ml,. . . , mk) be a computation sequence of (a 1, 
a2, . . . ak_1,&-l,ak) and let for i=l,..,,k-1, ~i~{~+y,x~y,ul), Le 

e a real number, r 2 k, S = l/r2. If (m ‘1, D . . , m h> is a S-condensation of (ml, . . . mk), 
then 13 rni/rnk 2 1 - l/r. 

clearly 0 s m; s mk, and hence 12 m ;/mk. For the second inequality, we 

‘by induction for j = 1 , . . . , k that m ilrni 2 (1 - l/ r2)‘. Substituting j = k and 
using Lemma 3.2 with n = 1, we obtain 

as desired. 
For j= 1, nli = ml(l -h+ml(l -l/r’)‘. Suppose now that 

We shall prove that mi+l/mj+la (1 - llr2)j’10 
If pi = ul, then 

ml+1 mj(l - hj+l) mj(1 - l/r’)‘(l --= z9 
mjci W mj 

If pi =XY then 

miebl -= mjaj+l( 1- hi+;) 
2 

mj( 1 - l/r2)‘aj+l(l - h+*) 
mj+-i flZ,a j + 1 mjaj+l 

If @j = x .+ y, then 

mi+l --z (ml +aj+~)(1-hj+~)~(mj(l-l/r2)j~~~j+~)(,l-hj+l) 
/ 

mjtl mj+uj+i mj faj+l 

> (mj +aj+l)(I - l/r’)j(l- hj+l) > 1 1 i+l / 
-( > 

-- 
mj +Qj+l r2 l 

Let lSalCapC* l l < at 6 b be given, such that a;f ai+l =G 1 - 8, where 
en t s [(2 In b)JSJ. 

. First,wenirtethat~~+~/a~>1+S.Hence(l+S)’~1~~~(l+~)r~‘~~~~~~~or~ 

(l+#-’ G b. Taking logarithms to base 1 + 6, we get: 

t -‘- 16 logl+s b = 
In b In b 2In.b 

ln(l*S)=&$Jj2+$S3 l l SC S ’ 

e fat 
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The following algorithm, Apl, is a fully approxi ation algorithm for PrW), 
where 89 is any subset of {x + y, x l y, ~1). 

: Input: a = (al, . . . , a,,, b) E (Z+)“+‘, E > 0. Output: An integer 

5. 
6. 

12. 

13, 

14. 
15. 

16. 

2/8 is the-‘condensing’ parameter// 

i4; T.4 

ai)lP SB hp(S, ai)sb)l 

T* Tu(ai) 

/condensing//j + 1, k * 2 
kScandSi/Sk>l-8 

T+T+); k+k+I 

e condensing is finished// 

e 

. Foreach E > 0, algorithm Apl providesan &-approximation to Prl(B), 
where 33 c [x f y, xy, IQ}, in 0(max{14(a), 12(a)/E2}]1 time. 

. By the definition of the problem, op(a) is an output of a computation of a 
sequence (a,, a,+IC . * . , il,) over 99, for some 1 s ic, 6 n. 

Let the computation sequence be (mi,, rn,+l, . . . , m,,), (mn = op(a)), and the 
corresponding sequence be (ai,, pi,, ai,-Ll, &+I, . . . ,, &--I, an). - 

that Apl is carried out with a = (al, . . . . a,,, b) and E as input. Denote by 
ation of the S-condensation 

untered for the ith time). T, will denote 
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When i = iO, ilt is easily checked that either ai0 is in zO (ai,, is ‘inserte 
which means that ai0 was not deleted from T during the condensin 

at I > vi;i,l ai0 > 1-S. In the first case we take m iO E.0 be Wi,, 

e take m i. t0 be riii,. In both cases in :,Jmi, > I- 6. 
ppose now that (m :,, m &-+I, . , . , rn: 9 is a &condensation of (mio, . . . , mi ), and 

argument as above, either Pi(m :, ai+l) is in Ti+r 9 or there is 

an integer &i+l in ri+l such that 

1, f%+l 

@ib :, ai+i) 
N-S. 

If we take rn:+l to be &(mi, ai+l) in the first case, or &i+l in the second case, we have 
that (m:,, . . . , m:, m:+l) is a S-condensation of (mi,, . . . , mi, LQi.hT 9. 

By Lemma 3.3, 

m’ rnk 
‘IaL =----->I-&. 

mn Ma) 

Since the output of Apl, deanoted as rnz, is max(T,,) 3 rn;, we have 

12 
di d ,1 e 

op030p(a) - ’ 

Hence, rnz is e-approximation to op(a 9. 
To prove the complexity, we first note that for each i, IT1 ~0(21(a)/8). This 

follows from Lemma 3.4, with In(b) = O(Z(a)).2 It follows that ITI is O(l(a)/S) aIf 
through the algorithm. By the note after Lemma 3.1, the time complexity of the 
algorithm as a whole is O(nl(a)/S). Ske n c I( a), this is equal to O{/(&j if 
l(a) 3 1 /E, and to 0(l(a)2/ e2) if l(u) < I,& 

ote. Algorithm Apl not only p;-oxides an g-approximation to op(a), but it also 
provides an E-approximation to each m E t(a). This property, (Which is not shared by 
the previous approximation techniques of [6,13]) can be used for simultaneously 
approximating several problems, with the same (al, . . . , a,) and E, but different b’s, 

We shall show now that Apl can be generalized to a fully approximation algorithm 
for Prl(#I), where $#9 is any subset of {x i-y, x l y, xy, ul) (i.e. the operation rn?+l 
may be executed too).3 

a 3.5. Let k, 1, br , bx, . . . ,bl b4 1 + 2 positive integers, where bi 2 2 fc)r t = 
1 9**** 1, L,et a ‘legal sequence’ be a sequence (fl, . . . ,,&) where n = k + 1, whit 

’ Under the logarithmic cost criterion, In(b) = O(l(a)). Under the uniform cost criterion, Mb) c c, 
where C is solrrre constant (C = the amount of storage in each register, see 11, 1.31). 

3 Note that if myi+’ s 6, then rnF+’ can be computed in 8(log2 b) time and hence also ip_ 0(&c 1’) time. 
where a =(a*, . . . , a,, b). 
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satisfies the following: 

(a) f1=1; 
(b) fj+l =j+l or&-l = fibi for some 1 s i s 1, and for each i there is a unique j s.t. 

fi+1 = fib,. 
Let f = m=Cfi, l(fig . . . ,f=d is a legal sequence). Then f = kb: h2 * 9 8 bl (i.e. 

(fl, l ' l ' f,.,) = (1,2,. . . , k, kbI, kblbz, . . . , k&l . . l br)). 

The easy proof of this lemma is omitted. 

Let (ml,. . . , m&(Z+)k and (al,. . -, al) E GE+)’ be g&en, such that 

nli smi+l 1 “or i=l,..., k - I and 1 <k. Assume &at for some il, e . . , il, I s il c 

is 9 - Xilc?5: 

(a) mi, 22; 
(b) mi,+l = rn$ 
Then ala2 l l . al Slog2 mk. 

roof. Since ijtl 2 ii + 1, mi,,, 2 mi,+l = m>. Hence we have that 

mi2’+ t?lyll, l?li3 2 m i2 a2 amBla2, , 
11 ’ l 9 

mi, 2 mTlla2 * . ’ al-l, 

Since mi, 2 2, mk 3 F?Zi,+l = m {I, We have that mk 2 rn ::a’ ’ ’ . a1 3 2”‘“” ’ ’ ’ a1. 

a 3.7. Let (ml,. . . , mk) be the computation sequence of (al, @I, a2, . . . , 

a&l, P&l, i&j, where for i = I,. . . , k-l, PiE(X+y,x*y,xY,ul)* Lel r be a real 
number, r > max(k, log2 mk), and let 8 ==I l/r3. 

If (m;,..., m ;) is Q S-condensation of (m 1, . . . , mk), then 1 Z m;imk > I- l/r. 

roof. Without loss of generality we may assume that if Pi = x ‘, then mi 2 2 and 
ai+l=Z2. (Otherwise replace pi by ui.) With the sequence @I, PI, l . . 9 @k-l, d, let 
us associate a sequence? (gl, . . p , gk) as follows: 

gi + 1, else giQi+l+ 11. 
(Thus, with (2. x ‘, 3, x + y, 6, x ‘, 2) we associate the sequence (X,4,5,11).) 

If we replace in the sequence (gi, . . . , gk), each gi+l which is equal to giai+: + 1 

with the two elements (giCli+l, giai+l+ l), then we obtain a new sequence of len@ 
k+l,where r=j{i[,$ = x ‘}I. ((Thus, the sequence (l!, 4,5,11) above will be replaced 
by (1,3,4,5,10, 1 d).) 

This new sequence satisfies the conditions of a ‘legal sequence’ of kemma 3.4, v ith 

k, 1, a iI+ ai2+19 l l l 9 1 (where il,. . . , il are the indices for <which Bij = x ‘). Hence 
gk s k&i,+1 l l l ail+l- oreover, the sequences (ml, . . . , mk) and (aa,+l,. . . 9 h, t;) 

satisfy the conditions of Lemma 3.6, and hence Ui,+iaia+i l l . ai,+1 s bg2%ke 

Combining the above r at gk S k log2 lbZk S r2, 
e shall now prove . . , k, m’lmj > (I- l/r3)% For 
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If the hypothesis is true for some j 3 1, and Jgj E {... + y, .Y 1 y, uy), then 

by an argument sin;ilar to that of Lemma 3.3. 
If & = x ‘, then 

= (l_$)gj’j+l(l_h,jP( l___L)giaj+*+l =( +.L)61-*_ 
\ 

Substituting in the above inequality j = k, we obtain: 

(The last inequality is by Lemma 3.2, with ~3 = 2.) 

Let Ap2 be algorithm Apl in which lines I and 2 are replaced by: 
(1’) r + max{l/&, n, log2 !I), 
(2’) 6 * l/r3. 

heorem 3.2. I”or each E > 0, Ap2 provides an E-approximation to Prl(.%?), where 3 
is any subset of (x + y, x l y, x ‘, ul), in O(max(l(a>* /E3, l(a)‘)) time. 

roof. Let a =(aI, . . l , a,, b). Noting that n = 0(1(a)) and log;! b = 0(1(a)), the 
proof is very similar to tha!t of Theorem 3.1, and is omittefd. 

Although it will not be shown here, Ap2 can be extended to a fully approximation 
algorithm for Prl(B), where 99 is any subset of {x + y, x. y, x ‘, y”, CB~}, which is the set 
of all ‘elementary’ increasing operatip2zs on the integers [ 111. 

We shall now consider t e following generalization of Pr 1: 

. Let 9.9 be a set of binary operations defined on the integers, and let D 
be a (possibly infinite) set of integers. Pr2 (8, ) is the following problem: Given 

(a1 3.0-9 a,,, b), find the maxrmal integer k sati 
(1) For some iOE {1,2, . . . , n) and for some (xi,, xiO+l, . . . , x,,) E 

result of a computation of (x~u~iO, .z~~+~G~~+~, ~,a,) over B. 
(2) k~b. 
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Pr2({x + y, ul}, 2’) = Pr2({x + y}, Z’) is the unbounded knapsack problem: Given 

(al,. . . 9 a,, b), find the maximal integer bc s b such that z ajxi = k has 2 nonnegative 
integer solution. 

The following definition, adopted from [ 121, is used in the proof of 6 11: next lemma. 

. Let (A, t)Ext and (B, t& Ibe NPOP’s. A function _; : C* + 

measure preserving reduction of the former to the latter if: 
(a) g(a)EBo a CA; 

(b) k/a E A, h(a) = t&z(a)). 

A If B c (x + y, x l y, x ‘, ul}, then Pr2{@: 2’) is fully appvximable. 

By WI, if (B, t ) 
measure 

2 EXt is full approximable and there is a polynomial time 

preserving reduction of (A, tl)Ext to (B, t:.)Ext, then (A, tl)Ext is also fully 
approxnnable. Kence, in order to prove the lemma, it suffices to show that 
pr2(%, 2’) is reducible to Prl (a), which was shown to be fullv approximz ble in the 
previous section, by a polynomial time measure preserving reduction. 

We shall introduce a polynomial time m.easure preserving reduction of Pr2({x + 
y, ut}, 2’) to Prl({x + y, u,}). Othe,r cases may be proved similarly (although the 
proof may be a little more involved): Let a = (g 1, . . . , a,, b) be an inp& to 
Pr2(B, 2’). For each i, replace ai by a sequence (ai, 2ai, 4ai, . . . , 2”ai), where 
li = [log&/ail. The resulting sequence a’ = (al, 2al,, . . . ,2’la!, a2, . . . , 2’na,, 6: will 
be taken as an input to Prl({x + y, u,}). It is left eo the reader tg check tha* the 
reduction above is a polynomial time measure preserving reduction. 

In some arithmetical combinatorial problems, it is required that all integers 
appearing in the input sequence take part in the computatiol.1 (e.g.) the Partitio. 
Problem: given (a 1, . . . , a,), does C xiai = 0 have a ( - 1, 1) solution?). To distinguish 
these problems from others, we adopt the following convention: If ul&%, ther. 

Pr2(3, D) is the following problem: given (al, . . . , a,, b), find the maximal intege.i k 
* 

satisfying: 
(1) For some (x1,. . . , x&D”, k is a result of a computation of 

(xlal, x2a2,. . . , xnan) over 9% 
(2) k sb. 
Pr2((x + y}, (-1, 1)) is the problem: given (aI, . . . , a,,, b), find the maximal integer 

K s b, such that k = C xiai as a (-- 1,l) solution. y the NP-completeness of the 
artition Problem [7], this problem can be easily shown to be rigid (provided 

a,,, 6) find the maximal 
hown that this problem 
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is either in or it is rigid and (hence) not approximabie [ 1 I:\. Oln the other hand, 
Pr2({x + y}, 2) is the problem: Qn input (Q, . . . , a,, b), find the maximal k G b such 
that .k = c XiUi has an integer solution. This problem is equivalent to finding the 
maximal k s b which is divisible by the &: catest common divisor of kt 1 y o . . , a,,$ which 
by Euclid algorithm, is in P. 

Table 1 summarizes results on the complexity and approximability of related 
problems. Some of the results were proved above, and the proofs of other results are 
not hard, and may be found in [ 10, Xl]. 

Table 1 
Complexity and approximability of arithmetical combinatorial problems 

3 D Corpl zxity Approximability 
of Pr2(%, D) of Pr2QW, D) 

{x + y, 4 or by, ~11 or Ix + y, xy, uJ Ul NPC” fully approximable 

or {xy, xy, ul} or {x + y, xy, ut) 

{xY9 4 w P 

{Xfy}~SB~(x+y,xy,xy,u,~ z+ NPC fully approximabl; 

by, xy, hl 2’ P 

~~+Yk~c~~+y,w~y~ t-19 11 NPC rigid4 

~~+Y,ul~~~~c-(x+y,xy,xy,ul} c--L 11 

either in P, or [not in P and rigid11 

a P stands for polynomial time complexity, NPC for NP-Complete. 

Each of the problems listed in Table 4 (and many others) which is not in P, is either 
fully approximabie by algorithm Ap2, or is rigid,” and hence is not approximabie by a 
polynomial time algorithm at aill. 

Different versions of Pr2 may be obtained by changing the order by which 
elements from {al, . . . . a,) take part in the computation. Consider the following 
generalization of Yr2, to be denoted as Br3; Let B be a set of operations and let D be 
a set of integers. For each positive integer n, let Fn be the set of all functions from 

U ,2 , ,. . , n) to {1,2,. . . , n} and let C, be a subset of F,. Pr3(B, D, {G}) is the 
following problem: on input (aI, . . . , a,, b), find the maximal integer k s b satisfy- 
ing: For some i.,~ {1,2, . , . , n]~,~ for some (xi,. . . , x,& DnFio+‘, and for some 
cT f fu’, k is a result Of a computation Of (Xi@ o(io), X io+la a(ro+l), . . . , x,a a(n) ) over !% 

We shall consider three cases: 
(i) For eat!] n, C, = {In}, where I,., is the identity function. This case is represen- 

ted by Pr2. 
(ii) For each n, C, = F,. 

= S,, the set OF permutation of order n. 

4 Provided that P # NP. 
* If u&3?, then io= 1. 



~f~c{x+y,x~y,xy,u~}andD={l}~rD=Z+,thenP~3(B, 

is fully approximable. 

Suppose first that D = (1). Let Ap3 be algorithm 

3-7 replaced by: 

(3) T+Tu(P(s,a)l@EBn/3(s,a)sb}.’ 
Thus defined, Ap3 is a fully alpproximation algorithm to Pr3@, D, 1,E}), with time 

complexity O(max{Z(a)‘, r(a)3~3}). This can be proved in the same way as Theorems 
3.1 and 3.2, with the exception that lines (a)-(s) require O(l TI l n) i;ime, instead of the 
0(lTI) time that was required for lines (4)-(7) in Apl and Ap2. 

If D = .Z*, then the same measure preserving reductions exhibited in Lemma 4.1 
may be used to prove the result. 

Pr3(9?, D, {Sn)) seems to be much harder. We do not even 
Pr3({x + yp x 0 yf ul}, {l}, (&}) is P-simple. The question whether this problem is fully 
approximable therefore remains open. Another (open) problem Es the following: Is 
there any arithmetical combinatcrial problem (in the sense of this paper), which 
cannot be approximated by the techniques introcluced in this paper, but which is fully 
approximable by some other nlethod? A Gird open problem is: Is the set 

{(al,. . . 9 a,)I(tli,aiEZ+)A(CXiai = 0 has a non trivial { - 1, 0, 1) solutkln)} in P? A 
positive answer would imply that Pr2({x + y}, (-1 q 0, 1)) is polynomially solvable, 
while a negative .answer would1 imply that Pr2({x + y}, (-1, 0, 1)) is rigid. 

This paper is a part of the author’s Ph.D. Thesis, supervised by Professor Azaria 
Paz, to whom the author wishes to express his thanks. Tht: author also wishes to 
express his thanks to an anonymous referee, for his sugp;estions to improve the 
representation of the paper. 
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