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Abstraet. A general approximation technique for a large class of NP-hard optimizaticn problems
which involve arithmetic calculations is given. This technique guarantees a v, orst case relative eiror
smaller than ¢ in time which is polynomial both in the size of the problem instance and 1/¢. Itis also
shown that problems in that class which are not approaimabie by this technique are nou
approximable in polynomial time at all, provided P # NP, and hence *his technique is ti:c most
general approximation technique applicable to this class.

1. Introduction

Let Z* denote the class of nonnegative integers. There is a large class of algorith-
mic problems which are generally stated as follows:

On input a=(a,,...,au by,...,bn)e(Z")""™, finu the maximal (or minimal)
integer k satisfying:

(a) k is the result of some specific arithmetic operations on {a, ..., a.}, to be
executed according to specific rules given together with the probiem, while

(b) the above operations should be executed accordine to given restriction,
depending on {b,, ..., bm}.

A simple and weli-known example of such an ‘arithmeticai combinatorial prob-
lem’ is the ‘subset sum’ problem: given (a,, ..., a,, b1, . . ., b,, b), find the maximal
integer k satisfying:

(@) k=Yi-1 e, where g;€{0, 1} fori=1,..., r, while

(b) Xi-1ebi<b.

Other examples are ‘Job sequencing with deadlines’ [7, :3], many scheduling
problems [13,9, 5, 4], the ‘subset product’ problem [10], etc.

When viewed as recognition problems, the problems mcntioned are in NP,
provided that the arithmetical operations and the verifications of the restrictions can
be executed by polynomial time bounded algorithms. Some of those problems are
also known to be NP-complete, and (hence) it is unlikely that there are polynomial
time algorithins for solving them.
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On the other hand, for some of those problems fast approximation algorithms have
recently been found, which guarantee a werst casc relative error smaller than «, for
arbitrarily small positive &, in time polynomial in both the length of the inputand 1/¢
[6, 13, 5,2, 106]. Such problems are called ‘fully approximable’ [12], or are said to
have a ‘full polynomial time approximation scheme’ [3]. (A characteri :ation of those
problems is given in [12].) We note that all of the NP-completc optimization
problems, which appear in the literature (see e.g. [2]), and which ar: known to be
fully approximable, are ‘arithmetical combinatorial problems’ in the sense described
above.

In [12] it was shown that if a problem is fui y approximable, then it must satisfy a
certain condition, denoted as ‘P-simplicity’. This condition (to be defin.ed rigorcusly
in the next section), is shown to be equivalent to the existence of an algorithm to find
the optimal solution in time polynomial in both the length of the input and the value
of the optimal solu*ion. The goal of this paper is to produce a general approximation
scheme, which will produce a full approximation algorithm for many problems which
satisfy the condition of P-simplicity. This scheme is based on a technique called
‘6-condensation’, which ‘condense’ several partial solutions of the problems which
are ‘within distance 8’ (in a sense to be defined) each from the others, into one partial
solution. The numerical value of é is determined by the specific problem and by the
desired accuracy, €.

For a large class of optimization problems it will be shown that they ar. either fully
approximable by the scheme introduced, or are not fully approximable at all
(provided P # NP). It follows that the scheme given is the most general approxima-
tion scheme for problems in that class.

2. Preliminaries

The following definitions are adopted (with minor changes) from | 12]: For aset A,
let Po(A) denote the set of all finite subsets of A:

[2efinition 2.1. An NP optimization problem (NPOP) is a labelled pair (A, #)gxe
where:

(1) Ext=Max or Ext=Min,

(2) A< X*isarolynomial time recognizable set.

(3) tis a function ¢ : A > Py(Z ™), which can be computed by a nondeterministic
polynomial time bounded algorithm.

For 2 given a, Ext(t(a)) (the optimum of a) is denoted as op(a).

Definition 2.2. An algorithm sol is <2id to solve (A, t)gy if for a!l a € A, sol(a) =
op(a). (Sol(a) denotes the output uf Sol on input a.)

In what follows, we shall assume that Ext = Max. The results obtained are true for
the dual problems with Ext = Min, too, up to some minor charges in the procedures.
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Definition 2.3. An algorithm Ap is said to be an ‘¢ approximation algorithm’ for
(A, B)max if for all a € A, Ap(a) € t(a) and Ap(a) =(1-¢€)op(a).

Definition 2.4. (A, t)max is approximable if for all £ >0, tkere is a polynomial time
algerithm which ¢ approximate (A, 1)pax.

Definition 2.5. (A, t)max is fully approximable if for all £ >0 there is an e-approxi-
mation algorithm to (A, #)max With time complexity Q(l(a), 1/¢), where & is some
fixed polynomial in two variatles, and /(a) is the length of a.

Definition 2.6. (A, 1)k, is simple if for all k € Z™, the sei {a € A|op(a) <k} is in P.
(A, tx is rigid if it is not simple. (Note that if P=NP, then there are no rigid
NPOPs.)

Definition 2.7. (A, 1), is P-simple if for all ke Z*, the set {a € A|op(a)<k} is
recognizable in Q(/(a), op(a)) time, for some fixed polyncmial Q.

Lemma 2.1. The following co'iditions are equivalent:

(@) (A, )ex is P-simple.

(b) Foreacha € A, op(a) .an be found in Q(l(a), op(a)) t.me, for some polynomial
Q.

Proof. (a)- (b): If (A, t)ex is P-simple, then there exists a polynomia! Olx, v} which
is nondecreasing in both its variables, such tha. for each a € A, the problem ‘is
op(a)> K ? can be solved in O(l(a), k) tire. Thus, it is easy to see that the foilowing
algorithm finds op{(a) in op(a)é(l(a), op(a)) = QA(‘l(a), op(a)) time:

Begin

k<0

while op(a)>k do k<« k +1
opla)«k

end

(b) - (a): suppose (b) holds. Then there is an algorithm sol which, for each a € A,
findop{a)in Q(l/(a), op(a)) time, where Q is ncndecreasing in its both variables. The
following algorithm will recognize the set {a € A |op(a) <k} in Q(/(a), k) time for
some polynomial Q:

Start the execution of Sol on input a
1f Sol does not stop during the first Ol(a), k) steps then reject
else

i op(a) <k themn accept

else reject
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The following results were obtained in [1? ] and are given here without proofs:

Theorem 2.1. If (A, t)gx is rigid, then (A, t)ex is not approximable.

Theorem 2.2. If (A, )ex is fully approximable, then (A, tex: is P-siiaple.

(In [12] it is shown that P-simplicity does not imply full approximbiiity.}

By Theorem 2.2. and Lemma 2.1, if (A, )gx is fully approximable, then there
exists an algonthm Sol, which solves (A, t)gx in O(a), op(a)) time, for some
polynomiai Q. In this paper algorithms such as Sol above will be modified to full
_ approximation algorithms for a large class of (A, f)e. problems. This is done by using
a general ‘condensing’ technique, which is incorporated into certain stages of Sol.
This technique is a generalization of the one appearing in [10], which was itself a
variant of some techniques of [13] and others. It will be shown that the problems
dealt with in this paper, which are not in P and which cannot be approximated by the
above technique, must be rigid (see Definition 2.6), and hence, by Theorem 2.1, are
not approximable.

To simplify the exposition we shall consider problems of the fzilowing type: Given
(a,...,a,b), find the maximal integer k <b, which can be obtained by certain
arithmietic operations on (ay, . . . . 4,), to be executed according to given rules. The
generalization of the approximation techniques for this problem to the nmore general
problem presented at the beginning of this paper, will usually be obvi.us.

Note. For the sake of consistency with previous papers on full approximation
algorithms, we use the ‘uniform cost’ criterion in analyzing the time complexity of
algorithms, in which additions and multiplications of integers require constant time
[1, Chapter 1]. It should be clear that the use of a ‘logarithmic ccst’ criterion would
increase the time of computation by at most a polynomial factor, and hence would
not affect the full approximability feature of the algorithms.

3. A representation cf the algorithms

We first consider a problem which is a generzlization of the subset surn and subse:
product probl:ms. Let (a;,...,ar)€ (Z*)* be given, and let B1(x, ¥), . . ., Bx-1(x, ¥)
be k —1 (not necessarily distinct) binary operations defined on the integers. With
each sequence {ai,B1,daz B2, ...,0ar-1,Br-1,ax) We associate a ‘computation
sequence’ (my, ..., m;) defined by:

(@) mi=ay,

(l.,) fori= 1, sy k- 1, M1 =ﬁ,-(m,-, a,-+1).

(Thus the computation sequence of (3, x”, 2, x +y, 1)is (3, 9, 10).) m is called the
result of the computation. (The output of a single element sequence (a,) is defined to
be 0.) If A is a set ot binary operations such that for each i, 8; € 4, then (m;, . . ., M)
is said to be a ‘computation of (ai, ..., a;) over B".
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Definition 3.1. For a given set of binary operations 7, the problem Pri(%) is the
following: given (a, . .., a,, b), find the maximal integer k satisfying:

(1) for some ip€rl,...,n}, k is a result of a computation of (a, a;+1,, . . ., a,)
over %, and

(2) k=<b.

Define a binary operation u; by: u:(x, y)=x. Prl(u;, x +y) is a version of the
well-known knapsack problem, usually called the maximal subset sum prcblem:
‘given (ay,...,a, b), maximize Y &a;(e; €{0, 1}), subject to ¥ ria;<b.” A full
approximation algorithm for this problem was first obtained by [6]. Pr1{u, xy) is the

subset product problem, for which a full approximatic:. algorithm was obtained in
[10].

Definition 3.2. A binary operation 8 is ‘increasing’ if B(x, y)=x for all x, y >0
(x,yeZ).

The operations x +y, xy, x*, y*, u,, are increasing, while x —y and y —x are not.
Lemma 3.1. If B cortains only increasing operations, then Pr1(B) is P-simpie.

Proof. By Lemma 2.1, it suffices to show the following:

For each a =(ay, ..., a, b), op(a) can be found in time polynomial in /(a) and
op(a) (wlg. a;<b for i=1,...,n). The {ollowing algoritim Sol finds op(a) in
O(n op(a) log(op(a)) time:

Sol: Inputa =(a,,...,a, b). Output: on(a)
begin
i«l;T«G
1. if T #0 then [insert ‘partial computations’ which contain a; in 7]/
begin
for each s in T do
T« Tu{B(s,a;)|BeBABis, a;)<b}
end
T« Tu{a}
if i = n then [halt; return max(T)]
else [i «i+1;goto 1]
end

tt is easy to see that at the termination of Sol, T is equal to #(a), and hence
max(T) =op(a). By using an appropriate daia structure to represent T (e.g. 2-3
trees, see [1, 4.9-4.10]), the execution time of lines 2-5 is O(|B||T|log|T]). The

' If u, £ B, then s should be deleted from T before the combining of the st {8(s, ¢,)18 € B A B(s. «,) =
b} with T.
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execution time of the other lines is a constant. || is a constant, and since T contains
cnly positive integers <op(a), | T|<op(a) all through the execution of the algorithm.
It follows that the time ccmplexity of the algorithm as a whole is
O[n op(a) log op{a’].

Note. If for all B € B, B also satisfies the following: For all x4, x2, y >0, x;=x,>
B(x1,y)=B(xa, y), then the time complexity of Sol above can be rzduced to O[n
op(a)], by keeping T as an ordered list. (See e.g. [8, Section 2] for details.) Since all of
the increasing binary operations mentioned in this paper satisfy the property above,
we shall use this £act ‘n analyzing the ti:ne coraplexity of the algorithms which will be
given later in this paper.

Lemma 3.1 provide us with a necessary condition for full approximability. We
shall show that if B < {xy, x +y, u1}, then algorithm Sol introduced in Lemma 3.1 can
be modified to a full approximation algorithm for Pr1(9). First we need several
lemmas. Let R denote the set of real numbers.

Lemma 3.2. Forallr=2,foralln>1(reR. ne2), ifk<r", then 1-1/r""")*>
1-1/r.
Proof. Use the binomial expansion of (1—1/7"")*.

The technique which is used to obtain a full approximation algorithm from a given
algorithm Sol is the ‘6-condensation’, which is defined and investigated below. The
role of this technique is to keep | T'| relatively small, even when op(a) is large. This is
done by deleting from T, at each stage, elements which are ‘8-close’ to some other
element s in T. (That is:.to ‘condense’ thosz elements into s.) This §-condensation
may cause that at the end of the computation Max(T'(a)) is smaller than op(a), and it
must be done in such a way that the difference op(a)-Max(¢t(a)) remains smail
relatively to op(a). If &= {x+y, u1}, then the various rounding techniques o,
[6, 13, 8]form an appropriate such condensation {or Pr1(2), which is the subset sum
problem. But those techniques.fail for Pr1({x - y, u,}) (that is: for the subset product
problem) [10, 11]. The technique introduced here will be shown to be efficient for

Pr1(2#), where % is any subset of {x +y, x - y, x, y*, u1}, and for many other related
problems.

Definition 3.3. Let (mi,...,m;) be the computation sequence of
(a1, B1, a2, B2, . . ., Ak—1, Br-1, ax) and let 0 < & < 1. Asequence (m}, mb, ..., m})is
a §-condensation of (m,,...,m,) if there exists a sequence (hy,..., h)e R,
0<h; < 3§, such that:

(@) mi =m(l—hy)=a,(1-hy),

b) miv =[Bi(mi, a1 -hisa) (i=1,...,k~1).
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Lemma 3.3. Let (mi,...,my) be a computation sequence of (a,pB,
az,...ak-1, Be-1, ax) and let for i=1 yk—=1, Bie{x+y,x -y, us}. Let r
bea realnumber r=k,8=1/r. If(msy, ..., mk) is a 8-condensation of (m., ... my),
then 1=mi/m.=1-1/r.

Proof. Clearly 0=<mj <my, and hence 1=m;/my. For the second inequality, we
prove by induction for j=1,..., k that m}/m;=(1-1/r°) . Substituting j = k and
using Lemma 3.2 with n = 1, we obtain

as desired.
For j=1, m} =m;(1—h)=m,(1-1/r*". Suppose now that

i
13
m; r

We shall prove that m|.,/m;,, =(1-1/r%)""".

If B,' = Ui, then
mj.1 - m;(1 "hj+1)>mi(1 -1/r%(1 "h1+1)>(1 _ 1) '

mi.1 m; m

If B; = xy then

miey _migje(1—hp)  my(1— 1/r?Ya;1(1 = hjsy) >(1 __1_)
M. ma; ., mi@; 1 r’

If B;=x+y, then

m,+1 (m,+a,+1)(1 h,'+1); (m,(l l/r )’+41,+|)(1 h,+1)

m;q m;+aj.q m; +auje1
> (m,~ - a,-+1)(1 - 1/r2)i(1 - h,‘+1) = (1 “l)j-rl
mi+a;.q r

Lemma 3.4. Let 1<a,<a,<-:-<a,<b be given, such that a;/a;+, < 1-8, where
0<é6=<1.Thent<|(2Inb)/8].

Proof. First, we note thata;,,/a;>1+8.Hence (1+68) '<a,(1+8) '<a,<b,or:
(1+8)! < b. Taking logarithms to base 1+, we get:

Inb _ Inb <21n‘b
In(1+8) s8-38°+18%...~ &

t--1 $10g1+5 b=

ie. t<(2Inb)/é+1.
The result follows from the fact that ¢ is an integer.



296 S. Moran

The following algorithm, Apl, is a fully approximation algorithm for Pr1(®),
where B is any subset of {x +y, x -y, u1}.

Apl: Input: a=(as,...,as b)e(Z)""", e >0. Output: An integer k € t(a), such
that op(a) =k =op(a)(1—¢)
begin
r«Max(1/e, n)
5 « 1/r%[l5 is the ‘condensing’ parameter/
icl;Ted
if T =0 then
begin
for every set do
T« T U{B(s, a:)|B B rB(s,a)<b}
end
7. T« Tula}
8. Sort Tjassume T =(s1,. .., S), S <Siv1f
9. if i = n then [halt; return s,]
10. [condensingfj« 1, k<2
11. while k<t and sij/six>1—6 do

B

o @

begin
12. TeT-{sih;kek+1
end
13. if k <t then
begin
14, jek;kek+1
15. goto 1l
end

else/The condensing is finished//
16. i<i+1l,goto4d
end

Theorem 3.1. Foreach e > 0, algorithm Ap1 provides an e-approximation to Pr1(R ),
where B < (x +y, xy, 111}, in O(max{l*(a), I*(a)/e*}) time.

Proof. By the definition of the problem, op(a) is an output of a computation of a
sequence (A, Gig+1. - - . , ) Over B, for some 1 <igsn.

Let the computation sequence be (m;,, mi+1,...,m,), (m, =op(a)), and the
corresponding sequence be (@i, Bigs Big+15 Big+1s + + + » Bu-1, An). -

Suppose that Ap1 is carried out with a = (ay, . . ., a,, b) and £ as input. Denote by
T,fori=1,2,...,n—1,the content of T at the termination of the 8-condensation
at the ith stage (i.e. just before line 16 is encountered for the ith time). T, will denote
the contents of T at the termination of the algorithm. We shall prove by induction
thatfori =iy, ip+1,..., n, thereisin T; and element m;, such that the sequence m,,
Mig.,s . - ., iy is @ 8-condensation of (m, ..., m,), (with & = 1/r%).
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When i = iy, it is easily checked that either a,, is in T}, (a;, is inserted in T at line 7),
which means that a;, was not deleted from T during the condensing, or there is an
integer m,, in T, such that 1>, /a,,>1— 8. In the first case we take m;, to be a;,
end in the second case we take m;, to be r;,. In both cases m; /m;>1—-8.

Suppose now that (m;,, Mmiy+1,..., m;) is a 8-condensation of (m,, ..., m;), and
that m; € T;. By the same argument as above, either 8;(mi, a;.,) isin T}.., or there is
an integer #;+; in T, such that

A
mMi+q

1>
> Bl(m :" ai+l)

>1-6.

If we take m;., to be B;(mi, a;.1) in the first case, or ;. in the second case, we have

that (m;,, ..., mj, mi.,) is a 6-condensation of (m,, ..., m;, m;.-).
By Lemma 3.3,
! ’
L L
m, op(a)

Since the output of Apl, denoted as m}, is max(T,) = m,, we have

%k '
m m
"o n

op(a) op(a)

=

>1-e¢.

Hence, m} is e-approximation to op(a).

To prove the complexity, we first note that for each i, |T;|<0(2/(a)/5). This
follows from Lemma 3.4, with In(b) = O(/(a)).? It follows that |T| is O(/(a)/8) all
through the algorithm. By the note after Lemma 3.1, the time complexity of the
algorithm as a whole is O(nl/(a)/8). Sinve n<lI(a), this is equal to G{/(a)®} if
l(a)=1/¢, and to O(l(a)*/?) if I(a)<1/ .

Note. Algorithm Apl not only provides an g-approximation to op(a), but it also
provides an g-approximation to each m € t(a). Tkis property, (which is not shared by
the previous approximation techniques of [6, 13]) can be used for simultaneously
approximating several problems, with the same (ay, . . ., a,,) and &, but different b’s.

We shall show now that Ap1 can be generalized to a fully approximation algorithm
for Pr1(£8), where @ is any subset of {x +y, x * y, x’, u;} (i.e. the operation m;!
may be executed too).?

Lemma 3.5. Let k, I, by, 52, ..., b; be 1 +2 positive integers, where b; =2 for i =
1,...,L Let a ‘legal sequence’ be a sequence (fi,...,%) where n =k +I1, which

2 Under the logarithmic cost criterion, In(b) = O(/(a)). Under the uniform cost criterion, In(b)<C
where C is some constant (C = the amount of storage in each register, see [1. 1.3]).

3 Note that if m{i*! < b, then m+* can be computed in O(log? b) time and hence also ir O(/(c)°) time.
where a =(ay,...,a, b).
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satisfies the following:

(@ fi=1;

(b) fis1=f;+1 or fis1=fbi for some 1<i<I, and for each i there is a unique j s.t.
fj+l =fjbi-

Let f=max{f,|(f1,...,f.) is a legal sequence}. Then f=Ekb.by:--b (ie.
(fl,. . .,f,,,=(1,2,. . .,k, kb1,kb1b2,. ..,kbl . ..b))).

The easy proof of this lemma is omitted.

Lemma 3.6. Let (my, ..., m)e(Z")* and (ay, ..., a)e(Z") be given, such that
mi<mis jori=1,...,k—1 and | <k. Assume :hat for some iy, ..., i, 1<i;<
i e<g<k:

(a) m; =2;

(b) miy= mf,,".

Then aa; - - - a,<log, my.

Proof. Since ij.1=i;+1, m; , =m;., = m;. Hence we have that

a a a,a Qa4 Q
. o1 s L2 172 . S1%2 -1
my,Zmil, my=2m2 =Z2m}, ..., m,=m;

Since m;, =2, my, = m;.1 = mji/, we have that m =m% "4 =2%%"""%

Lemma 3.7. Let (my,...,my) be the computation sequence of (ai.pB1,az,...,
Ak-1, Br-1, ax), where for i=1,..., k-1, Bie{x+y,x -y, x",u.}. Let r be a real
number, r =max{k, log, m;}, and let§ =1/ r.

If (my,...,my) is a 8-condensation of (my, ..., my), then 1= mi/m,>1-1/r.

Proof. Without loss of generality we may assume that if 8; = x’, then m; =2 and
a;+1 = 2. (Otherwise replace 8; by u,.) With the sequence (a;, 81, . . . , Bk-1, ax), let
us associate a sequence (g, . . ., g) as follows:

(@ gi1=1,

(b) gi+1=1if B1# x’ then g; + 1, else gia;++1].

(Thus, with (2. x%, 3, x +y, 6, x’, 2) we associate the sequence (1,4, 5, 11).)

If we replace in the sequence (g, .. ., gk), each g;.; which is equal to ga;.: +1,
with the two elements (ga; .+, gia:+1+ 1), then we obtain a new sequence of lengtn
k +1, where | =|{i|8; = x”}|. (Thus, the sequence (1, 4, 5, 11) above will be replacad
by (1,3,4,5,10,1i).)

This new sequence satisfies the conditions of a ‘legal sequence’ of Lemma 3.4, v ith
k,l,ai.1,ai,+1,...,a,+ (Whereiy,..., i are the indices for which B;, =x"). Hence
gk <kui 41+ aj1. Moreover, the sequences (my, ..., m) and (da,41,...,a,.:)
satisfy the conditions of Lemma 3.6, and hence a;,+1@i,+1 * * * @y+1 <lOgomy.
Combining the above results, we have that g, <k log, my < r.

We shall now prove, by induction, that for j=1,...,k, m'/m;>(1-1/ r*): For
J =1 the hypothesis is true by definition.
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If the hypothesis is true for some j=1.and 3;€{x+vy, 'y, u3}, then
m; 1\ &1 1\ &+t
LTES r r

by an argument similar to that of Lemma 3.3.
If B; =x’, then

mia _(m" 1 (1= k) (my(1=1/r)%) (1 - hy)
M1 m;‘iu m;;lid»l

1\ &%+ 1 ga;. +1 1\ i+t
(1) @- ,-;?(1—--——) =(1——) .
(1 r3) (1-h; 3 2

N\

Substituting in the above inequality j = k. we obtain:

r2

/ 1% 1 1
Ln—"z(l——g) 2(1——5) >1--
my r r r

(The last inequality is by Lemma 3.2, with n =2.)

Let Ap2 be algorithm Ap1 in which lines 1 and 2 are replaced by:
(1) remax{l/e, n, log, b},
2) 8<1/r.

Theorem 3.2. For each € >0, Ap2 provides an e-approximation to Pr1(RB), where B
is any subset of {x +y, x -y, x*, u1}, in O(max{l(a)*/&>, I(a)*}) time.

Proof. Let a =(a,,...,a, b). Noting that n =0O(/{a)) and log, b = O(l(a)), the
proof is very similar to that of Theorem 3.1, and is omitted.

Although it will not be shown here, Ap2 can be extended to a fully approximation
algorithm for Pr1(2), where 4 is any subsetof {x +y, x - y, x”, y", u,}, which is the set
of all ‘elementary’ increasing operatio::s on the integers [11].

4. Generalization
We shall now consider the following generalization of Prl:

Definition 4.1. Let 2 be a set of binary operations defined on the integers, and let DD
be a (possibly infinite) set cof integers. Pr2 (9, D) is the following problem: Given
(ai, ..., an b), find the maximal integer k satisfying:

(1) Forsome ipe{1,2,...,n} and for some (xi, Xi,+1,...,x,)€D" " kisthe
result of a computation of (x,,Giy, Xiy,,%:.,» Xn@n) OVeEr B.

(2) k<b.
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Pr2({x + vy, u1}, Z*) =Pr2({x + y}, Z") is the unbounded knapsack problem: Given
(ai, ..., an b), find the maximal integer k < b such that Y axx; = k has 2 nonnegative
integer solution.

The following definition, adopted from [12], is used in the proof of i"12 next lemma.

Definition 4.2. Let (A, t)gx and (B, t2)ex be NPOP’s. A function ;:3*->Z2%is a
measure preserving reduction of the former to the latter if:

(a) gla)e Ber acA;

(b) Yae A, ti(a) =t2(g(a)).

Lemma 4.1, If B<{x+y,x-y,x’, u}, then Pr2{B. Z") is fully approximable.

Proof. By [12], if (B, t2)ex is full approximable and there is a polynomial time
measure preserving reduction of (A, t1)gx t0 (B, t:)ex then (A, t))k, is also fully
approximable. Hence, in order to prove the lemma, it suffices to show that
Pr2(B, Z™) is reducible to Pri(4), which was shown to be fully approximeble in the
previous seciion, by a polynomial time measure preserving reduction.

We shall introduce a polynomial time measure preserving reduction of Pr2({x +
y, u1}, Z") to Pri({x +y, u;}). Other cases may be proved similarly (although the
proof may be a little more involved): Let a =(a,,...,a,,b) be an input to
Pr2(B, Z"). For each i, replace a; by a sequence (a;,2a;, 4a,, ..., 2Ya;), where
l; = |logzb/a;|. The resulting sequence a’ = (a4, 2ay. . . ., 24a,, ay, ..., 2%a,, b) will
be taken as an input to Pr1({x +y, u;}). It is left to the reader to check tha' the
reduction above is a polynomial time measure preserving reduction.

5. Complexity resuits — nonappreximable problems

In some arithmetical combinatorial problems, it is required that all integers
appearing in the input sequence take part in the computation (e.g., the Partitio.
Problem: given (a, ..., a,).does ¥, x;a; = 0 have a{~1, 1} solution?). To distinguish
these problems from others, we adopt the following convention: If u; € %, the:.
Pr2(4, D) is the following problem: given (ay, . . ., a,, b), find the maximal intege: k
satisfying: '

(1) For some (xi,...,x,)eD", k is a result of a computation of
(x1a1, x2a3, ..., x,a,) over A.

(2) k<b.

Pr2({x + y},{—1, 1}) is the problem: given (ay, . . ., a,, b), find the maximal integer
x < b, such that k =) x;a; has a {- 1, 1} solution. By the NP-compl:teness of the
Partition Problem [7], this problem can be easily shown to be rigid (provided
P # NP), and hence, by Theorem 2.1, it is not approximabie.

Pr2({x +y, us}, {—1, 1}) is the problem: Cn input (ay, . . ., a,, b) find the maximal
k < b such that k =) x;a; has a {—1, 0, 1} solution. It can be shown that this problem
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is either in P, or it is rigid and (hence) not approximable [117]. On the other hand,
Pr2({x +y}, Z) is the problem: Cn input (a,, . .., a., &), find the maximal k < b such
that k =} x;a; has an integer solution. This problem is equivalent to finding the
maximal k < b which is divisible by the g: cutest common divisor of ay, . . ., a,, which
by Euclid algorithm, is in P.

Table 1 summarizes results on the complexity and approximability of related
problems. Some of the results were proved above, and the proofs of other results are
not hard, and may be found in [10, 11].

Table 1
Complexity and approximability of arithmetical combinatorial problems

B D Corzploxity Approximability
of Pr2(4, D) of Pr2(%, D)

{x+y, ui}or{xy, us}or {x+y, xy,u} {1} NPC* fully approximable

or {xy, x*, u}or {x +y, x”, u;}

{x?, u1} {1} P

{x+yleBc{x+y, xy, x%, us} Al NPC fully approximabl.

{xy, x*, us} z* P

{x+ylcBc{x+y, xy, x"} -1, 4 NPC rigid*

x+y,u e Ba{x+y,xy, x*, u} {-1,1}

either in P, or [not in P and rigid]

? P stands for polynomial time complexity, NPC for NP-Complete.

Each of the problems listed in Table ! (and many others) which is not in P, is either
fully approximable by aigorithm Ap2, or is rigid, and hence is not approximable by a
polynomial time algorithm at all.

Different versions of Pr2 may be obtained by changing the order by which
elements from {a,, ..., a,} take part in the coniputation. Consider the following
generalization of Pr2, to be denoted as Pr3; Let & be a sct of operations and let D be
a set of integers. For each positive integer n, let F, be the set of all functions from
{1,2,...,n}to {1,2,...,n} and let C, be a subset of F,. Pr3(B, D,{C,}) is the
following problem: on input (ay, ..., a,, b), find the maximal integer k < b satisfy-
ing: For some i,e{l1,2,...,n},’ for some (x;...,x,)eD" "', and for some
o < C,, k is a result of a computation of (xX;,@ (i) Xig+1@ otig+1)s - -  » Xn@ o)) OVEr B.

We shall consider three cases:

(i) For each: n, C, ={I,,}, where I, is the identity function. This case is represen-
ted by Pr2.
(ii) For each n, C, =F,.
(iii) For each n, C, = §,, the set of permutation of order n.

4 Provided that P # NP,
*If uy£B, then ip=1.
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Theorem 6.1. IfB<{x+y,xy,x’,us}and D ={1}orD = Z", then Pr3(B, D, {F,})
is fully approximable.

Outline of proof. Suppose first that D ={1}. Let Ap3 be algorithm Ap2 with lines
3-7 replaced by:

B3) iel; Te{ay...,an 05 A<{ay,...,a.}

(4) For every s in T and for every ac A do

(3) T« TuU{B(s,a)|eBrB(s.a)<b}.

Thus defined, Ap3 is a fully approximation algorithm to Pr3(B, D, ' E}), with time
complexity G(max{l/(a )8, 1(a)*¢>}). This can be proved in the same way as Theorems
3.1and 3.2, with the exception that lines (4)-(3) require O(|T|- n) :ime, instead of the
O(|T)) time that was required for lines (4)-(7) in Ap1 and Ap2.

If D = Z", then the same measure preserving reductions exhitited in Lemma 4.1
may be used to prove the result.

Pr3(%, D, {S.}) seems to be much harder. We do not even inow whether
Pr3({x +vy, x -y, u3}, {1}, {S..}) is P-simple. The question whether this problem is fully
approximable therefore remains open. Another (open) problem is the following: Is
there any arithmetical combinatcrial problem (in the sense of this paper), which
cannot be approximated by the techniques introdiuced in this paper, but which is fully
approximable by some other method? A third open problem is: Is the set
{(a1, ..., a.)|(Vi,a;€ Z") A (T x:a; =0 has a non trivial {~1, 0, 1} solution)} in P? A
positive answer would imply that Pr2({x +y}, {-1, 0, 1}) is polynomially solvable,
while a negative answer would imply that Pr2({x + y}, {1, 0, 1}) is rigid.
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