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correctly. In particular, the admissible runs assumed by a 
t-resilient protocol  are runs which are fair for all but  at 
most  t processors. In this paper we define closed sets of 
runs, and suggest a technique to prove impossibility results 
for x-resilient protocols,  by restricting the corresponding 
sets of admissible runs to smaller sets, which are closed, as 
follows: Fo r  each protocol  P R  and for each initial config- 
urat ion c, the set of admissible runs of PR  which start f rom 
c defines a tree in a natural  way: the root  of the tree is the 
empty run, and each vertex in it denotes a finite prefix of 
an admissible run; a vertex u in the tree has a son v iff v is 
also a prefix of an admissible run, which extends u by one 
a tomic step, 

The tree of admissible runs described above may  con- 
tain infinite paths which are not  admissible runs. A set of 
admissible runs is closed if for every possible initial config- 
urat ion c, each path  in the tree of admissible runs starting 
from c is also an admissible run. Closed sets of  runs have 
the simple combinator ia l  structure of the set of paths of  an 
infinite tree, which makes them easier to analyze. We 
introduce a unified method  for construct ing closed sets of 
admissible runs by using a model-independent construction 
of closed schedulers, and then mapping  these schedulers to 
closed sets of runs. We use this construct ion to provide 
a unified p roof  of impossibility of consensus protocols.  

Key words: Closed schedulers - Asynchronous  protocols  
Admissible runs 

1 Introduction 

A distributed decision task is a distributed task in which 
every processor  eventually makes an irreversible decision 
step, such that  the eventual decision values of the proces- 
sors must  satisfy the i npu t /ou tpu t  relation that  specifies 
the task [12, 2]. One of the more  challenging problems in 
distributed comput ing  is the characterizat ion of the deci- 
sion tasks that can be solved in a completely asynchronous  
environment,  in the presence of crash (fail stop) failures, 
under  which processors may stop part icipating in the 
protocol  prematurely.  A protocol  that  solves such a task in 
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the presence of at most t crash failures is called t-resilient. 
A somewhat simplified version of this question can be 
formulated as the following decision problem: 

Input: A decision task T for n processes, specified by its 
(finite) input /output  relation, and a number t, t < t < n. 
Property: There is a t-resilient protocol for T. 
The research on the above problem was initiated in the 
fundamental paper [7], which proved the non-existence of 
1-resilient consensus protocols. Subsequent papers studied 
this question for other tasks, like approximate consensus 
[6], k-set consensus [5], renaming [1], and others. A gen- 
eral decision procedure for the above question when t = 1 
(and n is arbitrary) was given in [-2]. For  the case where 
t > 1 only partial results are known (e.g., [4, 14]). Notable 
among the papers which study t-resilient protocols for 
t > 1 are recent results which relate this question to prop- 
erties of high dimensional topological complexes [3, 8, 13]. 
In particular, this technique is used there to prove tight 
impossibility results on the k,set cosensus problem and on 
the renaming problem. However, a general decision pro- 
cedure for the above question is not known even for any 
f ixed n and t such that 1 < t < n. 

The difficulty of this problem does not seem to depend 
on the specific model of computation studied (i.e., shared 
memory or message passing), but more on the inherent 
difficulty of coordination between processors in a totally 
asynchronous environment, and in particular on the im- 
possibility to distinguish between faulty processors and 
processors which are very slow, but in working order. 
Consequently, it is possible to have a t-resilient protocol 
for a given task, with the following unpleasant property: 
The number of steps that may be executed by the protocol, 
when started from a certain initial configuration, before it 
fulfills its task, is unbounded. 

In this paper we propose an approach for analyzing 
asynchronous protocols which avoids the difficulty men- 
tioned above. In this approach, we restrict the set of 
admissible runs, for which the protocol is required to 
behave correctly, to a set of a simple structure, which we 
call "closed". A closed set of runs has the property that if 
a protocol is guaranteed to fulfill some task in each run in 
it, then it is guaranteed to fulfill that task within a fixed 
number of steps. We use this approach to provide an 
alternative proof  technique for the impossibility of t-resil- 
ient consensus protocols in various models. Specific ap- 
plications of this technique, some of which generalize the 
classical impossibility result of [7] in an interesting way, 
appear in [11]. We believe that the closed sets constructed 
here capture the fundamental properties possessed by the 
sets of all admissible runs, and hence can be used for 
proving other properties of t-resilient protocols. 

1.1 Protocols and runs 

A distributed system consists of a set of n (n => 2) asyn- 
chronous processors {Pl, .. . ,  P,}, modeled as (not necessar- 
ily finite) state machines, and of some means of 
communication among the processors (e.g., shared mem- 
ory or message passing). 

Each processor p acts according to a deterministic 
transition function tp. The transition function is described 

by the set of atomic steps which can be taken by the 
processor. An atomic step consists of a possible change of 
the processor's state, and of reading and /or  writing from 
the communication means. A protocol for a given distrib- 
uted system is a set of n transition functions, one per 
processor. 

A configuration of the system is a description of the 
system at some moment.  It consists of the internal state Of 
each processor and of the contents of the communication 
means. An initial cotfguration is one in which each proces- 
sor is in an initial state, and the communication means 
contains some default initial values. 

For  each processor p and for each  configuration c, 
there is a (finite) set of atomic steps that can be taken by 
p from the configuration c. A run of a protocol is an infinite 
sequence of atomic steps that can be taken in turn starting 
from some (initial) configuration c. Each atomic step is 
performed by one of the processors, and brings the system 
to a subsequent configuration: We say that a run r is 
applicable to a configuration c if it is a run that  m a y  start 
from the configuration c. If r is applicable to c~ then for 
every (finite) prefix r' of r, the configuration resulted from 
applying r' to c is denoted by a(c, r'). 

1.2 Closed sets o f  admissible runs 

A distributed protocol is required co fulfill a certain task 
w.r.t, a specified set of runs. which we call the set of 
admissible runs. Thus. the correctness of a protocol de- 
pends not only on the task it should accomplish, but also 
on the set of admissible run which are assumed. For 
example, there are protocols which are correct in a syn- 
chronous environment but not in an asynchronous one, 
and there are protocols which are correct when all proces- 
sors are non-faulty but are incorrect when processors are 
subject to failures. In both these examples, protocols which 
are correct for a restricted set of admissible runs become 
incorrect when the set of admissible runs is extended. 

Let R be a set of runs. and c be a given configuration 
We denote by R c the set of all runs in R which are 
applicable to c. R c defines an infinite directed tree, T (R c ~, 
in a natural way: the root of T(R c) is the empty run, and 
each vertex an it represents a finite prefix of a run in Re: 
a vertex u in T(R c) has a son v iffv represents a prefix of 
a run in R c, which extends u by one atomic step. When 
there is no ambiguity, we will identify vertices in T(R~I 
with the prefixes of runs they represent. 

For an infinite tree T. Paths(T) denotes the set of 
infinite directed paths in T. Note that for each set of runs 
R and for each configuration c, Pathst T~RCt) is a set of 
runs which are applicable to c. and PathsIT(R~))~ R ~. 
However Paths(TIROl) may contain runs which are not in 
R ~, For instance, it is possible that for every r e R ~, every 
processor takes an atomic step infinitely often in r. but 
Paths(T(R c)l contains a run in which only one processor is 
activated forever. 

A set R of runs is closed iff for every possible config- 
uration c. each path in T(RCt is a run in R c, i.e.: 
Paths(T(R~)) - R e. Closed sets of runs appear to be much 
easier to analyze than other sets of runs. since they have 
the simple combinatorial structure possessed by the set of 
paths of an infinite tree of bounded degree. One specific 



useful property which is possessed by such sets, is the 
following: if it is given that each run in R c eventually 
satisfies certain property, then it is guaranteed that this 
property is achieved within a constant number of steps. 
This property is proved in the following lemma: 

Lemma 1.1. Let R be a closed set of runs of some protocol 
PR. Assume that for some predicate Pred and for some 
configuration c, every run r ~ R ~ has a prefix r' which satis- 
fies Pred. Then there is a constant M~, such that every run 
r ~ R ~ has a prefix of length at most M~ which satisfies Pred. 

Proof. Let T = T(R ~) = (V, E). Define: 

V' = {v ~ V leach prefix v' of v does not satisfy Pred} 

E ' =  {e = ( v , u ) E E l v ,  u~ V'} 

By the definition, T' = (V', E') is a subgraph of T, and for 
each v ~ V' the directed path in T from the root to v is in 
T'. Hence T '  is a directed tree. If l V't < c~, then M~ = 1 + 
max{depth(v)lve V'} satisfies the requirement of the 
lemma. Otherwise, T '  is an infinite tree, the degree of its 
vertices is bounded, so by K6nig's Infinity Lemma [91 
there is an infinite directed path r in T'. This means that 
r is a run in R ~, all whose prefixes do not satisfy Pred, 
a contradiction. [] 

Unfortunately, in many cases the set of admissible runs 
which is of interest is not closed. The most notable 
example is probably the sets of admissible runs for t- 
resilient protocols, which must guarantee correct behavior 
in all runs in which at most  t processors are subject to 
crash (fail-stop) failures. Admissible runs of such protocols 
are runs which are fair with respect to at least n - t  
processors. The exact definition of "fair" depends on the 
specific model studied, but under all common definitions, 
the set of all n - t fair runs of a given protocol is not closed 
for 0_<t  < _ n - 2 .  

In this paper we suggest a unified method for proving 
impossibility results concerning t-resilient protocols, and 
exemplify this technique on consensus protocols. In this 
method, we prove the impossibility result with respect to 
a proper subset of the set of all n - t fair runs, which is 
closed, by using Lemma 1.1 above. The definition of this 
subset is based on a purely combinatorial  construction, 
which is independent on the specific model studied. In [11] 
we demonstrate our technique by using it to prove im- 
possibility of t-resilient consensus protocols in some vari- 
ants of the shared memory  model and of the message 
passing model, some of which are non-trivial generaliz- 
ation of the fundamental impossibility result of [7]. 

1.3 Summary of results" 

In the next section we define the consensus problem and 
present a general, model-independent, proof  of non-exist- 
ence of consensus protocols. This proof  assumes the exist- 
ence of closed sets of runs which satisfy certain properties. 
In Sect. 3 we provide a combinatorial  construction of 
closed schedulers, which are the main tool we use to 
construct the closed sets of runs needed for our proofs, and 
in Sect. 4 we describe the way this construction is applied 
to specific models of asynchronous computations. An 
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example of applying this general technique for proving 
impossibility of 1-resilient read/write consensus protocol 
in the shared memory model is given in Sect. 5. 

2 Consensus protocols 

A consensus protocol is a protocol in which each processor 
p has a binary input register inp and an output register 
OUtp. The initial content of the output register is 5_. A con- 
sensus protocol is correct w.r.t, a given set of admissible 
runs R, if in each run r e R, some non-faulty processor 
decides on a binary value v, by writing it in the output 
register, such that 

1) consistency: all the processors which decide, decide on 
the same value v. 
2) nontriviality: v is the input of at least one of the 
processors. 

A t-resilient consensus protocol is a protocol which is 
correct w.r.t, the set of all n - t-fair runs (i.e., at most 
t processors are faulty in them), which are applicable to 
some initial configuration. 

Let PR be a consensus protocol, R c be a set of runs of 
PR applicable to an initial configuration c, and T(R ~) be 
the tree associated with R c as described in Sect. 1.2. Each 
vertex v e T(R c) represents a finite prefix r '  of some run 
r i n  R c. 

Let u be a vertex in T(RC), and let D, be the set of 
decision values of the runs in R ~ which are extensions of u. 
u is bivalent in T(R ~) if ]Du] = 2. u is univalent in T(R ~) if 
]D,I = 1, and we say that u is O-valent in T(R c) or 1-valent 
in T(R c) according to the corresponding decision value. 
Note that if PR is a t-resilient protocol and all the runs in 
R ~ are n -- t-fair runs, then each vertex in T(R ~) is either 
bivalent or univalent in T(R~). When the tree T(R ~) is 
obvious from the context, we will not mention it in the 
terms univalent, bivalent and 0(1)-valent. 

2.1 Proving-impossibility of consensus 
by using closed sets' of runs 

In this subsection we present a model-independent im- 
possibility proof  of t-resilient consensus protocols, for 
t > 1, which is based on the existence of closed sets of 
n - t-fair runs, which satisfy certain properties. We start 
with some definitions. 

Throughout  the paper, Q denotes a subset of {1 . . . .  , n}, 
and for such a Q, Pe denotes the set of processors 
{pill c Q}. For  sequences x and y, x.  y denotes the concat- 
enation of x and y. 

Definitions. A PQ-run is a run in which the set of non- 
faulty processors is included in PQ. Runs r I and r 2 are 
PQ-equivalent if for each p e PQ, p makes the same sequence 
of atomic steps in rl and in r2. 

Let T1 = T(R cl) and T2 = T(R c2) be the trees of the sets 
of admissible runs applicable to configurations cl and 
c2 resp. Let vl be a vertex in Tz and let Vz be a vertex in T> 
We say that vl and v2 are PQ-simiIar if there exists PQ-runs 
rl and r2 which are Pc-equivalent, such that (v~. q )  is in 
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Paths(T1) and (v2-r2) is in Paths(T2) (recall that  vi'ri 
denotes the concatenat ion of the finite sequence vi with rl), 

In our  proof, we define for a given t-resilient consensus 
protocol  PR and for each initial configurat ion c, a subset 
of the set of n - t-fair runs of PR starting from c, denoted 
as R~,,, and we let R,,t be the union ~)cR~,, taken over all 
initial configurations c. Rn,~ is a closed set of n - t-fair 
runs, and it satisfies the following properties: 

initial similarity: Let cl, c2 be initial configurations, and 
let Q c_ {1 . . . .  ,n}, s.t. [QI > n -  t. If each processor 
p ~ PQ has the same input in c~ and in c2, then the roots 
of T(R~2,,) and of T(R~G) are PQ-similar. 

siblings similarity: Let c be an initial configuration, and let 
u, v, w ~ T(R~,,~) s.t. v and w are sons ofu.  Then for some 
Q _c {1, ... ,n}, [QI > n - t, there is a descendant v' of 
v and a descendant w' of w such that  v' and w' are 
PQ-similar. 

Theorem 2.1. Let t > 1 be a given integer. Then there is no 
consensus protocol which is correct w.r.t, a closed set of 
n - t-fair runs Rn,t which satisfies the initial similarity and 
siblings similarity properties. 

Proof Assume by the way of contradiction, that  PR is 
a consensus protocol  which is correct w.r.t, a set of runs 
R,,t which satisfies the above properties, where t > 1. 

We derive a contradict ion in three steps: 

Step 1. Proof  of  the existence of an initial configurat ion Co, 
s.t. the root  T ( R ~ )  is bivalent. Assume by the way of 
contradict ion that  for each initial configurat ion c, the root  
of T(R~,t) is univalent. Let Co be the initial configurat ion in 
which the value of each input register inp is 0, and cl be the 
initial configurat ion in which the value of  each input 
register inp is 1. By the nontriviali ty proper ty  for consensus 

c0 protocol,  the root  of T(R,,,,) is 0-valent and the root  of 
T(R~ ~,,) is 1-valent. Hence, there must  be initial configura- 
tions c~ and cb which differ only in the initial value inp, of 
a single processor pi, the root  v~ of T(R~t) is 0-valent 
and the root  Vb of T(R~,) is 1-valent. Let Q = 
{ 1 , . . . , i ,  1, i + 1, . . . ,n}.  Since t > 1 and IQI = n -  1, the 
initial similarity proper ty  implies that  there are PQ-runs 
. . . . .  Po-equivalent. r, is an ~a ~ R,,, and r b ff R,,t, which are 
n -  t-fair Po-run, and hence there must  be p e Pe slt. 
p eventually reaches a decision state in r~. Since v~ is 
0-valent, p must  decide on 0 in r,. G and rb are Pc-equiva- 
lent, so p takes on rb the same steps as in r,, and therefore 
p decides on 0 also in rb. This contradicts the 1-valency of 
Vb. Therefore, there exists an initial configurat ion co, s.t. 
the root  of T(R~t) is bivalent. 

Step 2. Proof  of the existence of vertices u, v, w e T = 
Co T(R,,t), v and w are sons of u, s.t. v is 0-valent and w is 

1 valent. 
For  v e T, we define Pred(v) to be true if v is univalent 

and false if v is bivalent. Since every run r e R~ ~ is n - t- 
fair, each such run r has a prefix r' s.t, the vertex represent- 
ing r' in T(R~?,) satisfies Pred. By L e m m a  1.1, there is 
a constant  M~ s.t. every vertex of depth > Me in T satisfies 
Pred. Assume that  M~ is as small as possible. Since by Step 
1 the root  of T(R~~ is bivalent (i.e. does not  satisfy Pred), 
M~ > 1 and hence there exists a bivalent vertex, u, of 
maximal possible depth. This implies that u has one Son 

v which is 0-valent in T and another  son w which is 
1-valent in T. 

Step 3. Let v and w be as in Step 2. By the siblings 
similarity, there is a vertex v' which is a descendant of v, 
and a vertex w' which is a descendant of w, s.t. for some 
Q __ {1, ... ,n}, IQI > n - t, v' and w' are PQ,similar. Then 
there are Pc-runs rl  and r2 which are Pc-equivalent,  such 
that bo th  (v'. rl) and (w;. r2) are in Paths(T). Like in Step ], 
since v' is 0-valent, some processor p e Pe decides on 0 in 
rl. Since p takes the same steps in both  runs, p decides on 
0 also in r 2. But this is a contradiction,  since w' is 1- 
valent. [ ]  

In order  to apply Theorem 2.1 to prove the non-exist- 
ence of t-resilient consensus protocols  in specific models, 
we have to construct  closed sets of n -  t-fair runs R,,t, 
which satisfy the initial similarity and siblings similarity 
properties. This cOnstruction is carried out  in two steps; 
First, we define and construct  combinator ia l  objects, 
called closed schedulers, and prove that they satisfy certain 
properties. Then we describe how these closed schedulers 
are used to construct  the sets of runs R,,t in various 
models. 

3 Closed schedulers 

Let i be a (finite) set of integers. A schedule s = ( $ 1 ,  s 2 ,  . . .  ) 

over I, denoted I-schedule, is an infinite sequence of inte- 
gers f rom I; s (~) = (sl, . . . ,  &) denotes the prefix of the first 
I elements o f s  (s (~ = e). A schedule s is fair for an integer i, 
if i appears in it infinitely often, s is fair for a subset Q o f  I if 
it is fair for every i e Q. s is m-fair for 1 < m < n if it is fair 
for a subset Q where [Q[ > m. Note  that each schedule iS 
1-fair. 

A scheduler S over I is a set of schedules as above. S is 
m-fair if all the schedules in it are m-fair. 

Each scheduler S defines an infinite directed tree T(S) 
in a natural  way, as follows: The vertices of T(S) are all the 
finite prefixes of schedules in S, and a vertex u is the father 
of a vertex v iff v = u,(i)  for some i. The edge (u, v) is 
marked with i. In this way, each schedule s e S is an infinite 
path in T(S). 

Let Paths(T(S)) be, as before, the set of  infinite paths in 
T(S). Note  that Paths(T(S)) is a scheduler, and that  for 
each scheduler S, Paths(T(S)) _~ S. A scheduler S is closed 
if Paths(T(S)) = S, i.e. all the infinite paths i n  T(S) are 
in S. 

Examples 
- For  each n~  N, the set Sn of al! 1-fair schedules over 

{1 . . . .  , n} (which is the set of all schedules over {1, . . . ,  n}) 
is closed. 
For  each n > 2, 0 < t < n - 2, let S,.t denote the set of 
all n - t-fair schedules over {1, ... ,n}. Sn,, is not  closed: 
Vie N the schedule ( . 1 ~ ,  1 . . . . .  n - t, 1 . . . . .  

i t imes  
n - t , . . . )  is n - t - f a i r ,  so the vertex ( ~ )  is in 

i t imes  
T(Sn, t). This implies that the schedule (1, 1, 1,.. .  ), which 



is not  n - t - f a i r ,  is in Paths(T(S, , t)) .  In fact, 
T(S,,~) = T(S , )  for all n > 2, 0 _< t < n - 2. 

- Each finite scheduler (i.e. a finite set of  schedules) is 
closed. 

- Let T be an infinite directed tree with no leaves whose 
vertices are finite sequences of  integers from {1, .. . ,  n}, 
and a vertex u is the father of a vertex v iff v = u.  (i) for 
some i (the edge (u, v) is marked  with i). Then the 
scheduler S = P a t h s ( r )  is closed. 

3.1 Construction o f  closed and.fair schedulers 

In  this subsection we define for each n > 2, 0 < 
t < n - 1, a tree T,,~ s.t. each infinite path in T,,t is n - t- 
fair. So the scheduler 5~,,~ = Paths(T,,~) is n - t-fair and 
closed. In the next subsection we prove some combina-  
torial properties of T,,~, which are used in the impossibility 
proofs based on our  construction.  For  t = - n - 1 ,  
T , , , -1  = T(S,) ,  where S, is the set of all {1, ... ,n}-sched- 
ules. Below we present the construct ion of T,,,~ for 
O < t < n - 2 .  

Each vertex in T,,~ will have either t + 1 or t + 2 sons. 
Informally,  the sons of  a vertex u ~ T,,,t are determined by 
the suffix of  the last n - t elements in (the sequence repres- 
enting) u, denoted as suf,_t(u). In order  to generalize the 
definition also for sequences of length < n - t, we take 
suf,_ ~(u) to be the sequence of the last n - t elements in the 
sequence (1, ... , n -  t ) .u  (i.e., the sequence (1, ... , n -  t) 
concatenated with u). Also, when there is no ambiguity,  we 
will omit the subscript n -  t and denote this suffix by 
suf(u). For  a finite sequence s', we denote  by SUF(s ' )  the 
set of elements in suf(s'). 

For  0 _< t _< n - 2, the tree T,,; is defined inductively as 
follows: 

1. The empty  sequence e is the root  of T,,I. 
2. Let u be a vertex in T,,,, and assume that  

suf(u) = (sl, ... ,s,_~), where si # sj for i # j  (that is: all the 
elements in suf(u) are distinct). A vertex u with this prop-  
erty is said to be normal. Let il . . . .  ,it be the integers in 
{ 1 , . . . , n } \ S U f ( u ) .  Then the sons of u are u.(il) ,  
. . . ,  u .  (it), u .  ( sO,  u .  (s~).  

3. Let u be a vertex in T,,,, and assume that su f (u )=  
(sz, . . . , s ,_ ,  1, s~), where si + s i for i + j  (that is: the first 
and last elements are equal and all the others are distinct). 
A vertex u with this proper ty  is said to be special. Let 
i l , . . . ,  it+ 1 be the integers in {1, . . . ,  n} \SUF(u) .  Then the 
sons of u are u. (iz), . . . ,  u .  (it+ 1). 

For  the above definition to be complete, we need to 
show that  every vertex in T,,, t must  be either normal  or 
special. This follows from the fact that  su f (e )= 
(1, ... , n -  t), and hence ~ is a normal  vertex, and from 
Lemma 3.1 below. 

L e m m a  3.1. Each normal vertex in T,,t has t + 2 sons, 
exactly one of  which is special and the others are normal, and 
each special vertex in T,,~ has t + 1 sons which are all 
normal. 

Proof  Follows immediately from the definition of 
r~,~. [] 
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The definition of T~,~ guarantees that  for each schedule 
s in Paths(T,,t), in each subsequence of n - t + 1 consecut-  
ive elements of  s, at least n - t elements are distinct. This 
implies that  the closed scheduler S,,t = Paths(T,,~) is 
n - t-fair. 

Example. Let n = 5 ,  t = 2 .  The vertex u ~ = ( 1 , 2 , 3 )  is 
a normal  vertex in T5,2, and its sons are (1,2,3,4) ,  
(1, 2, 3, 5), (1, 2, 3, 1) and (1, 2, 3, 2). The vertex uz = 
(1, 2, 3, 2) is a special vertex (the only special son of ul) and 
its sons are (1, 2, 3, 2, 1), (1, 2, 3, 2, 4), (1, 2, 3, 2, 5), which 
are all normal  vertices. 

3.2 Similarity properties 

In this subsection we prove that the trees T,,,t defined 
above satisfy certain properties, which are needed to 
guarantee that  the initial similarity and siblings similarity 
properties are satisfied by the sets of  runs constructed in 
the various models. 

Definition. For  each v e T, , ,  T~,t(v) is given by: 

T.,,(~) = { u l v .  u ~ T.,~} 

i.e. T,,t(v) is the subtree of  T,,~ which consists o fv  and all its 
descendants, when omitt ing the prefix v from all the 
vertices. Note  that  for each v ~ T , , t ,  the scheduler 
Paths(T,,t(v)) is n - t fair and closed. 

L e m m a  3.2. Let u be a vertex in T,,t, and let Q ~_ 
{1,. . . ,  n}, be of  cardinality > n - t. Then Paths(T,.t(u)) 
contains a Q-schedule. 

Proof. Let Q = {i l , . . . , im},  and let su f (u )=  (Sl , . . . , s , - t ) .  
Assume that the elements in Q are ordered so that  for each 
k, 1 < k < m, if ik is in suf(u), then for every I s.t. k < 1 < m, 
i; also appears in suf(u), and the last occurrence of ik in 
suf(u) precedes the last occurrence of  i; in suf(u) 1. Since 
m > n - t ,  this implies that  for 1 _< k _< m, ik does not  
occur in (&+ 1,-.. ,  s,-t).  Hence, every n - t successive ele- 
ments in the sequence (s2, . . . ,  s,_~, il . . . .  , i,,) are distinct. I t  
follows that  the periodical schedule ( i l , . . . ,  ira, il . . . .  ) is in 
Paths(T,,t(u)). [] 

Definitions. Vertices u and v in T,,t are equivalent iff 
T,,t(u) = T,,t(v). u and v are Q-similar, Q c_ {1, . . . ,n},  
IQl  > n -  t, iff there exists a Q-schedule s s.t. 
s E Paths(r, , t(v))  ~ Paths(T,,  ,(u)). 

The existence of  pairs of vertices which are Q-similar 
for some Q _~ {1, . . . ,n} is used in all our  impossibility 
proofs, 

L e m m a  3.3. For each u, v e T,,t: 
(a) I f  suf(u) = suf(v), then u and v are equivalent. 
(b) Let  Q ~_ {1, . . , ,n},  ]QI > n - t. I f  there exists a se- 

quence s' s Q, - t ,  s.t. both u . s '  and v .s '  are in T,,t, then 
u and v are Q-similar. 

Proof  
(a) We have to show that for each schedule s, s is in 

T,,,(u) iff it is in t,,~(v). Let s = (s~, s2, ...), be given. An 

Note that if u is special, then one integer appears twice in suf(u) 
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easy induct ion shows that  for each I >  0, the prefix 
(s~ . . . .  , h )  o f s  is in T,,t(u)i f f i t  is in T,,,dv). This proves (a). 

(b) By L c m m a  3.2, Paths(T,,t(u.s '))  contains a Q- 
schedule, say s. Hence  Paths(T,,,du)) contains  the Q-sched- 
ule s' .s.  By (a) above and the fact that  s u f ( u . s ' ) =  
suf(v.s ' )  = s', s ' . s  is also in Paths(T,,dv)). This proves  
(b). [] 

The next technical claim follows directly f rom the in- 
ductive definition of T,,t, and its p roof  is left to the reader. 

Claim 3.4. For each n > 2, 0 <_ t <_ n - 2, let v, be a normal 
vertex in T,,t, s u f ( v , ) = ( s > . . . , s , _ j  and v~ be a special 
vertex in T,,,t, suf(v~) = ( h , . . . ,  t, t- ~, t~). 

(a) Let s' = suf(G). Then, v,,. s' is a normal vertex in 
Tt~,t. 

(b) Le~ s' = ( s > . . . , s , , - t  2, G-t ,s , , -~-~) (i.e. s' is ob- 
tained by switching the last two elements in suf (v,) ). Then, 
v,. s' is a normal vertex in T,,~. 

(c) Let s' = (l, s~, ... , &- t -2 ,  s,,_,) where l ~ {1, ... , n } \  
SUF(G). Then, G 's '  is a normal vertex in T,,~. 

(d) Let s '=( l ,  t2, . . . , t , ,  ~_~,h) where l ~ { 1  . . . . .  n}\  
SUF(v,). Then, v~.s' is a normal vertex in T,.~, 

(e) Let  v be a vertex in T,,t ands' a sequence of length 
n - t s . t .v,  s' is a normal vertex in T~,t. Let s" be a sequence 
obtained by replacing elements in s' by distinct integers from 
{1, ..., n} \ { S U f ( v )  vo S U F ( v .  s')}. Then, v. s" is normal ver- 
tex in T,,,. 

L e m m a 3 . 5 .  Let n > 2, O <- t <- n - 1. Then jo t  each 
u ~ T,,~, and for each i,j s.t. both u.( i)  and u. ( j )  are in T,~,~, 
it holds that both u.  (i,j) and u. (j,  i) are in T,,t, and for each 
Q cA { 1 , . . , ~ } ,  IQI > n - t, 

1. u . ( i , j )  and u.  (j,  i) are (2-similar. 
2. I f  t > 1 and i~ Q then u. (i, j )  and u. ( j  ) are Q-similar. 
3. I f t  > 2 and i,j~(2 then u.  (i) and u. ( j )  are Q-similar. 

Proof. If t = n - 1 then T,,~ is the complete  n-ary tree, in 
which all the vertices are equivalent,  and hence the l emma 
holds trivially. Thus,  we assume that  0 _< t _< n - 2. Let 
u be a vertex in T,,.~, (2 _c {1, . . . ,n},  ]QI > n - t. It is easy 
to see that  if u.( i )  and u . ( j )  are vertices in T,,,t, then 
ul = u . ( i , j )  and u2 = u . ( j ,  i) are normal  vertices in T,,,~, 
where the only difference between suf(ul) and suf(u2) is the 
order of the last two elements. We now prove  each of the 
three claims in the lemma.  

1. Let  u~ = u . ( i , j )  and u2 = u . ( j ,  i). By L e m m a  3.3(b) 
it suffices to show that  there is a sequence s ' e  Q'~ ~, s.t. 
both  u , . s  and u2.s' are in T,,,. Assume first that  
st~(u,) e Q,-t .  In this case, we take s' = suf(ul). Then, by 
Cla im 3.4(a), u~-s '  is a normal  vertex in T,,, ,  and by Cla im 
3.4(b), uz - s '  is a no rma l  vertex in T,,,. 

If  suf(ut)r  we let s' be the sequence obta ined  
from suf(ul) by replacing the elements in suf(ul) which 
are not in Q by distinct elements from Q \ S U F ( u , )  (this 
is possible since IQI >=ISUF(ul)I). Since S U F ( u l ) =  
SUF(u , . su f (u l ) )  = SUF(u2.suf(u~)), by Claim 3.4(e), 
both  u l .  s' and u2. s' are normal  vertices in T,,t. Hence, by 
L e m m a  3.3(b), ul and uz are Q-similar. 

2. Let ut = u.  ( j ) ,  u2 = u . ( i )  and let u3 = u.( i , j ) .  As 
in t. above,  it suffices to show that  there is a sequence 

s ' e  Q" ', s.t. bo th  u l - s '  and u3 . s '  are in T;,,t. Let sz~f(ui) 
= ( s i  . . . . .  s ~ - t - i , j )  and thus suf(u2) ( s> . . . , s , , - t - l , ! ) .  

Assume first that  SUF(uD\{ i }  CA Q. In  construct ing sy we 
distinguish between two cases: 

Case 1. Both u, and u 2 are normal .  In this case 
ir  and hence SUF(ul)c_ Q. Let s ' =  s~g'(UJ. 
Then u~. s '  is in T,,,t by Claim 3.4(a), and u3. s' is'in T,,,~ b y  
Cla im 3.4(c). 

Case2. Not  case t. Then s l s { i , j } ,  and hence 
[ S U f ( u l ) w S g F ( u 2 ) \  { i }[  < n - t <= [ Q ] .  Since i~Q, there 
is an l c Q, which is not  in SUF(ul)wSUF(u2) .  In  this case 
we let s ' = ( I ,  s2 . . . .  , s , - t -~ , j ) .  Then u3.s' is in T,,~ bY 
Claim 3.4(c). If s~ = j  then u-~. s' is in T,,i by Claim 3.4(d), 
else Ul .s '  is in T,,,r by appl icat ion of (a) and then (e) Of 
Claim 3.4. 

Assume now that  SUF(u , ) \ { i }  g Q. We replace in 
each of the two cases above  the sequences '  b y  a sequence 
s ' ,  which is obta ined by replacing the elements in s' whic}i 
are not in (2 by distinct elements from Q which are not  in s' 
(again, this is possible since IQt > n -  t). Since i doe s 
not occur  in s" and [SUF(u3)\{ i}]  CA [SUF(ut)\{i}:] cA 
S U F ( u  1 �9 s ')  = S U F ( u  3 �9 J ) ,  w e  have by L e m m a  3.4(e) that  
both  u~. s" and u3. s" are normal  vertices of T,,t, a n d  by 
L e m m a  3.3(b) they are (2-simiiar. 

3. Let ul = u.(i)  and u2 = u . ( j ) .  Again, it suffices to 
show that  there is a sequence s' e Q" ~, s.t. bo th  u , .  s' a n d  
u2.s' are in T,,t. Let s u f ( u , ) = ( s l , . . , , s ,  ~-1, i) and let 
suf(u2) = ( s > , . . , s , _ t _ l , j ) .  Assume first that  SUF(u~)\  
f i  " _ ~ ,j  } c Q. At least one out of ul, t,,2 is normal ,  so assume 
that  ul is normal .  We let s ' =  (m . . . . .  s , , -~-l ,  l), where (i) 
l e  Q\SUF(u l ) ,  and (ii) if s l @ j  then m = s> else m + t ,  
and m e Q\SUF(u , ) .  Then by Cla im 3.4(e), both  u , -  s' and 
us.  s' are in T,,t. 

Assume now that  S U F ( u , ) \ { i , j }  g Q: As in the pre- 
vious cases, we construct  a sequence  s" by replacing the 
elements in s' above which are not in Q b y  distinct ele- 
ments  f rom Q. By Claim 3.4(e) both  u , .  s" and u2. s '  are 
normal  vertices in T,.t, and by L e m m a  3.3(b) they are 
Q-similar. [ ]  

4 Mapping schedules to runs 

In this section we describe a general technique which, fQr 
a given distr ibuted model  dm and a t-resilient pro tocol  PR 
in din, use the closed schedulers constructed in the 
previous section, to define a closed set of  runs of PR 
which satisfies the initial similarity and siblings similarity 
properties.  

Let  PR be a pro tocol  for n processors  in the given 
model  dm. Then we define a mapping:  

Mam : C x S. --+ R 

where C is the set of configurations of PR, S, is the set o17 
schedules over  {1 . . . . .  n}, R is the set of runs Of PR, and!for 
each c e C and s a S,,  Mere(c, s) is a run which is applicabl e 
to c. Intuitively, this mapp ing  maps  each occurrence of an 
integer i in a schedule s to an a tomic  event e(i), associated 



with processor P~. This mapping should guarantee that if 
s is fair for i, then the run Mdm(c, s) is fair for Pi. By varying 
the way in which e(i) depends on P~, various impossibility 
results are obtained (see [11]). 

Let s = (s> .. . ,  &, .., ). First, we define by induction for 
each finite prefix s' = (Sl, ... ,&) of s, Md,,(c, s') to be a se- 
quence of i steps. Then, Ma~(c, s) is defined to be the 
infinite sequence of steps obtained by this induction. 

For  each initial configuration Co, we map the canonical 
(n, 0 scheduler 5:,,, to a set of runs R,~,~t of PR: 

R~. ~ -- {M. . , (Co ,  slls  e ~ . . , }  

and we consider the tree associated with R;~t as described 
in Sect. 1.1, T(R~~ 

C0 In this way, T,,t and T(R, , t )  are isomorphic. The 
n - t-fairness of schedules in 5Qt induces n - t-fairness of 

CO the runs in R,,t, and therefore R~t is a closed set of 
n - t-fair runs. The results in Sect. 3.2, and the isomor- 
phism of 5%,t and T(R~,~t) guarantees that the initial sim- 
ilarity and siblings similarity properties are satisfied by 

C0 T(R,, ,) .  In the next section we demonstrate how an im- 
possibility proof for a specific model, using the set of runs 
constructed here, is carried out. 

5 Impossibility of read/write 1-resilient 
consensus protocols 

In this section we demonstrate how to apply the proof  
technique of Sect. 2 to prove impossibility of t-resilient 
consensus protocols in a specific model. In [11] we apply 
the technique to some variations of the shared memory  
and message passing models. Here, we prove the impossi- 
bility of 1-resilient consensus protocols in the read/write 
shared memory  model. 

We consider the standard read/write model, as defined 
in V10], where processes communicate via a set of shared 
registers. A process may atomically read or atomically 
write a shared register in one atomic step. A process is 
non-faulty in a run if it takes infinitely many steps in it (and 
it is faulty otherwise). 

Let PR be a protocol for n processes in the shared 
memory  model sin. Then, we define a mapping: 

M~,,, : C x 5:.,t ~ R 

which maps each pair of a configuration c c C and a sched- 
ule s = (s> s2 . . . .  ) E 5:,,~ to a run M~m(c, s), in which, for 
each i E N, the i-th step is taken by p~. Note that in the 
model considered, given a configuration c, an atomic step 
is completely determined by specifying the active process 
p. This guarantees that M~m is well defined. 

For each initial configuration c, R~,, = {Msm(C, s) ls  6 
5:~,t}. The mapping M ~  defines isomorphism from 
T,,t onto T(R,~,,,). We denote the image of a vertex u ~ T,,, 
under this isomorphism by uc. 

By Theorem 2.1 it suffices to prove that R,,, ~ is a closed 
set of n - 1-fair runs which satisfies the initial similarity 
and siblings similarity properties. By the definition of the 
mapping M~,~ and the fact that 5:,,t is an n - t-fair sched- 
uler, the set R,,, ~ is a closed set of n - 1-fair runs. In order 
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to prove that it satisfies also the initial similarity and 
siblings similarity properties, we need one more definition 
and lemma: 

Definition. Configurations c~ and c 2 are PQ-equivalent, for 
Q _~ {1,. . . ,n}, if all the shared registers have the same 
values in ca and in c2, and each processor p ~ PQ is in the 
same internal state in Cl and in c 2. 

Lemma 5.1. Let c 1 and c2 be Po-equivalent configurations, 
and let s be a Q-schedule. Then the runs r~ = M~m(Cl, s) and 
r2 = M~m(c2, s) are Po-runs which are Po-equivalent. 

Proof. First, observe that if c and d are PQ-equivalent 
configurations, then for every l ~ N ,  Ms~(C,S~ 
M~(d ,  s(1)), and the configurations a(c, M~m(c, s(~ and 
a(d, M~(d ,  s(l))) are PQ-equivalent. 

( l )  = For  each integer l, let r~ ) - -  M~,,(cl, s (tl) and r 2 
M~,,(c2, s(~)). Using the above observation, a straightfor- 
ward induction on l shows that the configurations 
a(Cl, r~ )) and a(c> r~ )) are Po-equivalent. It follows that 
the runs ra and r2 are Po-runs which are Pc-equivalent 
(and, in fact, are identical). []  

The initial similarity property follows from Lemma 5.1, 
Lemma 3.2 and the definition of the mapping M~,~. The 
next lemma proves the siblings similarity property. 

Lemma 5.2. Let u, v = u.(i),  w = u . ( j )  be vertices in T,,,1, 
and let uc, v~, wc be the corresponding vertices in T(R~,I). 
Then there is a descendant v'~ of  vc and a descendant w; of  we 
such that v'~ and Wc are PQ-similar, for some Q ~_ {1 . . . .  ,n}, 
IQl__>n-1 .  

Proof  By Lemma 5.1, it suffices to find a descendant v' of 
v and a descendant w' of w s.t. v' and w' are Q-similar and 
a(c, v;) and a(c, w'~) are Po-equivalent. 

There is an atomic step a taken by p~, and an atomic 
step b taken by Ps, such that vc = uc. (a) and wc = uc-(b). 
Let reg I be the register that p~ accesses in a, and reg2 be the 
register that pj accesses in b. 

Case 1. One of the two steps a, b is a read step. 
Suppose w.l.o.g, that the step a taken by Pi is a read step. 
Let Q = { 1 , . . . , n } \ { i } ,  w ' = w = u . ( j )  and v ' = v . ( j ) .  
Then, cr(c, w;) and o-(c, v;) are Po-equivalent, and by 
Lemma 3.5(2), u . ( j ) ,  v . ( j ) ,  are Q-similar. Therefore 
w; and v; are Po-similar. 

Case 2. Both steps a, b are write steps, rega + reg2. 
Let w ' =  w.(i) ,  v ' =  v . ( j ) ,  and let Q = {1,.. . ,n}. Then, 
a(c, w'c) and o-(c, V'c) are PQ-equivalent, and by Lemma 
3.5(1), w.( i )  and v . ( j )  are Q-similar. Therefore w'c and 
v'c are Pc-similar. 

Case 3. Both steps a, b are write steps, rega = reg2. 
Let w' = w = u . ( j ) ,  v' = v . ( j ) ,  and let Q = {1, ... , n} \{i}. 
Then, or(c, w~) and a(c, V'c) are Pc-equivalent, and like in 
Case 1, w'c and v'c are PQ-similar. []  

Thus, we conclude the following: 

Theorem 5.3. [10] There is no 1-resilient read~write con- 
sensus protocol. 
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6 Conclusion and further research 

In this pape r  we in t roduced  the concept  of closed sets of 
runs, which are sets of runs tha t  can be descr ibed as the 
pa ths  of an infinite tree of bounded  degree. Then we 
in t roduced  the concept  of closed schedulers,  and  presented  
a unified, mode l  independen t  technique to cons t ruc t  closed 
sets of runs of E-resilient p ro toco l s  by using closed 
schedulers.  

The sets cons t ruc ted  by our  technique preserve m a n y  
of the proper t ies  possessed by the sets of all runs of 
t-resil ient protocols ;  in par t icular ,  given any finite prefix of 
a run in this set, it is still imposs ib le  to dis t inguish between 
faulty and slow processes in this run. We believe that  this 
makes  these sets a convenient  tool  for p rov ing  proper t ies  
of such protocols .  To demons t r a t e  this, we used these sets 
to provide  unified proofs  of the imposs ib i l i ty  of t-resil ient 
consensus protocols .  

The  full appl icab i l i ty  of closed sets of runs, and  in 
par t i cu la r  of the sets cons t ruc ted  by the closed schedulers  
Y,,t in t roduced  in this paper ,  is yet to be explored.  I t  is 
an t ic ipa ted  that  the s imple combina to r i a l  s t ructure  of 
these schedulers  will m a k e  them a useful tool  for s tudying  
further p rob lems  related to t-resil ient protocols .  
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