
Distrib Comput (1995) 8:203-210

�9 Springer-Verlag 1995

Closed schedulers: a novel technique
for analyzing asynchronous protocols*
Ronit Lubitch, Shlomo Moran**

Department of Computer Science, Technion, Haifa 32000, Israel

Received: November 1992/Accepted: May 1994

Ronit Lubitch received her B.Sc.
degree in Mathematics and Com-
puter Science from Tel Aviv Univer-
sity in 1989, and her Master degree
in Computer Science from the Tech-
nion, in 1993. From 1992 she is
working in Graffiti Software Indus-
tries, which expertise in the design
and development of advanced photo
realistic rendering, and animation
software systems.

Shlomo Moran received his B.Sc.
and Ph.D. degrees in Mathematics
from the Technion in 1975 and 1979
resp. In 1979-1981 he was at the
University of Minnesota as a visiting
research specialist. In t981 he joined
the Computer Science Department
at the Technion, where he is now
a full professor. In 1985-1986 he
visited at IBM T.J. Watson Research
Center. In 1992-1993 he visited at
AT&T Bell Laboratories and in
Centrum voor Wiskunde en Infor-
matica, Amsterdam. His research in-
terests include distributed com-
puting, Combinatorics and Graph
Theory, and Complexity Theory.

Summary. Analyzing distributed protocols in various
models often involves a careful analysis of the set of
admissible runs, for which the protocols should behave

* A preliminary extended version of this paper appeared in the
Proceedings of 6-th International Workshop on Distributed Algo-
rithms, Haifa, November 1992
** This work was supported in part by the Technion V.P.R. fund.
Part of this research was conducted while this author was visiting at
AT&T Bell Labs at Murray Hill and at CWI, Amsterdam

Correspondence to: S. Moran

correctly. In particular, the admissible runs assumed by a
t-resilient protocol are runs which are fair for all but at
most t processors. In this paper we define closed sets of
runs, and suggest a technique to prove impossibility results
for x-resilient protocols, by restricting the corresponding
sets of admissible runs to smaller sets, which are closed, as
follows: Fo r each protocol P R and for each initial config-
urat ion c, the set of admissible runs of PR which start f rom
c defines a tree in a natural way: the root of the tree is the
empty run, and each vertex in it denotes a finite prefix of
an admissible run; a vertex u in the tree has a son v iff v is
also a prefix of an admissible run, which extends u by one
a tomic step,

The tree of admissible runs described above may con-
tain infinite paths which are not admissible runs. A set of
admissible runs is closed if for every possible initial config-
urat ion c, each path in the tree of admissible runs starting
from c is also an admissible run. Closed sets of runs have
the simple combinator ia l structure of the set of paths of an
infinite tree, which makes them easier to analyze. We
introduce a unified method for construct ing closed sets of
admissible runs by using a model-independent construction
of closed schedulers, and then mapping these schedulers to
closed sets of runs. We use this construct ion to provide
a unified p roof of impossibility of consensus protocols.

Key words: Closed schedulers - Asynchronous protocols
Admissible runs

1 Introduction

A distributed decision task is a distributed task in which
every processor eventually makes an irreversible decision
step, such that the eventual decision values of the proces-
sors must satisfy the i npu t /ou tpu t relation that specifies
the task [12, 2]. One of the more challenging problems in
distributed comput ing is the characterizat ion of the deci-
sion tasks that can be solved in a completely asynchronous
environment, in the presence of crash (fail stop) failures,
under which processors may stop part icipating in the
protocol prematurely. A protocol that solves such a task in

204

the presence of at most t crash failures is called t-resilient.
A somewhat simplified version of this question can be
formulated as the following decision problem:

Input: A decision task T for n processes, specified by its
(finite) input /output relation, and a number t, t < t < n.
Property: There is a t-resilient protocol for T.
The research on the above problem was initiated in the
fundamental paper [7], which proved the non-existence of
1-resilient consensus protocols. Subsequent papers studied
this question for other tasks, like approximate consensus
[6], k-set consensus [5], renaming [1], and others. A gen-
eral decision procedure for the above question when t = 1
(and n is arbitrary) was given in [-2]. For the case where
t > 1 only partial results are known (e.g., [4, 14]). Notable
among the papers which study t-resilient protocols for
t > 1 are recent results which relate this question to prop-
erties of high dimensional topological complexes [3, 8, 13].
In particular, this technique is used there to prove tight
impossibility results on the k,set cosensus problem and on
the renaming problem. However, a general decision pro-
cedure for the above question is not known even for any
f ixed n and t such that 1 < t < n.

The difficulty of this problem does not seem to depend
on the specific model of computation studied (i.e., shared
memory or message passing), but more on the inherent
difficulty of coordination between processors in a totally
asynchronous environment, and in particular on the im-
possibility to distinguish between faulty processors and
processors which are very slow, but in working order.
Consequently, it is possible to have a t-resilient protocol
for a given task, with the following unpleasant property:
The number of steps that may be executed by the protocol,
when started from a certain initial configuration, before it
fulfills its task, is unbounded.

In this paper we propose an approach for analyzing
asynchronous protocols which avoids the difficulty men-
tioned above. In this approach, we restrict the set of
admissible runs, for which the protocol is required to
behave correctly, to a set of a simple structure, which we
call "closed". A closed set of runs has the property that if
a protocol is guaranteed to fulfill some task in each run in
it, then it is guaranteed to fulfill that task within a fixed
number of steps. We use this approach to provide an
alternative proof technique for the impossibility of t-resil-
ient consensus protocols in various models. Specific ap-
plications of this technique, some of which generalize the
classical impossibility result of [7] in an interesting way,
appear in [11]. We believe that the closed sets constructed
here capture the fundamental properties possessed by the
sets of all admissible runs, and hence can be used for
proving other properties of t-resilient protocols.

1.1 Protocols and runs

A distributed system consists of a set of n (n => 2) asyn-
chronous processors {Pl, .. . , P,}, modeled as (not necessar-
ily finite) state machines, and of some means of
communication among the processors (e.g., shared mem-
ory or message passing).

Each processor p acts according to a deterministic
transition function tp. The transition function is described

by the set of atomic steps which can be taken by the
processor. An atomic step consists of a possible change of
the processor's state, and of reading and /or writing from
the communication means. A protocol for a given distrib-
uted system is a set of n transition functions, one per
processor.

A configuration of the system is a description of the
system at some moment. It consists of the internal state Of
each processor and of the contents of the communication
means. An initial cotfguration is one in which each proces-
sor is in an initial state, and the communication means
contains some default initial values.

For each processor p and for each configuration c,
there is a (finite) set of atomic steps that can be taken by
p from the configuration c. A run of a protocol is an infinite
sequence of atomic steps that can be taken in turn starting
from some (initial) configuration c. Each atomic step is
performed by one of the processors, and brings the system
to a subsequent configuration: We say that a run r is
applicable to a configuration c if it is a run that m a y start
from the configuration c. If r is applicable to c~ then for
every (finite) prefix r' of r, the configuration resulted from
applying r' to c is denoted by a(c, r').

1.2 Closed sets o f admissible runs

A distributed protocol is required co fulfill a certain task
w.r.t, a specified set of runs. which we call the set of
admissible runs. Thus. the correctness of a protocol de-
pends not only on the task it should accomplish, but also
on the set of admissible run which are assumed. For
example, there are protocols which are correct in a syn-
chronous environment but not in an asynchronous one,
and there are protocols which are correct when all proces-
sors are non-faulty but are incorrect when processors are
subject to failures. In both these examples, protocols which
are correct for a restricted set of admissible runs become
incorrect when the set of admissible runs is extended.

Let R be a set of runs. and c be a given configuration
We denote by R c the set of all runs in R which are
applicable to c. R c defines an infinite directed tree, T (R c ~,
in a natural way: the root of T(R c) is the empty run, and
each vertex an it represents a finite prefix of a run in Re:
a vertex u in T(R c) has a son v iffv represents a prefix of
a run in R c, which extends u by one atomic step. When
there is no ambiguity, we will identify vertices in T(R~I
with the prefixes of runs they represent.

For an infinite tree T. Paths(T) denotes the set of
infinite directed paths in T. Note that for each set of runs
R and for each configuration c, Pathst T~RCt) is a set of
runs which are applicable to c. and PathsIT(R~))~ R ~.
However Paths(TIROl) may contain runs which are not in
R ~, For instance, it is possible that for every r e R ~, every
processor takes an atomic step infinitely often in r. but
Paths(T(R c)l contains a run in which only one processor is
activated forever.

A set R of runs is closed iff for every possible config-
uration c. each path in T(RCt is a run in R c, i.e.:
Paths(T(R~)) - R e. Closed sets of runs appear to be much
easier to analyze than other sets of runs. since they have
the simple combinatorial structure possessed by the set of
paths of an infinite tree of bounded degree. One specific

useful property which is possessed by such sets, is the
following: if it is given that each run in R c eventually
satisfies certain property, then it is guaranteed that this
property is achieved within a constant number of steps.
This property is proved in the following lemma:

Lemma 1.1. Let R be a closed set of runs of some protocol
PR. Assume that for some predicate Pred and for some
configuration c, every run r ~ R ~ has a prefix r' which satis-
fies Pred. Then there is a constant M~, such that every run
r ~ R ~ has a prefix of length at most M~ which satisfies Pred.

Proof. Let T = T(R ~) = (V, E). Define:

V' = {v ~ V leach prefix v' of v does not satisfy Pred}

E ' = {e = (v , u) E E l v , u~ V'}

By the definition, T' = (V', E') is a subgraph of T, and for
each v ~ V' the directed path in T from the root to v is in
T'. Hence T ' is a directed tree. If l V't < c~, then M~ = 1 +
max{depth(v)lve V'} satisfies the requirement of the
lemma. Otherwise, T ' is an infinite tree, the degree of its
vertices is bounded, so by K6nig's Infinity Lemma [91
there is an infinite directed path r in T'. This means that
r is a run in R ~, all whose prefixes do not satisfy Pred,
a contradiction. []

Unfortunately, in many cases the set of admissible runs
which is of interest is not closed. The most notable
example is probably the sets of admissible runs for t-
resilient protocols, which must guarantee correct behavior
in all runs in which at most t processors are subject to
crash (fail-stop) failures. Admissible runs of such protocols
are runs which are fair with respect to at least n - t
processors. The exact definition of "fair" depends on the
specific model studied, but under all common definitions,
the set of all n - t fair runs of a given protocol is not closed
for 0_<t < _ n - 2 .

In this paper we suggest a unified method for proving
impossibility results concerning t-resilient protocols, and
exemplify this technique on consensus protocols. In this
method, we prove the impossibility result with respect to
a proper subset of the set of all n - t fair runs, which is
closed, by using Lemma 1.1 above. The definition of this
subset is based on a purely combinatorial construction,
which is independent on the specific model studied. In [11]
we demonstrate our technique by using it to prove im-
possibility of t-resilient consensus protocols in some vari-
ants of the shared memory model and of the message
passing model, some of which are non-trivial generaliz-
ation of the fundamental impossibility result of [7].

1.3 Summary of results"

In the next section we define the consensus problem and
present a general, model-independent, proof of non-exist-
ence of consensus protocols. This proof assumes the exist-
ence of closed sets of runs which satisfy certain properties.
In Sect. 3 we provide a combinatorial construction of
closed schedulers, which are the main tool we use to
construct the closed sets of runs needed for our proofs, and
in Sect. 4 we describe the way this construction is applied
to specific models of asynchronous computations. An

205

example of applying this general technique for proving
impossibility of 1-resilient read/write consensus protocol
in the shared memory model is given in Sect. 5.

2 Consensus protocols

A consensus protocol is a protocol in which each processor
p has a binary input register inp and an output register
OUtp. The initial content of the output register is 5_. A con-
sensus protocol is correct w.r.t, a given set of admissible
runs R, if in each run r e R, some non-faulty processor
decides on a binary value v, by writing it in the output
register, such that

1) consistency: all the processors which decide, decide on
the same value v.
2) nontriviality: v is the input of at least one of the
processors.

A t-resilient consensus protocol is a protocol which is
correct w.r.t, the set of all n - t-fair runs (i.e., at most
t processors are faulty in them), which are applicable to
some initial configuration.

Let PR be a consensus protocol, R c be a set of runs of
PR applicable to an initial configuration c, and T(R ~) be
the tree associated with R c as described in Sect. 1.2. Each
vertex v e T(R c) represents a finite prefix r ' of some run
r i n R c.

Let u be a vertex in T(RC), and let D, be the set of
decision values of the runs in R ~ which are extensions of u.
u is bivalent in T(R ~) if]Du] = 2. u is univalent in T(R ~) if
]D,I = 1, and we say that u is O-valent in T(R c) or 1-valent
in T(R c) according to the corresponding decision value.
Note that if PR is a t-resilient protocol and all the runs in
R ~ are n -- t-fair runs, then each vertex in T(R ~) is either
bivalent or univalent in T(R~). When the tree T(R ~) is
obvious from the context, we will not mention it in the
terms univalent, bivalent and 0(1)-valent.

2.1 Proving-impossibility of consensus
by using closed sets' of runs

In this subsection we present a model-independent im-
possibility proof of t-resilient consensus protocols, for
t > 1, which is based on the existence of closed sets of
n - t-fair runs, which satisfy certain properties. We start
with some definitions.

Throughout the paper, Q denotes a subset of {1 , n},
and for such a Q, Pe denotes the set of processors
{pill c Q}. For sequences x and y, x. y denotes the concat-
enation of x and y.

Definitions. A PQ-run is a run in which the set of non-
faulty processors is included in PQ. Runs r I and r 2 are
PQ-equivalent if for each p e PQ, p makes the same sequence
of atomic steps in rl and in r2.

Let T1 = T(R cl) and T2 = T(R c2) be the trees of the sets
of admissible runs applicable to configurations cl and
c2 resp. Let vl be a vertex in Tz and let Vz be a vertex in T>
We say that vl and v2 are PQ-simiIar if there exists PQ-runs
rl and r2 which are Pc-equivalent, such that (v~. q) is in

206

Paths(T1) and (v2-r2) is in Paths(T2) (recall that vi'ri
denotes the concatenat ion of the finite sequence vi with rl),

In our proof, we define for a given t-resilient consensus
protocol PR and for each initial configurat ion c, a subset
of the set of n - t-fair runs of PR starting from c, denoted
as R~,,, and we let R,,t be the union ~)cR~,, taken over all
initial configurations c. Rn,~ is a closed set of n - t-fair
runs, and it satisfies the following properties:

initial similarity: Let cl, c2 be initial configurations, and
let Q c_ {1 ,n}, s.t. [QI > n - t. If each processor
p ~ PQ has the same input in c~ and in c2, then the roots
of T(R~2,,) and of T(R~G) are PQ-similar.

siblings similarity: Let c be an initial configuration, and let
u, v, w ~ T(R~,,~) s.t. v and w are sons ofu. Then for some
Q _c {1, ... ,n}, [QI > n - t, there is a descendant v' of
v and a descendant w' of w such that v' and w' are
PQ-similar.

Theorem 2.1. Let t > 1 be a given integer. Then there is no
consensus protocol which is correct w.r.t, a closed set of
n - t-fair runs Rn,t which satisfies the initial similarity and
siblings similarity properties.

Proof Assume by the way of contradiction, that PR is
a consensus protocol which is correct w.r.t, a set of runs
R,,t which satisfies the above properties, where t > 1.

We derive a contradict ion in three steps:

Step 1. Proof of the existence of an initial configurat ion Co,
s.t. the root T (R ~) is bivalent. Assume by the way of
contradict ion that for each initial configurat ion c, the root
of T(R~,t) is univalent. Let Co be the initial configurat ion in
which the value of each input register inp is 0, and cl be the
initial configurat ion in which the value of each input
register inp is 1. By the nontriviali ty proper ty for consensus

c0 protocol, the root of T(R,,,,) is 0-valent and the root of
T(R~ ~,,) is 1-valent. Hence, there must be initial configura-
tions c~ and cb which differ only in the initial value inp, of
a single processor pi, the root v~ of T(R~t) is 0-valent
and the root Vb of T(R~,) is 1-valent. Let Q =
{ 1 , . . . , i , 1, i + 1, . . . ,n}. Since t > 1 and IQI = n - 1, the
initial similarity proper ty implies that there are PQ-runs
. Po-equivalent. r, is an ~a ~ R,,, and r b ff R,,t, which are
n - t-fair Po-run, and hence there must be p e Pe slt.
p eventually reaches a decision state in r~. Since v~ is
0-valent, p must decide on 0 in r,. G and rb are Pc-equiva-
lent, so p takes on rb the same steps as in r,, and therefore
p decides on 0 also in rb. This contradicts the 1-valency of
Vb. Therefore, there exists an initial configurat ion co, s.t.
the root of T(R~t) is bivalent.

Step 2. Proof of the existence of vertices u, v, w e T =
Co T(R,,t), v and w are sons of u, s.t. v is 0-valent and w is

1 valent.
For v e T, we define Pred(v) to be true if v is univalent

and false if v is bivalent. Since every run r e R~ ~ is n - t-
fair, each such run r has a prefix r' s.t, the vertex represent-
ing r' in T(R~?,) satisfies Pred. By L e m m a 1.1, there is
a constant M~ s.t. every vertex of depth > Me in T satisfies
Pred. Assume that M~ is as small as possible. Since by Step
1 the root of T(R~~ is bivalent (i.e. does not satisfy Pred),
M~ > 1 and hence there exists a bivalent vertex, u, of
maximal possible depth. This implies that u has one Son

v which is 0-valent in T and another son w which is
1-valent in T.

Step 3. Let v and w be as in Step 2. By the siblings
similarity, there is a vertex v' which is a descendant of v,
and a vertex w' which is a descendant of w, s.t. for some
Q __ {1, ... ,n}, IQI > n - t, v' and w' are PQ,similar. Then
there are Pc-runs rl and r2 which are Pc-equivalent, such
that bo th (v'. rl) and (w;. r2) are in Paths(T). Like in Step],
since v' is 0-valent, some processor p e Pe decides on 0 in
rl. Since p takes the same steps in both runs, p decides on
0 also in r 2. But this is a contradiction, since w' is 1-
valent. []

In order to apply Theorem 2.1 to prove the non-exist-
ence of t-resilient consensus protocols in specific models,
we have to construct closed sets of n - t-fair runs R,,t,
which satisfy the initial similarity and siblings similarity
properties. This cOnstruction is carried out in two steps;
First, we define and construct combinator ia l objects,
called closed schedulers, and prove that they satisfy certain
properties. Then we describe how these closed schedulers
are used to construct the sets of runs R,,t in various
models.

3 Closed schedulers

Let i be a (finite) set of integers. A schedule s = ($ 1 , s 2 , . . .)

over I, denoted I-schedule, is an infinite sequence of inte-
gers f rom I; s (~) = (sl, . . . , &) denotes the prefix of the first
I elements o f s (s (~ = e). A schedule s is fair for an integer i,
if i appears in it infinitely often, s is fair for a subset Q o f I if
it is fair for every i e Q. s is m-fair for 1 < m < n if it is fair
for a subset Q where [Q[> m. Note that each schedule iS
1-fair.

A scheduler S over I is a set of schedules as above. S is
m-fair if all the schedules in it are m-fair.

Each scheduler S defines an infinite directed tree T(S)
in a natural way, as follows: The vertices of T(S) are all the
finite prefixes of schedules in S, and a vertex u is the father
of a vertex v iff v = u,(i) for some i. The edge (u, v) is
marked with i. In this way, each schedule s e S is an infinite
path in T(S).

Let Paths(T(S)) be, as before, the set of infinite paths in
T(S). Note that Paths(T(S)) is a scheduler, and that for
each scheduler S, Paths(T(S)) _~ S. A scheduler S is closed
if Paths(T(S)) = S, i.e. all the infinite paths i n T(S) are
in S.

Examples
- For each n~ N, the set Sn of al! 1-fair schedules over

{1 , n} (which is the set of all schedules over {1, . . . , n})
is closed.
For each n > 2, 0 < t < n - 2, let S,.t denote the set of
all n - t-fair schedules over {1, ... ,n}. Sn,, is not closed:
Vie N the schedule (. 1 ~ , 1 n - t, 1

i t imes
n - t , . . .) is n - t - f a i r , so the vertex (~) is in

i t imes
T(Sn, t). This implies that the schedule (1, 1, 1,.. .), which

is not n - t - f a i r , is in Paths(T(S, , t)) . In fact,
T(S,,~) = T(S ,) for all n > 2, 0 _< t < n - 2.

- Each finite scheduler (i.e. a finite set of schedules) is
closed.

- Let T be an infinite directed tree with no leaves whose
vertices are finite sequences of integers from {1, .. . , n},
and a vertex u is the father of a vertex v iff v = u. (i) for
some i (the edge (u, v) is marked with i). Then the
scheduler S = P a t h s (r) is closed.

3.1 Construction o f closed and.fair schedulers

In this subsection we define for each n > 2, 0 <
t < n - 1, a tree T,,~ s.t. each infinite path in T,,t is n - t-
fair. So the scheduler 5~,,~ = Paths(T,,~) is n - t-fair and
closed. In the next subsection we prove some combina-
torial properties of T,,~, which are used in the impossibility
proofs based on our construction. For t = - n - 1 ,
T , , , -1 = T(S,) , where S, is the set of all {1, ... ,n}-sched-
ules. Below we present the construct ion of T,,,~ for
O < t < n - 2 .

Each vertex in T,,~ will have either t + 1 or t + 2 sons.
Informally, the sons of a vertex u ~ T,,,t are determined by
the suffix of the last n - t elements in (the sequence repres-
enting) u, denoted as suf,_t(u). In order to generalize the
definition also for sequences of length < n - t, we take
suf,_ ~(u) to be the sequence of the last n - t elements in the
sequence (1, ... , n - t) .u (i.e., the sequence (1, ... , n - t)
concatenated with u). Also, when there is no ambiguity, we
will omit the subscript n - t and denote this suffix by
suf(u). For a finite sequence s', we denote by SUF(s ') the
set of elements in suf(s').

For 0 _< t _< n - 2, the tree T,,; is defined inductively as
follows:

1. The empty sequence e is the root of T,,I.
2. Let u be a vertex in T,,,, and assume that

suf(u) = (sl, ... ,s,_~), where si # sj for i # j (that is: all the
elements in suf(u) are distinct). A vertex u with this prop-
erty is said to be normal. Let il ,it be the integers in
{ 1 , . . . , n } \ S U f (u) . Then the sons of u are u.(il) ,
. . . , u . (it), u . (sO, u . (s~).

3. Let u be a vertex in T,,,, and assume that su f (u)=
(sz, . . . , s ,_ , 1, s~), where si + s i for i + j (that is: the first
and last elements are equal and all the others are distinct).
A vertex u with this proper ty is said to be special. Let
i l , . . . , it+ 1 be the integers in {1, . . . , n} \SUF(u) . Then the
sons of u are u. (iz), . . . , u . (it+ 1).

For the above definition to be complete, we need to
show that every vertex in T,,, t must be either normal or
special. This follows from the fact that su f (e)=
(1, ... , n - t), and hence ~ is a normal vertex, and from
Lemma 3.1 below.

L e m m a 3.1. Each normal vertex in T,,t has t + 2 sons,
exactly one of which is special and the others are normal, and
each special vertex in T,,~ has t + 1 sons which are all
normal.

Proof Follows immediately from the definition of
r~,~. []

207

The definition of T~,~ guarantees that for each schedule
s in Paths(T,,t), in each subsequence of n - t + 1 consecut-
ive elements of s, at least n - t elements are distinct. This
implies that the closed scheduler S,,t = Paths(T,,~) is
n - t-fair.

Example. Let n = 5 , t = 2 . The vertex u ~ = (1 , 2 , 3) is
a normal vertex in T5,2, and its sons are (1,2,3,4) ,
(1, 2, 3, 5), (1, 2, 3, 1) and (1, 2, 3, 2). The vertex uz =
(1, 2, 3, 2) is a special vertex (the only special son of ul) and
its sons are (1, 2, 3, 2, 1), (1, 2, 3, 2, 4), (1, 2, 3, 2, 5), which
are all normal vertices.

3.2 Similarity properties

In this subsection we prove that the trees T,,,t defined
above satisfy certain properties, which are needed to
guarantee that the initial similarity and siblings similarity
properties are satisfied by the sets of runs constructed in
the various models.

Definition. For each v e T, , , T~,t(v) is given by:

T.,,(~) = { u l v . u ~ T.,~}

i.e. T,,t(v) is the subtree of T,,~ which consists o fv and all its
descendants, when omitt ing the prefix v from all the
vertices. Note that for each v ~ T , , t , the scheduler
Paths(T,,t(v)) is n - t fair and closed.

L e m m a 3.2. Let u be a vertex in T,,t, and let Q ~_
{1,. . . , n}, be of cardinality > n - t. Then Paths(T,.t(u))
contains a Q-schedule.

Proof. Let Q = {i l , . . . , im}, and let su f (u)= (Sl , . . . , s , - t) .
Assume that the elements in Q are ordered so that for each
k, 1 < k < m, if ik is in suf(u), then for every I s.t. k < 1 < m,
i; also appears in suf(u), and the last occurrence of ik in
suf(u) precedes the last occurrence of i; in suf(u) 1. Since
m > n - t , this implies that for 1 _< k _< m, ik does not
occur in (&+ 1,-.. , s,-t). Hence, every n - t successive ele-
ments in the sequence (s2, . . . , s,_~, il , i,,) are distinct. I t
follows that the periodical schedule (i l , . . . , ira, il) is in
Paths(T,,t(u)). []

Definitions. Vertices u and v in T,,t are equivalent iff
T,,t(u) = T,,t(v). u and v are Q-similar, Q c_ {1, . . . ,n},
IQl > n - t, iff there exists a Q-schedule s s.t.
s E Paths(r, , t(v)) ~ Paths(T,, ,(u)).

The existence of pairs of vertices which are Q-similar
for some Q _~ {1, . . . ,n} is used in all our impossibility
proofs,

L e m m a 3.3. For each u, v e T,,t:
(a) I f suf(u) = suf(v), then u and v are equivalent.
(b) Let Q ~_ {1, . . , ,n},]QI > n - t. I f there exists a se-

quence s' s Q, - t , s.t. both u . s ' and v .s ' are in T,,t, then
u and v are Q-similar.

Proof
(a) We have to show that for each schedule s, s is in

T,,,(u) iff it is in t,,~(v). Let s = (s~, s2, ...), be given. An

Note that if u is special, then one integer appears twice in suf(u)

208

easy induct ion shows that for each I > 0, the prefix
(s~ , h) o f s is in T,,t(u)i f f i t is in T,,,dv). This proves (a).

(b) By L c m m a 3.2, Paths(T,,t(u.s ')) contains a Q-
schedule, say s. Hence Paths(T,,,du)) contains the Q-sched-
ule s' .s. By (a) above and the fact that s u f (u . s ') =
suf(v.s ') = s', s ' . s is also in Paths(T,,dv)). This proves
(b). []

The next technical claim follows directly f rom the in-
ductive definition of T,,t, and its p roof is left to the reader.

Claim 3.4. For each n > 2, 0 <_ t <_ n - 2, let v, be a normal
vertex in T,,t, s u f (v ,) = (s > . . . , s , _ j and v~ be a special
vertex in T,,,t, suf(v~) = (h , . . . , t, t- ~, t~).

(a) Let s' = suf(G). Then, v,,. s' is a normal vertex in
Tt~,t.

(b) Le~ s' = (s > . . . , s , , - t 2, G-t ,s , , -~-~) (i.e. s' is ob-
tained by switching the last two elements in suf (v,)). Then,
v,. s' is a normal vertex in T,,~.

(c) Let s' = (l, s~, ... , &- t -2 , s,,_,) where l ~ {1, ... , n } \
SUF(G). Then, G 's ' is a normal vertex in T,,~.

(d) Let s '=(l , t2, . . . , t , , ~_~,h) where l ~ { 1 n}\
SUF(v,). Then, v~.s' is a normal vertex in T,.~,

(e) Let v be a vertex in T,,t ands' a sequence of length
n - t s . t .v, s' is a normal vertex in T~,t. Let s" be a sequence
obtained by replacing elements in s' by distinct integers from
{1, ..., n} \ { S U f (v) vo S U F (v . s')}. Then, v. s" is normal ver-
tex in T,,,.

L e m m a 3 . 5 . Let n > 2, O <- t <- n - 1. Then jo t each
u ~ T,,~, and for each i,j s.t. both u.(i) and u. (j) are in T,~,~,
it holds that both u. (i,j) and u. (j, i) are in T,,t, and for each
Q cA { 1 , . . , ~ } , IQI > n - t,

1. u . (i , j) and u. (j, i) are (2-similar.
2. I f t > 1 and i~ Q then u. (i, j) and u. (j) are Q-similar.
3. I f t > 2 and i,j~(2 then u. (i) and u. (j) are Q-similar.

Proof. If t = n - 1 then T,,~ is the complete n-ary tree, in
which all the vertices are equivalent, and hence the l emma
holds trivially. Thus, we assume that 0 _< t _< n - 2. Let
u be a vertex in T,,.~, (2 _c {1, . . . ,n},]QI > n - t. It is easy
to see that if u.(i) and u . (j) are vertices in T,,,t, then
ul = u . (i , j) and u2 = u . (j , i) are normal vertices in T,,,~,
where the only difference between suf(ul) and suf(u2) is the
order of the last two elements. We now prove each of the
three claims in the lemma.

1. Let u~ = u . (i , j) and u2 = u . (j , i). By L e m m a 3.3(b)
it suffices to show that there is a sequence s ' e Q'~ ~, s.t.
both u , . s and u2.s' are in T,,,. Assume first that
st~(u,) e Q,-t . In this case, we take s' = suf(ul). Then, by
Cla im 3.4(a), u~-s ' is a normal vertex in T,,, , and by Cla im
3.4(b), uz - s ' is a no rma l vertex in T,,,.

If suf(ut)r we let s' be the sequence obta ined
from suf(ul) by replacing the elements in suf(ul) which
are not in Q by distinct elements from Q \ S U F (u ,) (this
is possible since IQI >=ISUF(ul)I). Since S U F (u l) =
SUF(u , . su f (u l)) = SUF(u2.suf(u~)), by Claim 3.4(e),
both u l . s' and u2. s' are normal vertices in T,,t. Hence, by
L e m m a 3.3(b), ul and uz are Q-similar.

2. Let ut = u. (j) , u2 = u . (i) and let u3 = u.(i , j) . As
in t. above, it suffices to show that there is a sequence

s ' e Q" ', s.t. bo th u l - s ' and u3 . s ' are in T;,,t. Let sz~f(ui)
= (s i s ~ - t - i , j) and thus suf(u2) (s> . . . , s , , - t - l , !) .

Assume first that SUF(uD\{ i } CA Q. In construct ing sy we
distinguish between two cases:

Case 1. Both u, and u 2 are normal . In this case
ir and hence SUF(ul)c_ Q. Let s ' = s~g'(UJ.
Then u~. s ' is in T,,,t by Claim 3.4(a), and u3. s' is'in T,,,~ b y
Cla im 3.4(c).

Case2. Not case t. Then s l s { i , j } , and hence
[S U f (u l) w S g F (u 2) \ { i }[< n - t <= [Q] . Since i~Q, there
is an l c Q, which is not in SUF(ul)wSUF(u2) . In this case
we let s ' = (I , s2 , s , - t -~ , j) . Then u3.s' is in T,,~ bY
Claim 3.4(c). If s~ = j then u-~. s' is in T,,i by Claim 3.4(d),
else Ul .s ' is in T,,,r by appl icat ion of (a) and then (e) Of
Claim 3.4.

Assume now that SUF(u ,) \ { i } g Q. We replace in
each of the two cases above the sequences ' b y a sequence
s ' , which is obta ined by replacing the elements in s' whic}i
are not in (2 by distinct elements from Q which are not in s'
(again, this is possible since IQt > n - t). Since i doe s
not occur in s" and [SUF(u3)\{ i}] CA [SUF(ut)\{i}:] cA
S U F (u 1 �9 s ') = S U F (u 3 �9 J) , w e have by L e m m a 3.4(e) that
both u~. s" and u3. s" are normal vertices of T,,t, a n d by
L e m m a 3.3(b) they are (2-simiiar.

3. Let ul = u.(i) and u2 = u . (j) . Again, it suffices to
show that there is a sequence s' e Q" ~, s.t. bo th u , . s' a n d
u2.s' are in T,,t. Let s u f (u ,) = (s l , . . , , s , ~-1, i) and let
suf(u2) = (s > , . . , s , _ t _ l , j) . Assume first that SUF(u~)\
f i " _ ~ ,j } c Q. At least one out of ul, t,,2 is normal , so assume
that ul is normal . We let s ' = (m s , , -~-l , l), where (i)
l e Q\SUF(u l) , and (ii) if s l @ j then m = s> else m + t ,
and m e Q\SUF(u ,) . Then by Cla im 3.4(e), both u , - s' and
us. s' are in T,,t.

Assume now that S U F (u ,) \ { i , j } g Q: As in the pre-
vious cases, we construct a sequence s" by replacing the
elements in s' above which are not in Q b y distinct ele-
ments f rom Q. By Claim 3.4(e) both u , . s" and u2. s ' are
normal vertices in T,.t, and by L e m m a 3.3(b) they are
Q-similar. []

4 Mapping schedules to runs

In this section we describe a general technique which, fQr
a given distr ibuted model dm and a t-resilient pro tocol PR
in din, use the closed schedulers constructed in the
previous section, to define a closed set of runs of PR
which satisfies the initial similarity and siblings similarity
properties.

Let PR be a pro tocol for n processors in the given
model dm. Then we define a mapping:

Mam : C x S. --+ R

where C is the set of configurations of PR, S, is the set o17
schedules over {1 n}, R is the set of runs Of PR, and!for
each c e C and s a S,, Mere(c, s) is a run which is applicabl e
to c. Intuitively, this mapp ing maps each occurrence of an
integer i in a schedule s to an a tomic event e(i), associated

with processor P~. This mapping should guarantee that if
s is fair for i, then the run Mdm(c, s) is fair for Pi. By varying
the way in which e(i) depends on P~, various impossibility
results are obtained (see [11]).

Let s = (s> .. . , &, ..,). First, we define by induction for
each finite prefix s' = (Sl, ... ,&) of s, Md,,(c, s') to be a se-
quence of i steps. Then, Ma~(c, s) is defined to be the
infinite sequence of steps obtained by this induction.

For each initial configuration Co, we map the canonical
(n, 0 scheduler 5:,,, to a set of runs R,~,~t of PR:

R~. ~ -- {M. . , (Co , slls e ~ . . , }

and we consider the tree associated with R;~t as described
in Sect. 1.1, T(R~~

C0 In this way, T,,t and T(R, , t) are isomorphic. The
n - t-fairness of schedules in 5Qt induces n - t-fairness of

CO the runs in R,,t, and therefore R~t is a closed set of
n - t-fair runs. The results in Sect. 3.2, and the isomor-
phism of 5%,t and T(R~,~t) guarantees that the initial sim-
ilarity and siblings similarity properties are satisfied by

C0 T(R,, ,) . In the next section we demonstrate how an im-
possibility proof for a specific model, using the set of runs
constructed here, is carried out.

5 Impossibility of read/write 1-resilient
consensus protocols

In this section we demonstrate how to apply the proof
technique of Sect. 2 to prove impossibility of t-resilient
consensus protocols in a specific model. In [11] we apply
the technique to some variations of the shared memory
and message passing models. Here, we prove the impossi-
bility of 1-resilient consensus protocols in the read/write
shared memory model.

We consider the standard read/write model, as defined
in V10], where processes communicate via a set of shared
registers. A process may atomically read or atomically
write a shared register in one atomic step. A process is
non-faulty in a run if it takes infinitely many steps in it (and
it is faulty otherwise).

Let PR be a protocol for n processes in the shared
memory model sin. Then, we define a mapping:

M~,,, : C x 5:.,t ~ R

which maps each pair of a configuration c c C and a sched-
ule s = (s> s2) E 5:,,~ to a run M~m(c, s), in which, for
each i E N, the i-th step is taken by p~. Note that in the
model considered, given a configuration c, an atomic step
is completely determined by specifying the active process
p. This guarantees that M~m is well defined.

For each initial configuration c, R~,, = {Msm(C, s) ls 6
5:~,t}. The mapping M ~ defines isomorphism from
T,,t onto T(R,~,,,). We denote the image of a vertex u ~ T,,,
under this isomorphism by uc.

By Theorem 2.1 it suffices to prove that R,,, ~ is a closed
set of n - 1-fair runs which satisfies the initial similarity
and siblings similarity properties. By the definition of the
mapping M~,~ and the fact that 5:,,t is an n - t-fair sched-
uler, the set R,,, ~ is a closed set of n - 1-fair runs. In order

209

to prove that it satisfies also the initial similarity and
siblings similarity properties, we need one more definition
and lemma:

Definition. Configurations c~ and c 2 are PQ-equivalent, for
Q _~ {1,. . . ,n}, if all the shared registers have the same
values in ca and in c2, and each processor p ~ PQ is in the
same internal state in Cl and in c 2.

Lemma 5.1. Let c 1 and c2 be Po-equivalent configurations,
and let s be a Q-schedule. Then the runs r~ = M~m(Cl, s) and
r2 = M~m(c2, s) are Po-runs which are Po-equivalent.

Proof. First, observe that if c and d are PQ-equivalent
configurations, then for every l ~ N , Ms~(C,S~
M~(d , s(1)), and the configurations a(c, M~m(c, s(~ and
a(d, M~(d , s(l))) are PQ-equivalent.

(l) = For each integer l, let r~) - - M~,,(cl, s (tl) and r 2
M~,,(c2, s(~)). Using the above observation, a straightfor-
ward induction on l shows that the configurations
a(Cl, r~)) and a(c> r~)) are Po-equivalent. It follows that
the runs ra and r2 are Po-runs which are Pc-equivalent
(and, in fact, are identical). []

The initial similarity property follows from Lemma 5.1,
Lemma 3.2 and the definition of the mapping M~,~. The
next lemma proves the siblings similarity property.

Lemma 5.2. Let u, v = u.(i), w = u . (j) be vertices in T,,,1,
and let uc, v~, wc be the corresponding vertices in T(R~,I).
Then there is a descendant v'~ of vc and a descendant w; of we
such that v'~ and Wc are PQ-similar, for some Q ~_ {1 ,n},
IQl__>n-1 .

Proof By Lemma 5.1, it suffices to find a descendant v' of
v and a descendant w' of w s.t. v' and w' are Q-similar and
a(c, v;) and a(c, w'~) are Po-equivalent.

There is an atomic step a taken by p~, and an atomic
step b taken by Ps, such that vc = uc. (a) and wc = uc-(b).
Let reg I be the register that p~ accesses in a, and reg2 be the
register that pj accesses in b.

Case 1. One of the two steps a, b is a read step.
Suppose w.l.o.g, that the step a taken by Pi is a read step.
Let Q = { 1 , . . . , n } \ { i } , w ' = w = u . (j) and v ' = v . (j) .
Then, cr(c, w;) and o-(c, v;) are Po-equivalent, and by
Lemma 3.5(2), u . (j) , v . (j) , are Q-similar. Therefore
w; and v; are Po-similar.

Case 2. Both steps a, b are write steps, rega + reg2.
Let w ' = w.(i) , v ' = v . (j) , and let Q = {1,.. . ,n}. Then,
a(c, w'c) and o-(c, V'c) are PQ-equivalent, and by Lemma
3.5(1), w.(i) and v . (j) are Q-similar. Therefore w'c and
v'c are Pc-similar.

Case 3. Both steps a, b are write steps, rega = reg2.
Let w' = w = u . (j) , v' = v . (j) , and let Q = {1, ... , n} \{i}.
Then, or(c, w~) and a(c, V'c) are Pc-equivalent, and like in
Case 1, w'c and v'c are PQ-similar. []

Thus, we conclude the following:

Theorem 5.3. [10] There is no 1-resilient read~write con-
sensus protocol.

210

6 Conclusion and further research

In this pape r we in t roduced the concept of closed sets of
runs, which are sets of runs tha t can be descr ibed as the
pa ths of an infinite tree of bounded degree. Then we
in t roduced the concept of closed schedulers, and presented
a unified, mode l independen t technique to cons t ruc t closed
sets of runs of E-resilient p ro toco l s by using closed
schedulers.

The sets cons t ruc ted by our technique preserve m a n y
of the proper t ies possessed by the sets of all runs of
t-resil ient protocols ; in par t icular , given any finite prefix of
a run in this set, it is still imposs ib le to dis t inguish between
faulty and slow processes in this run. We believe that this
makes these sets a convenient tool for p rov ing proper t ies
of such protocols . To demons t r a t e this, we used these sets
to provide unified proofs of the imposs ib i l i ty of t-resil ient
consensus protocols .

The full appl icab i l i ty of closed sets of runs, and in
par t i cu la r of the sets cons t ruc ted by the closed schedulers
Y,,t in t roduced in this paper , is yet to be explored. I t is
an t ic ipa ted that the s imple combina to r i a l s t ructure of
these schedulers will m a k e them a useful tool for s tudying
further p rob lems related to t-resil ient protocols .

AcknowIedyement. We would like to thank an anonymous referee for
his insightful comments, which helped in improving the presentation
of our results.

References

1. Attiya H, Bar-Noy A, Dolev D, Peleg D, Reischuk R: Renaming
in an asynchronous environment. J ACM 37(3): 524-548
(1990)

2. Biran O, Moran S, Zaks S: A combinatorial characterization of
the distributed l-solvable tasks. J Algorithm 11:420-440 (1990)

A preliminary versions appeared in Proc 7th ACM Syrup on
Principles of Distributed Computing, August 1988

3. Borowski E, Gafni E: Generalized FLP impossibility result for
~-resilient asynchronous computations. In: Proc 25th ACM
Symp on Theory of Computing, May 1993

4. Bridgland M. Watro R: Fault-tolerant decision making in totally
asynchronous distributed systems. In: Proc 6th ACM Symp on
Principles of Distributed Computing. pp 52 63, 1987

5. Chaudhuri S: More choices allow more faults: set consensus
problems in totally asynchronous systems. Inf Comput 105(lt:
t32 158 (19931

6 Fekete A: As3 nchronous approximate agreement. In: Proc 6th
ACM Syrup on Principles of Distributed Computing, 149-i70.
1987

7. Fischer M J, Lynch NA. Paterson MS: Impossibility of distrib-
uted consensus with one faulty process. J ACM 3212t: 374-382
(1985)

8. Herlihy M. Shavit N: The asynchronous computability theorem
for t-resilient tasks. In: Proc 25th ACM Syrup on Theory of
Computing, May 1993

9. K6nig D: Theorie der endlichen und unendlichen graphen. Leip-
zig, 1936 (reprinted by Chelsea. 1950)

10. Loui CM. Abu-Amara H: Memory requirements for agreement
among unreliable asynchronous processes. Adv Comput Res 4:
~[63-183 (19871

ll Lubitch R. Moran S: Closed schedulers: constructions and ap-
plications of consensus protocols. In: Proceedings of 6-th Inter-
national Workshop on Distributed Algorithms, pages 1i-34.
November 1992. Revised Version in TR ;~ 796_ Department of
Computer Science, Techniom January 1994

12. Moran S. Wolfsthal Y: An extended impossibility result for
asynchronous complete networks. Inf. Process Lett 26:14l-t51
t1987l

13. Saks M. Zaharoglou F: Wait-free k-set agreement is impossible:
the topology of public knowledge. In: Proc 25th ACM Syrup on
Theory of Computing, May 1993

14. Taubenfeld G, Katz S. Moran S: Impossibility results in the
presence of multiple faulty processes. Inf Comput. 1994. Prelimi-
nary version appeared in: Veni Madhavan CE (eds/ 9th FC~-
TCS Conference. Bangalore. India. December. 1989. Lect Notes
Comput Sei. vol 405, pp 109 120o Springer, Berlin Heidelberg
New York 1989

