
JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.1 (1-13)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The firing squad problem revisited ✩

Bernadette Charron-Bost a, Shlomo Moran b,∗
a École polytechnique, 91128 Palaiseau, France
b Department of Computer Science, Technion, Haifa, 32000, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 February 2018
Received in revised form 14 June 2019
Accepted 15 July 2019
Available online xxxx
Communicated by K. Censor-Hillel

Keywords:
Distributed algorithms
Firing squad
Dynamic graphs
Asynchronous start
Randomized algorithms

In the classical firing squad problem, an unknown number of nodes represented by
identical finite states machines is arranged on a line and in each time unit each node may
change its state according to its neighbors’ states. Initially all nodes are passive, except one
specific node located at an end of the line, which issues a fire command. This command
needs to be propagated to all other nodes, so that eventually all nodes simultaneously
enter some designated “firing” state.
A natural extension of the firing squad problem, introduced in this paper, allows each node
to postpone its participation in the squad for an arbitrary time, possibly forever, and firing
is allowed only after all nodes decided to participate. This variant is highly relevant in
the context of decentralized distributed computing, where processes have to coordinate for
initiating various tasks simultaneously.
The main goal of this paper is to study the above variant of the firing squad problem
under the assumptions that the nodes are infinite state machines, and that the inter-
node communication links can be changed arbitrarily in each time unit, i.e., are defined
by a dynamic graph. In this setting, we study the following fundamental question: what
connectivity requirements enable a solution to the firing squad problem?
Our main result is an exact characterization of the dynamic graphs for which the
firing squad problem can be solved. When restricted to static directed graphs, this
characterization implies that the problem can be solved if and only if the graph is strongly
connected. We also discuss how information on the number of nodes or on the diameter
of the network, and the use of randomization, can improve the solutions to the problem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Many distributed algorithms assume a synchronous networked system, in which computation is divided into communica-
tion closed rounds: any message sent at some round can be received only at that round. In this model it is typically assumed
that each run of an algorithm is started by all nodes simultaneously, i.e., at the same round. For instance, most of syn-
chronous consensus algorithms (e.g., [25,12,27]), as well as many distributed algorithms for dynamic networks (e.g., [17,18])
require synchronous starts.

In this paper, we justify this assumption of synchronous starts for dynamic networks with no central control that moni-
tors the node activities, but with sufficient connectivity assumptions. Specifically, we study a generalization of the associated

✩ A preliminary version of this paper was accepted to the 35th International Symposium on Theoretical Aspects of Computer Science (STACS 2018).

* Corresponding author.
E-mail address: moran@cs.technion.ac.il (S. Moran).
https://doi.org/10.1016/j.tcs.2019.07.023
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.07.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:moran@cs.technion.ac.il
https://doi.org/10.1016/j.tcs.2019.07.023

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.2 (1-13)

2 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
synchronization problem, classically referred to as the firing squad problem. This generalization considers a communication
network of unknown size, in which messages are delivered along a set of edges that may change in each round. Each node
is initially passive: it is part of the network and broadcasts heartbeats, also called null messages, without changing its state.
It may then become active upon receiving a start signal at an unpredictable time, and start executing its code. The goal is to
guarantee that if all nodes received start signals, then the nodes eventually synchronize by firing – i.e., entering a designated
state for the first time – simultaneously.

We generalize the original firing squad problem in two ways: First, while the original formulation assumes that the
network is defined by a fixed connected undirected graph, we allow for unidirectional communication links that may be
added or deleted in each round. Second, in the original formulation, start signals are supposed to be diffusive, i.e., a passive
node that receives a message from an active node must immediately become active. In our formulation start signals may be
non-diffusive – a passive node that receives a message from an active node may remain passive for an unpredictable time.
In other words, start signals are not necessarily correlated to the communication topology.

In this model, the firing squad problem is formally specified as follows:

FS1 (Validity): A node fires if and only if all nodes receive start signals.
FS2 (Simultaneity): All the nodes that fire, fire at the same round.

Observe that when start signals are diffusive and the network is strongly connected, if some node receives a start signal
then eventually all nodes receive start signals, and hence FS1-2 coincides with the traditional definition of the firing squad
problem [20]. Thus our problem specification is a strict generalization of the original one.

As a basic synchronization abstraction, the fulfillment of FS1 and FS2 above can be used in various types of situations
to guarantee simultaneity: for distributed initiation (to force nodes to begin some computation in unison), for distributed
termination (to guarantee that nodes complete their computation at the same round), or in real-time processing (where
nodes have to carry out some external actions simultaneously). Another typical scenario that requires FS1 and FS2 is when
some algorithm needs to be executed several times in a row, and the (i +1)st run should be started simultaneously, after all
nodes terminated the ith run (see e.g. [5]). The latter two applications exemplify the relevance of the model of non-diffusive
start signals as start signal may correspond to the termination of a local computation or to the availability of some input
value.

In all the above examples, a firing squad algorithm is a synchronization tool used as a subroutine by some parent algo-
rithm. For instance, consider the use of a firing squad algorithm on the top of some algorithm A for simulating simultaneous
termination of A. In this case, a node is passive if it has not yet completed the execution of A, and the start signal on a
node corresponds to the completion of A by this node. In this example a passive node sends null messages, just indicating
that it has not completed the execution of A.

It is easy to see that when the communication graph is permanently complete, the firing squad problem can be solved
in one round after all nodes are active. In the opposite scenario where some node is permanently isolated, the problem
is clearly unsolvable. This demonstrates a strong connection between the solvability and complexity of the firing squad
problem, and the connectivity of the network. The primary aim of this paper is to explore this relation in the context of a
dynamic topology.

The firing squad problem was originally studied in the context of automata theory (e.g., [20,21]). This model considers a
finite but unknown number n of nodes which are connected in a line (or in some other specific topologies in more recent
works – see e.g., [23,8]). Nodes are identical finite state machines whose number of states is independent of n, and at each
time unit each node changes its state according to the states of its neighbors on the line. A start signal is given to a node
located at one end of the line – the “general” – and then is propagated to the rest of the nodes so that all nodes have
eventually to fire simultaneously. Thus the above model assumes diffusive start signals. The main challenges in this model
are to reduce the number of states of the finite state machine and the time required to reach the firing state.

A natural question raised at this point is then the following: If nodes are not restricted to be finite state machines, but
possess a full computational power equivalent to that of a Turing machine, what are the connectivity properties that are
needed for solving the firing squad problem in this case?

The firing squad problem has also been studied in the context of fault tolerant distributed computations (e.g., [3,12,7]),
and more recently in the context of self-stabilization (e.g., see [10,19]). This model also assumes that the nodes have full
computational power, but otherwise the setting of the problem is different: The primary topology is a connected bidirec-
tional graph and the number of nodes n is given. Links are reliable and at most f nodes may be faulty, for various types
of faults, each of which includes crash failures. Hence the topology is weakly dynamic, in the sense that all the edges from
non-faulty nodes are stable, and it may become non-strongly connected (e.g., in the case of crash failures). Moreover, the
scope of the study of fault tolerant firing squad algorithms is limited to diffusive start signals. Finally, due to the lack of
strong connectivity and the unpredictable behavior of faulty nodes, the simultaneity condition and to a larger extent the va-
lidity condition in this model ought to be modified: e.g., faulty nodes in the fault-tolerant firing squad problem are allowed
not to fire simultaneously, while all nodes are required to fire simultaneously in FS2. For all these reasons, our results on
the dynamic firing squad problem are incomparable to the ones on the fault-tolerant firing squad problem.

Contribution. In this paper we consider a set of an unknown number n of nodes possessing full computational power.
Nodes have distinct identifiers, and they run identical codes in some precise sense that is discussed later. The inter-node

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.3 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 3
communication is modelled by a dynamic graph, i.e., at each round, nodes communicate along directed edges of an arbi-
trary communication graph that may change continually and unpredictably from one round to the next. Communication is
done by having each node broadcast at each round a message along the unknown set of its outgoing edges in this round.
We examine various connectivity properties that hold, not necessary round by round, but globally over finite periods of
consecutive rounds. In particular, these properties do not imply any stability of the links, as opposed to the failure model
of at most f faulty nodes that guarantees stability of the links from at least n − f nodes or several models of dynamic
networks in distributed computing (e.g., see [17,1,26]) that assume the existence of a stable spanning tree in the network
over every T consecutive rounds.

The main contribution of this paper is a characterization of the connectivity properties that enable to solve the firing
squad problem in dynamic (and hence also in static) graphs. Our algorithms are valid for the generalized model assuming
arbitrary start signals and arbitrary dynamic graph topology, while our impossibility results hold for previous restricted
models which assume only diffusive start signals and bidirectional dynamic graphs.

On the positive side, we show that if the dynamic graph is guaranteed to be strongly connected within each T consecu-
tive rounds, then the problem admits a solution where the local codes of the nodes all depend on T . Our solution requires
at most linear time in the network size n, and uses messages of size O (n log n).

On the negative side, we show that under the sole assumption that such a constant T exists but is unknown, the
problem becomes unsolvable. Moreover, the problem remains unsolvable in this case even when the number of nodes in
the network is given and even in the restricted model of diffusive start signals. The above results imply that if at each
round, the communication graph can be any member of a given set of directed graphs over the same set of nodes, then the
firing squad problem is solvable if and only if each member in the set is strongly connected.

Our solution is obtained by combining two basic procedures: the first implements local virtual clocks whose values
cannot exceed the diameter of the dynamic graph unless all nodes are active, and the second collects the identities of all
the active nodes in the network. The idea is then that a node fires when the value of its virtual clock is sufficiently large
compared to the number of active nodes it has heard of so far.

We also show that if an upper bound on the diameter of the dynamic graph is given, then the problem is solvable in
time that is linear in that upper bound, using messages of size O (log n). This solution is applicable to anonymous networks
where the nodes have no identifiers.

Unfortunately when the upper bound on the diameter is significantly larger than the network size, this solution is not
satisfactory regarding its time complexity. In the case a polynomial bound on the network size is given, we conclude by
giving a randomized algorithm for the firing squad problem with a linear time in the network size while messages size is
in O (log n log logn).

2. The model

2.1. Distributed computations in the dynamic graph model

We consider a networked system with a set V of n nodes. Nodes have unique identifiers which are not mutually known,
and the network size n is unknown as well. For complexity analysis it is assumed that the identifiers’ length is logarithmic
in n. Some of our algorithms do not use node identifiers, i.e., they work in anonymous networks. Furthermore, nodes run
identical local algorithms, i.e., their codes do not depend on node identifiers (see the discussion on the algorithm Bc,T in
Section 5).

Computation proceeds in communication closed rounds: no node receives messages in round t that are sent in a round
different from t . In round t (t = 1, 2 . . .), each node broadcasts a message, receives messages from some nodes which are
determined dynamically, and finally goes to its next state and proceeds to round t + 1. Importantly, we assume that nodes
cannot access the number of the current round.

Each node u is initially passive: it is part of the network, and at each round it broadcasts a null message, indicating that
it is in a passive state. It may, in a later round, become active and start running its local algorithm upon receiving a unique
start signal at the beginning of some round su � 1, or may remain passive forever, in which case we let su = ∞. A run is
active if all nodes are eventually active.

The coupling of asynchronous starts and null messages is motivated by the examples given in the introduction: when a
firing squad algorithm is constructed on the top of a parent algorithm A, start signals correspond to some specific events
of A (e.g., termination of A), and a node is passive if this event has not yet occurred. In the example of synchronized
termination, the null messages sent by a passive node are actually “not-yet-terminated” messages.

Upon the receipt of its start signal, a node u sets up its local variables with its initial state and starts executing its code.
The value of any local variable xu at the beginning of round t is denoted by xu(t). Thus xu(t) is undefined for t < su .

Communications that occur at round t , including the null messages, are modelled by a directed graph G(t) = (V , Et)

where the set of nodes is fixed while the set of edges may change from round to round. We assume a self-loop at each
node in all the directed graphs G(t) since any node can communicate with itself instantaneously. The sequence of directed
graphs G = (G(t))t∈N is called a dynamic graph [4]. The dynamic graph G is said to be bidirectional if each directed graph
G(t) is bidirectional, i.e., (u, v) ∈ Et if and only if (v, u) ∈ Et .

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.4 (1-13)

4 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. A graph product G ◦ H . If G or H contain nodes with no self loops, then G and H may contain edges which are not in G ◦ H .

Fig. 2. A broken path. (u, v), (v, w) and (w, z) are edges of G(11), G(12) and G(13) respectively. If su = sv = sz = 11 and sw = 13, then (u, v) is an edge
of G∗(11), (w, z) is an edge of G∗(13), but (v, w) is not an edge of G∗(12), and thus the path in the figure is a u ∼ z broken path in the round interval
[11,13].

The dynamic graph can be given by an online adversary, or endogenously as in influence systems [6]. Except in Section 6
which deals with randomized algorithms, our model assumes nothing on the way start signals are generated: a node may
receive an external start signal coming from outside, or it may receive a start signal relayed by some active node. In partic-
ular, there may be more than one external start signal in the network. Start signals are diffusive if a message from an active
node u that is received by a passive node v at round t is considered as conveying a start signal which will make node v
active at round t + 1, i.e., sv = t + 1. Diffusive start signals are thus correlated to the dynamic graph.

A run of a firing squad algorithm is entirely determined by the dynamic graph G = (G(t))t∈N and by the list S = (su)u∈V
of rounds when nodes become active. We denote by G∗(t) = (V , E∗

t) the directed graph of edges in Et connecting two nodes
that are active in round t . The sets of u’s incoming neighbors (in-neighbors for short) in the directed graphs G(t) and G∗(t)
are denoted by Inu(t) and In∗

u(t), respectively.
Any set of dynamic graphs (possibly with different sets of nodes) is called a network model. We say that an algorithm

A solves the firing squad problem for the network model D if for each dynamic graph G in D and each scheduling of start
signals S, the run of A defined by G and S satisfies FS1 and FS2. The firing squad problem is solvable for D if there is an
algorithm that solves it for D.

2.2. Paths and broken paths in a dynamic graph

Let us first recall that the product of two directed graphs G1 = (V , E1) and G2 = (V , E2), denoted by G1 ◦ G2, is the
directed graph G = (V , E), where E = {(u, v) : ∃w ∈ V , (u, w) ∈ E1, (w, v) ∈ E2}; see Fig. 1.

For any dynamic graph G and any integers t′ > t � 1, let G(t : t′) = G(t) ◦ · · · ◦ G(t′). By convention, G(t : t) = G(t),
and G(t : t′) is the directed graph with only a self-loop at each node when t′ < t . We also use the notation G(I) instead of
G(t : t′) when I is the integer interval [t, t′]. Hence if I is the empty interval, then G(I) is the graph with only a self-loop
at each node.

We now fix a run of a firing squad algorithm, with the dynamic graph G and the scheduling of start signals S which, as
above, determine the dynamic graph G∗ . The sets of u’s in-neighbors in G(t : t′) and in G∗(t : t′) are denoted by Inu(t : t′)
and In∗

u(t : t′), respectively, or by Inu(I) and In∗
u(I) for short when I = [t, t′].

Let t and t′ be two positive integers such that t′ � t; a v∼u path in the interval [t, t′] is any sequence
P = (v0 = v, v1, . . . , vm = u) with m = t′ − t + 1 and (vk, vk+1) is an edge of G(t + k) for each k = 0, . . . , m − 1. The
path P is said to be broken if one of its edges (vk, vk+1) is not in G∗(t + k); see Fig. 2. Hence there exists a v∼u path in
the interval [t, t′] if and only if v ∈ Inu(t : t′), and there exists a v∼u non-broken path in [t, t′] if and only if v ∈ In∗

u(t : t′).

2.3. Delayed connectivity of a dynamic graph

Let us recall that a directed graph is strongly connected if for each pair of nodes u, v there is a directed path from u to
v . For c � 1, c-strong connectivity is defined by (e.g., see [9]):

Definition 1. Let G = (V , E) be a directed graph and let c < |V | be a positive integer. We say that G is c-strongly connected
if G remains strongly connected whenever less than c nodes are removed from G .

Note that a directed graph is strongly connected if and only if it is 1-strongly connected.

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.5 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 5
Definition 2. A dynamic graph G is continuously c-strongly connected if each directed graph G(t) is c-strongly connected.

Next we extend the above definition to bounded-length intervals of dynamic graphs.

Definition 3. Let c, T be two positive integers. The dynamic graph G is c-connected with delay T if for every positive integer
t , the directed graph G(t : t + T − 1) is c-strongly connected. When c = 1, we use the abbreviation connected with delay T .

Finally, we present our weakest connectivity assumption for dynamic graphs.

Definition 4. A dynamic graph G is said to be eventually connected if for any positive integer t , there exists t′ � t such that
G(t : t′) is strongly connected.

Using the connectivity properties of dynamic graphs defined above, we characterize the connectivity properties that
enable solution to the firing squad problem. For a positive integer T , DT denotes the network model composed of all
dynamic graphs that are connected with delay T . The union D = ⋃∞

T =1 DT then consists of all dynamic graphs with bounded
delay connectivity. Let D	 denote the network model of eventually connected dynamic graphs. The relations among the above
sets of dynamic graphs are thus given by the strict inclusions

D1 ⊂ D2 ⊂ · · · ⊂ DT ⊂ DT +1 ⊂ · · · ⊂ D ⊂ D	.

In the next sections, we show that the firing squad problem is not solvable for D (and hence also for D), but for each
positive integer T there is an algorithm that solves it for DT .

3. Bounded delay connectivity is not enough

In this section we show that the firing squad problem is not solvable for the network model D with bounded delay
connectivity. This result holds even when using algorithms that depend on the network size, in which case, we say that
the network size, n, is given. Specifically, we show that for the network model D, the validity condition FS1 can be achieved
if and only if n is given, and the firing squad problem (i.e., FS1 and FS2) cannot be solved even if n is given. These two
impossibility results still hold for the original model of diffusive start signals, and when all communication graphs are
bidirectional.

Proposition 5. For the network model of dynamic graphs with bounded delay connectivity D, the validity condition FS1

1. can be achieved if the network size n is given;
2. cannot be achieved even if it is given that starting signal are diffusive, that the network is bidirectional, and that the network size

is either n or n + 1 for some given integer n.

Proof. (1) When the network size n is given, there is a trivial algorithm achieving FS1: At each round, each active node
broadcasts the list of all the active nodes it has heard of, and updates its own list by the messages it receives from other
nodes. A node fires when it has heard of exactly n nodes.

(2) For the sake of contradiction, let n be fixed, and suppose that there is an algorithm A which fulfills FS1 in each run
over a bidirectional dynamic graph with n or n + 1 nodes that is connected with some bounded delay, and in which starting
signals are diffusive. Let W be a set of cardinality n +1, let u be a node in W , and let V = W \ {u}. Then by our assumption,
A satisfies FS1 in the run R with the set of nodes V that are all active from the first round, the dynamic graph G in which
each G(t) is K V , the complete graph over V , and the start signal are diffusive. Hence, there is some t0 such that every node
in V has fired by round t0 in R.

Now consider a run R′ over a dynamic graph H in which H(t) = K u
V for 1 � t � t0, where K u

V denotes the bidirectional
graph over W with the same edges as K V plus the self-loop (u, u), and H(t) = KW , the complete directed graph over W ,
for t > t0. Clearly, H is connected with delay t0 + 1; hence H ∈ D. Assume further that in R′ , all nodes other than u are
active from the first round, and su = t0 + 1. Then since nodes in V cannot distinguish between R and R′ during the first
t0 rounds, they all fire by round t0 in R′ , which violates FS1. �

We now show that there is no algorithm that solves the firing squad problem for D , even if the number of nodes in the
dynamic graph is given. This demonstrates that adding the simultaneity condition FS2 to the validity condition FS1 makes
the problem strictly harder.

Theorem 6. For each fixed integer n > 2, the firing squad problem is not solvable for the network model of bidirectional dynamic
graphs with n nodes and with bounded delay connectivity, even if the start signals are assumed to be diffusive.

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.6 (1-13)

6 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
Proof. For the sake of contradiction, suppose that for some n > 2, there is an algorithm A – that may depend on n –
solving the firing squad problem in any bidirectional dynamic graph with n nodes, with bounded delay connectivity and
with diffusive start signals.

Let V be a set of n nodes, and let u, v be two distinct nodes in V . For x ∈ {v, u}, let Gx be the graph consisting of a
complete graph over V \ {x} and the self loop (x, x). Let further I = (V , E I) denote the directed graph with only a self-loop
at each node, i.e., E I = {(w, w) : w ∈ V }.

We consider the run R of A in which all nodes are active in the first round, and with the dynamic graph consisting
of an alternating sequence of graphs G = (Gu, G v , Gu, G v , . . .). Since n > 2, both Gu ◦ G v ◦ Gu and G v ◦ Gu ◦ G v are the
complete graph on V , and thus G ∈D3 ⊂D. Hence all nodes fire at the same round tF in the run R.

Now assume that G(tF) = Gu (the case G(tF) = G v is symmetric). For every integer i ∈ [1, tF], let Hi be a dynamic graph
which is identical to G, except that Hi(i) = Hi(i + 1) = . . . = Hi(tF) = I . In particular, HtF = (Gu, . . . , G v , I, G v , Gu, G v , Gu,

. . .) and H1 = (I, . . . , I, G v , Gu, G v , Gu, . . .). Then each dynamic graph Hi belongs to DtF +3 ⊂D.
From the viewpoint of the node u, the run R is indistinguishable up to round tF from the run similar to R except that

G is replaced by HtF . Hence the node u must also fire at round tF , and since HtF ∈D, all other nodes also fire at round tF

in this run.
Using a similar argument, we get that from the viewpoint of v , the run of A on HtF in which all nodes are active at the

first round is indistinguishable up to round tF from the similar run on HtF −1. Hence in this latter run on HtF −1, all nodes
fire at round tF as well. By repeating this argument for the dynamic graphs HtF −2, HtF −3, . . . , H1, we finally get that all
nodes in V fire at round tF in the run R′ of A defined by the dynamic graph H1 and start signals all received in the first
round.

From the viewpoint of the node v , the run R′ is indistinguishable up to round tF from the run R′′ of A identical to R′
except that u is passive forever. Hence the node v fires at round tF of the run R′′ , violating FS1 – a contradiction. �

Using a similar proof technique, it can be shown that if the dynamic graph is not restricted to be bidirectional, then
the problem is not solvable for the network model of eventually connected dynamic graphs that contains two nodes. The
problem is solvable for bidirectional dynamic graphs with two nodes by having each node fire immediately if and after it
has received a non-null message from the other node.

4. Firing with a bounded diameter

As a first step towards our main positive result – an algorithm that solves the firing squad problem in dynamic graphs
that are c-connected with delay T – we present a solution in the case that a finite bound on the diameter of the dynamic
graph is given. We start with some definitions.

Let G = (G(t))t∈N be a dynamic graph. The dynamic distance at the index t from node v to node w , denoted dt(v, w), is
defined as the minimum positive integer d such that there is a v∼w path in the interval [t, t + d − 1]. If for all integers
t′ � t there is no v∼w path in the interval [t, t′], then dt(v, w) = ∞.

The dynamic diameter, or in short diameter of the dynamic graph G is the minimum positive integer D such that for every
positive integer t , the directed graph G(t : t + D − 1) is complete, or infinity if there is no such integer:

diam(G) = sup
t�1, (v,w)∈V 2

dt(v, w).

Let D be any network model composed of dynamic graphs with diameters all bounded by D . Then we solve the firing
squad problem for D by using local virtual clocks whose values may reach D only if all nodes are active. The key property
of these virtual clocks is that if some node sets its clock to D , then all nodes set their clocks to D at the same round.

Basically, the value of u’s local clock is the length of the shortest non-broken path ending at u. Our virtual clocks thus
follow the evolution rule of the global virtual time (GVT) of a distributed discrete-event simulator [16].

The corresponding algorithm for D, denoted AD , does not use identifiers, and the computation and storage requirements
of the nodes do not grow with the network size (but they grow with the parameter D). More precisely, its time complexity
is in O (D) and it uses only O (log D) bits per message.

Notation: In the pseudo-codes of all our algorithms, Mu denotes the set of non-null messages received by u in the current
round. Thus Mu is the set of non-null messages sent to u by its active in-neighbors in the current topology. If non-null
messages are vectors of some size, then Mu

(i) denotes the set of the i-th entries of the messages in Mu .
We begin the correctness proof of the algorithm AD by two useful lemmas about the way the virtual clocks ru ’s evolve,

whatever the connectivity properties of dynamic graphs are.

Lemma 7. For every node u that is active from round su , if t < t′ and su � t′ , then ru(t′) is defined and

1. if there exists a broken path ending at u in the interval [t, t′ − 1], then ru(t′) � t′ − t − 1;
2. otherwise, for every v ∈ Inu(t : t′ − 1) it holds that rv(t) is defined and ru(t′) � rv(t) + t′ − t.

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.7 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 7
Algorithm 1 Algorithm AD , firing with diameter at most D .
Initialization: % upon the receipt of the start signal

1: ru ∈ N, initially 0
In each round do:

2: send 〈ru〉 to all and receive messages (from in-neighbors)
3: if at least one received message is null then
4: ru ← 0
5: else
6: ru ← 1 + min

(
Mu

)
7: end if
8: if ru � D then
9: Fire

10: end if

Proof. 1. Let P = (vt = v, vt+1, . . . , vt′ = u) be the assumed broken path, and let i be the maximal integer in [t + 1, t′]
such that the edge (vi−1, vi) of P is not in G∗(i − 1). Then vi is active at round i, and by line 4 of the algorithm AD ,
rvi (i) = 0. By induction, for k = i + 1, . . . , t′ , we show that rvk (k) � k − i � k − t − 1. Substituting k = t′ , we obtain that
ru(t′) � t′ − t − 1.

2. If there is no such broken path, then for each v∼u path P as above, every node vk is active at round k for each
k = t, . . . , t′ . By line 6 of the algorithm AD and by induction on k, k = t + 1, . . . , t′ , it holds that rvk (k) � rv(t) + k − t .
Substituting k = t′ , we obtain that ru(t′) � rv(t) + t′ − t . �

Lemma 8. For every node u and at every round t � smax = maxv∈V (sv) of an active run, we have ru(t) � t − smax . Moreover, if
t � smax + 1 and Inu(smax : t − 1) contains a node v such that sv = smax , then ru(t) = t − smax .

Proof. By the definition of smax, for each node u we have that ru(smax) is defined and ru(smax) � 0. An easy induction on
t � smax shows that ru(t) � t − smax.

If Inu(smax : t − 1) contains a node v such that sv = smax, then there is a v∼u path in the interval [smax, t − 1]. Since
all nodes are active from round smax onward, none of the v∼u paths in [smax, t − 1] are broken. The opposite inequality
ru(t) � t − smax now follows from Lemma 7.2 and rv

(
smax

) = 0. �
Theorem 9. The algorithm AD solves the firing squad problem for any network model composed of dynamic graphs with diameters all
bounded by D. Moreover, all nodes in an active run of the algorithm fire exactly D rounds after all nodes have become active and use
messages of size O (log D).

Proof. Let us first consider a run of the algorithm AD in which there is a node v that is never active. Let u be any node
in V and assume that su < ∞. We will show that u’s virtual clock remains forever less than D . Consider any round t � su .

1. If t � D then, since ru(t) � t − 1, we have that ru(t) � D − 1.
2. Otherwise t � D + 1 and there is a broken path v∼u in the interval [t − D, t − 1]. Using Lemma 7.1, we also get

ru(t) � D − 1 in this case.

This shows that no node ever fires in any run that is not active.
Let us now consider an active run of the algorithm. By the first claim in Lemma 8, the condition in line 8, namely ru � D ,

eventually holds at each node u. Moreover, ru may increase by at most 1 in every round, and thus there exists at least one
round at which ru is equal to D .

Let t0 be the first round at which some node u sets its clock ru to D . Then ru(t0 + 1) = D and

∀v ∈ V , rv(t0 + 1)� D. (1)

Note also that t0 � ru(t0), and hence t0 − D + 1 � 1.
The assumption on the diameter implies that Inu(t0 − D + 1 : t0) = V . Since ru(t0 + 1) = D , Lemma 7.1 implies that

there is no broken path ending at node u in the interval [t0 − D + 1, t0]. Hence, smax = maxv∈V (sv) � t0 − D + 1 and
In∗

u(t0 − D + 1 : t0) = Inu(t0 − D + 1 : t0) = V .
In particular, In∗

u(t0 − D + 1 : t0) contains the latest activated nodes. Hence, by Lemma 8, D = ru(t0 + 1) = t0 − smax + 1
and for every node v ∈ V , rv(t0 + 1) � ru(t0 + 1) = D . Using (1), we get that rv (t0 + 1) = D for every node v ∈ V . Moreover,
by the definition of t0, we also have that rv (t′) < D for every round t′ � t0. Thus all nodes simultaneously fire at the end of
round t0. �

Observe that the diameter of any connected dynamic graph with n nodes is at most n − 1. Thus one immediate spinoff
of Theorem 9 is the following corollary, which when an upper bound N on the network size is given, provides a solution to
the firing squad problem which uses messages of size O (log N).

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.8 (1-13)

8 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
Corollary 10. If nodes have an upper bound N of the network size, the firing squad problem can be solved in any continuously strongly
connected dynamic graph in N rounds after all nodes have become active using only O (log N) bits per message.

5. Firing with T -delayed connectivity

We now present the algorithm Bc,T and show that it solves the firing squad problem in linear time for dynamic graphs
that are c-connected with delay T while no bound on the diameter or the number of nodes of the dynamic graph is given.

The algorithm Bc,T uses the same virtual clocks ru as the previous algorithm AD . However since no bound on the
diameter is given, the network size |V | is computed by each node, and then �T |V |/c� is used as a bound on the network
diameter.

In order to compute |V |, each node u collects the identifiers of the active nodes that u has heard of in a variable H O u .
The node u terminates this computation and fires when its virtual clock ru is large enough compared to the size of its H O u

set.
A similar idea was first used in [14], and also later in early stopping consensus algorithms [11,13], and in the counting

algorithm of [17] but with synchronous starts. This technique requires distinct node identifiers and long messages since
each node u broadcasts H O u in each round.

Algorithm 2 Algorithm Bc,T , firing with T -delayed connectivity.

Initialization: % upon the receipt of the start signal
1: ru ∈N, initially 0
2: H O u ⊆ V , initially {u}

In each round do:
3: send 〈ru, H O u〉 to all and receive messages (from in-neighbors)
4: if at least one received message is null then
5: ru ← 0
6: else
7: ru ← 1 + min

(
Mu

(1)
)

8: end if
9: H O u ← ∪H O∈Mu

(2) H O

10: if |H O u | � ⌈ c
T (ru + 2)

⌉ − 2c then
11: Fire
12: end if

The following lemma is needed for the analysis of the algorithm Bc,T .

Lemma 11. If G = (V , E) is c-strongly connected, then for any non-empty subset S of nodes, the following holds:

|�in(S) \ S| � min(c, |S|) (2)

where �in(S) denotes the set of in-neighbors of S in G, and S = V \ S.

Proof. We assume that there is a non-empty subset S ⊆ V which violates (2), and show that G is not c-strongly connected.
Let R = �in(S) \ S . Condition (2) implies that |R| < |S|, and thus the set U = R ∪ S is non-empty. By definition, R intersects
any path from a node in U to a node in S . Since |R| < c, the directed graph G is not c-strongly connected. �

The correctness proof of the algorithm Bc,T then relies on the following inequality.

Lemma 12. In each run of the algorithm Bc,T on a dynamic graph G that is c-connected with delay T , for each node u and each
round t � su , it holds that ru(t) and H O u(t) are defined and

|H O u(t)| � min
(

1 − 2c + c

T
(ru(t) + 2) ,n

)
. (3)

Proof. Let us consider any node u and round t � su . The lemma clearly holds if H O u(t) = V . So we now assume that
|H O u(t)| < |V |, and consider the two following cases:

1. If t = 1, then su = 1, H O u(t) = {u}, and ru(t) = 0. The lemma holds in this case.
2. Otherwise t � 2, and let a, b ∈N satisfy t = aT + b with 1 � b � T .

We split the interval [1, t − 1] into a + 1 subintervals I0, I1, . . . , Ia defined as follows:
(a) I0 = [t − b + 1, t − 1]; in particular, I0 is the empty interval when b = 1.
(b) for every index i, 0 < i � a, Ii = [t − b − iT + 1, t − b − (i − 1)T].

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.9 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 9
Observe that |I0| = b − 1 < T , and |Ii | = T for i > 0. For every index i ∈ [0, a], we let

J i = Ii ∪ Ii−1 ∪ . . . ∪ I0.

Let further S−1 = S∗−1 = {u}, and for i ∈ [0, a] let Si = Inu(J i) and S∗
i = In∗

u(J i). Then we easily check that for every
index i, −1 � i � a − 1, we have

Si+1 = Si ∪ {v ∈ V : (v, u) ∈ E(G(Ii+1)) for some u ∈ Si},
and

S∗
i+1 = S∗

i ∪ {v ∈ V : (v, u) ∈ E(G∗(Ii+1)) for some u ∈ S∗
i }.

Clearly for every index i, 0 � i � a, it holds that Si−1 ⊆ Si . Moreover, since |Ii| = T for i � 1 and G is c-connected with
delay T , the graph G(Ii) is c-strongly connected. Using Lemma 11 with G = G(Ii) and S = Si−1, we get that if Si �= V
for i � 1 then |Si | − |Si−1| � c. Since |S0| � |S−1| = 1, a simple induction on i shows that if Si �= V , then |Si | � ci + 1.
Let k be the maximal integer in [−1, a] such that Sk = S∗

k (such an integer exists since S−1 = S∗−1). Then we get that
Sk = S∗

k ⊆ H O u(t), and hence by our assumption |Sk| < |V |.
We now consider the two cases:
(a) If k = a then since ru(t) � t − 1 = aT + b − 1, we obtain

1 − 2c + c

T
(ru(t) + 2)� ac + 1 + c

T
(b + 1 − 2T) � ac + 1 � |S∗

a | = |H O u(t)|.
(b) Otherwise k < a and the maximality of k implies that Sk+1 �= S∗

k+1. From the above descriptions of Sk+1 and S∗
k+1,

we derive that for some node v ∈ Sk = S∗
k , there is a v∼u path in the interval Jk+1 that is broken in Ik+1. Since

b � T , Lemma 7.1 implies that ru(t) � (k + 2)T − 2 or equivalently that k � ru(t)+2
T − 2. Thus we get

|H O u(t)|� ck + 1 � c

(
ru(t) + 2

T
− 2

)
+ 1 = 1 − 2c + c

T
(ru(t) + 2) .

Thus the lemma is also proved in the case t � 2. �
Theorem 13. The algorithm Bc,T solves the firing squad problem for any network model composed of dynamic graphs that are
c-connected with delay T . Moreover, in any active run all nodes fire in less than

⌈ T
c (n − 1)

⌉ + T rounds after all nodes have be-
come active and messages are of size O (n logn).

Proof. Let us first consider a run of the algorithm in which there is a node v that is never active. Then no node ever
receives a non-null message from v , and so for any node u that is active at round t , we have |H O u(t)| � n − 1. This implies
by Lemma 12 that |H O u(t)| > ⌈ c

T (ru(t) + 2)
⌉ − 2c, and hence u does not fire at round t . We conclude that no node ever

fires in this run.
Let us now consider an active run of the algorithm. First, observe that by the first claim in Lemma 8 and the fact that

the cardinality of each set H O u is at most n, the condition in line 11 eventually holds at each node u.
Moreover, because of the initialization and update rules for the H O variables (lines 2 and 9), a node v different from u

is in H O u(t + 1) if and only if there exists a non-broken v∼u path in some non-empty interval [s, t]. Since u ∈ In∗
u(su), this

shows that

H O u(t + 1) =
⋃

s�su

In∗
u(s : t). (4)

Let t0 be the first round at which the condition in line 10 holds at some node, and let u denote one such node, i.e.,

|H O u(t0 + 1)| �
⌈ c

T
(ru(t0 + 1) + 2)

⌉
− 2c . (5)

Inequality (3) of Lemma 12 implies that H O u(t0 + 1) = V . In particular, H O u(t0 + 1) contains the latest activated nodes.
Let v denote one such node, i.e., sv = smax. By (4), there is a non-broken path v∼u in some interval [s, t0] with s � su . It
follows that s � sv . Thereby t0 � smax and v ∈ In∗

u(smax : t0). This implies, by Lemma 8, that

ru(t0 + 1) = rv(t0 + 1) = t0 + 1 − smax = min
w∈V

rw(t0 + 1).

Using Lemma 12 again, we get that for all w ∈ V , H O w(t0 + 1) = V . Therefore the inequality (5) holds for all nodes in
round t0 + 1, and by the definition of t0 this is the first round in which this inequality holds for all nodes. Hence all nodes
fire simultaneously at the end of round t0. The bound on messages size is implied by the fact that an H O set may contain
at most n identities whose lengths are logarithmic in n. �

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.10 (1-13)

10 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
The only operations in the algorithm Bc,T that involve node identifiers are performing the union and extracting the
cardinalities of the sets H O u . Since the decisions to fire depend only on the cardinalities of the sets H O u and not on the
actual values of the identifiers in these sets, the sequences of operations performed by each node in a specific run are
independent of these values.

A close examination of the proof of Theorem 13, shows that each node actually computes the set V , and so its cardinality.
As a byproduct, the algorithm Bc,T thus solves the problem of counting the network size despite asynchronous starts in
any model of dynamic graphs that are c-connected with delay T , and in particular in the model of continuously strongly
connected dynamic graphs. This should be compared with the impossibility result by Wattenhofer [28] which states that if
passive nodes do not emit any message, then counting is impossible with asynchronous starts.

A comparison of Algorithms AD and Bc,T demonstrates that the availability of information about the diameter (or size)
of the dynamic graph dramatically improves our solutions to the firing squad problem: For instance, let us consider any
dynamic graph G with n nodes and diameter D . A priori, the sole guarantee about G’s connectivity we get is then that G
is (n − 1)-connected with delay D . Then Algorithm AD solves the problem on G within D rounds using messages of size
log D while Algorithm Bn−1,D needs distinct identifiers and solves the problem in approximately 2D rounds and messages
of size �(n log n).

6. Bound on the network size and randomization

In this section we show that if a polynomial bound N on the network size n is given, then randomization may reduce
the message sizes in our firing squad algorithm Bc,T without degrading its linear time complexity. Similarly to Bc,T , our
randomized algorithm for the firing squad problem actually estimates the size of the network, and thus as a byproduct,
provides a solution to the approximate counting problem for the case of asynchronous starts. In this sense, it generalizes
the randomized approximate counting algorithm of [17], which assumes that all nodes start simultaneously.

When considering randomized solutions to the firing squad problem, we restrict our discussion to runs in which dynamic
graphs and start signals are generated by an oblivious adversary, whose decisions are independent of the random choices
made by the algorithm. An oblivious adversary is restricted to a network model D if the dynamic graphs it produces belong
to D.

A randomized algorithm R is said to solve the firing squad problem for a network model D with probability at least 1 − η , if
the following holds: for each oblivious adversary that is restricted to D, a run of R in which the dynamic graph and start
signals are generated by this adversary satisfies FS1 and FS2 with probability at least 1 − η. In other words, we consider
Monte Carlo algorithms, which may produce erroneous results with arbitrary small probability.

For the sake of simplicity, we present our randomized firing squad algorithm in the case c = T = 1, i.e., for dynamic
graphs that are continuously strongly connected, but the generalization to the case of c-connectivity with delay T is straight-
forward. First observe that by Corollary 10, if we use N as an upper bound on the diameter of the network, then the AN

algorithm in Section 4 solves the firing squad problem within O (N) rounds using messages of size O (log N). When N is
significantly larger than the network size n, the time complexity of this solution is thus not satisfactory.

The algorithm, denoted R N,η , depends on two parameters N and η, where N is a positive integer and η is any real
number in [0, 1/2).

The algorithm works as follows: upon becoming active, each node u generates � independent random numbers
Y (1)

u , . . . , Y (�)
u , where � depends on N and η, and the distribution of each Y (i)

u is exponential with rate 1. At each round, any
active node u first broadcasts the smallest value of the Y (i)

v ’s it has heard of for each index i ∈ [1 . . . �], and then computes
from the minimum values it received so far an estimation nu of the number of nodes it heard of. Node u fires when the
value of its clock ru is sufficiently large compared to nu .

The analysis of the algorithm R N,η relies on the following lemma in [22] which is an application of the Cramér-Chernoff
method (see for instance [2], sections 2.2 and 2.4).

Lemma 14. Let I =
{(

Y (1)
1 , . . . , Y (�)

1

)
, . . . ,

(
Y (1)

|I| , . . . , Y (�)
|I|

)}
be a finite set of �-tuples of independent exponential variables all with

rate 1, and let W := �∑�
i=1 min1� j�|I| Y (i)

j

. Then we have

Pr [| W − |I| | > 2|I|/9] � 2 exp (−�/243) . (6)

Lemma 14 is used to show that for large enough �, the value of nu at the end of round t provides with high probability a
good approximation of the number of active nodes that u has heard of so far. This implies, via Lemma 12, that if nu < 2ru/3
then with high probability node u has heard of all other nodes (yielding the condition nu < 2ru/3 for node u to fire in
line 14). As for the algorithm B1,1, we will conclude that with high probability, no node ever fires in a non-active run, and
all the nodes fire at the same round of any active run. More precisely, we choose � = ⌈

243 · (ln 4N2 − lnη)
⌉

to guarantee a
final probability of at least 1 − η for these successful active and non-active runs.

The size of the messages used by the algorithm can be limited, at the price of higher storage capacity at the nodes as
explained below, by using rounded and range-restricted calculations as in [24]. Specifically, we round down each Y (i)

u to the

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.11 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 11
next smaller integer power of 12/13, denoted Y
(i)

. Then the resulting approximate value nv of nv satisfies nv � nv � 13
12 nv ,

and Equation (6) provides sufficiently good bounds on the difference |nv − νv |, where νv is the number of nodes v had
heard of.

By definition of the exponential distribution, it is not hard to see that the random variables Y (i)
u are all within the range

[η/(4�N), ln(4�N/η)] with high probability, namely

Pr
[
∀u ∈ V , ∀i, Y (i)

u ∈ [η/(4�N), ln(4�N/η)]
]

> 1 − η/2, (7)

which allows us to ignore runs in which the randomized variables Y (i)
u are not in the above range. The number of distinct

variables Y
(i)
u in that range is O (log(Nη−1)), hence each such variable can be represented using O (log log(N/η)) bits. This

leads to message length of O (log(N/η) · log log(N/η)) bits.
We note, however, that the implied calculations require exponentially higher storage capacity: computing nu (line 13 of

algorithm R N,η) must be done with the � exact values of the variables Y
(i)
u , and exact representation of numbers occurring

in the implied calculations could require �(�Nη−1) bits.

The correctness proof of the algorithm with the approximate random variables Y
(i)
u is valid for all runs in which the

exact random variables are in the range [η/(4�N), ln(4�N/η)] of (7), and this range restriction is violated with probability
of at most η/2.

Algorithm 3 The randomized algorithm R N,η , firing with continuous strong connectivity.

Initialization: % upon the receipt of the start signal
1: ru ∈ N, initially 0
2: Y u =

(
Y

(1)

u , . . . , Y
(�)

u

)
∈ R� (where � = ⌈

243 · (ln 4N2 − lnη)
⌉

), initially rounded and range-restricted approximations of independent
random numbers with exponential distribution of rate 1.

3: nu ∈N, initially 0
In each round do:

4: send 〈ru, Y u〉 to all and receive messages (from in-neighbors)
5: if at least one received message is null then
6: ru ← 0
7: else
8: ru ← 1 + min

(
Mu

(1)
)

9: end if
10: for i = 1, . . . , � do
11: Y

(i)
u ← min

(
Mu

(i+1)
)

12: end for
13: nu ← �/

∑�
i=1 Y

(i)
u

14: if ru > 1.5 nu then
15: fire
16: end if

Theorem 15. The algorithm R N,η solves the firing squad problem with probability at least 1 − η for any network model composed of
dynamic graphs that are continuously strongly connected. Moreover, in any active run, with probability at least 1 − η all nodes fire
simultaneously in less than 2n rounds after the last nodes have become active.

Proof. Let us fix any real number η ∈ (0, 1/2], and let � be as defined in line 2 of the algorithm. By the paragraph
preceding Theorem 15, it suffices to prove that if the values of the exact random variables Y (i)

u are within the range
[η/(4�N), ln(4�N/η)], then the statement of the theorem holds with probability 1 − η/2. Consider now a run of R N,η

which is managed by an oblivious adversary that is restricted to continuously strongly connected dynamic graphs.
For any node u that becomes active at round su and at each round t � su + 1, let νu(t) denote the number of nodes

that u has heard of at the beginning of round t .1 For a continuously strongly connected graph, applying Lemma 12 with
c = T = 1 implies:

νu(t) � min (ru(t) + 1,n) . (8)

Let us first consider a run of the algorithm in which some node v remains passive forever. Clearly, no node can hear
of v , and hence for any node u that is active at round t , we have νu(t) � n − 1. With (8), it follows that νu(t) � ru(t) + 1.

1 In other words, νu(t) is equal to the cardinality of the set H O u(t) (not computed here) in the algorithm Bc,T .

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.12 (1-13)

12 B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–•••
Let nu be the value defined by replacing the variables Y
(i)
u in line 13 of the algorithm by their exact values Y (i)

u . Then since
Y (i)

u � Y
(i)
u for all i, we get that nu � nu . Hence at every round t , t � su + 1, we have

Pr [nu(t)� 2ru(t)/3] > Pr [nu(t) � 7νu(t)/9] � 1 − 2 exp (−�/243) , (9)

where the rightmost inequality is by Lemma 14 and the fact that the adversary is oblivious. Thus with probability at least
1 − 2 exp (−�/243) the condition in line 14 of the algorithm is not fulfilled for node u at time t . Node u makes a true
update to nu (line 13) at most n − 2 times (when the set of nodes it heard of strictly increases), and if in all these updates
the condition in line 14 does not hold, then u never fires. Hence by the union bound, the probability that node u never
fires is at least 1 − 2(n − 2) exp (−�/243). Using the union bound again for all n nodes in the network, and the inequality
N � n, we obtain that the probability that no node ever fires is at least

1 − 2N(N − 2)exp (−�/243) > 1 − η/2. (10)

Let us now consider an active run of the algorithm. First we observe by the discussion above that Equation (10) actually
bounds the probability that no node v fires before its virtual clock rv is set to n (the true network size). So in the following
discussion we assume active runs in which no node fires before round n.

Next we show that in any active run, each node eventually fires. Assume for contradiction that node v never fires in
some run. By applying Lemma 8, we get that the virtual clock rv grows indefinitely. On the other hand the value of the
variable nv is updated at most n − 1 times in a run, and hence is bounded. This implies that the condition in line 14
eventually holds, and hence v eventually fires – a contradiction.

We now prove that all nodes fire at the same round. Let t0 be the first round at which some virtual clock, say ru , is set
to n. Using (8), we deduce that νu(t0) = n, i.e., by the end of round t0 node u has heard of all nodes in the network, which
are all active. Then the same argument as in the proof of Theorem 13 shows that at the end of round t0 all the virtual
clocks have synchronized and each node has heard of all other nodes, namely

∀v ∈ V , ∀t � t0 + 1, rv(t) = t − smax and νv(t) = n. (11)

Once the above holds, all nodes have the same list of � minimal values (Y
(1)

u , . . . , Y (�)

u). Hence each node v sets the value
of nv at line 13 to the same estimate ñ of n, which is not changed thereafter:

∀v ∈ V , ∀t � t0 + 1, nv(t) = ñ. (12)

It follows that if the condition at line 14 holds at some node in round t � t0, then it holds at all nodes in that round. This
implies, under our assumption that no node fires before round n, that all nodes fire at the same round, say round θ , as
claimed. It remains to prove that with high probability, θ � 2n + smax.

Recall that nu(t) � 13
12 nu(t). Hence the probability that the firing condition nu < 2 ru(t)/3 (line 14) holds at node u when

ru(t) = 2n and νu(t) = n is bounded by

Pr [nu(t) < 4n/3] � Pr [nu(t) < 16n/13] � Pr [nu(t) < 11n/9] � 1 − 2 exp (−�/243) ,

where the rightmost inequality is again by Lemma 14. Clearly, with at least this probability, the firing condition is satisfied
(and all nodes fire simultaneously) no later than round smax + 2n.

To sum up, the probability that in an active run all nodes fire simultaneously at most 2n rounds after smax is at least

1 − (2N(N − 2) + 2)exp (−�/243) > 1 − η/2

which completes the proof. �
7. Conclusion and further research

In this paper we studied the firing squad problem in a network of an unknown number of nodes with full computational
power, thus extending the original model which assumes that nodes are finite state machines. We focused on a natural
extension of the problem in which start signals are left arbitrary; in particular, they are not assumed to be propagated by
the nodes in the network as in the case of diffusive start signals.

We modelled the inter-node communication by a dynamic graph, and presented a tight relation between the solvability
of the firing squad problem and the connectivity of the dynamic graph. Specifically, we introduced the notion of delayed
connectivity, and showed that the firing squad problem is solvable if and only if the dynamic graph is connected with
delay T , for some given constant T . Our solution uses messages of super-linear size, and we showed that additional infor-
mation on the diameter or on the size of the network can substantially reduce the message size.

Combining our positive and negative results, we get that when nodes are infinite state machines, the firing squad prob-
lem is solvable for arbitrary timing of start signals if and only if it is solvable when restricted to diffusive start signals. An
interesting question is whether this equivalence in terms of solvability is still valid in the original model of the firing squad

JID:TCS AID:12108 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:24/07/2019; 14:21] P.13 (1-13)

B. Charron-Bost, S. Moran / Theoretical Computer Science ••• (••••) •••–••• 13
problem, where nodes are finite state machines. It can be shown that this is the case when the topology is a line or a
circuit, but it is not clear whether this holds for other topologies.

Possible extensions of this work involve other variations of the model of computation. For instance, it is interesting to
determine under what conditions the firing squad problem is solvable in an anonymous network where nodes have limited
storage capabilities and communicate through finite bandwith channels as in [15]. Our randomized algorithm provides an
efficient Monte Carlo solution for this problem, in the case of a continuously strongly connected network and a polynomial
upper bound on the size of the network. Another open question concerns the role of leaders in a dynamic network: could
the existence of a leader be useful for achieving or improving solutions to the firing squad problem?

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank two anonymous referees for their many helpful comments.

References

[1] Sebastian Abshoff, Markus Benter, Andreas Cord-Landwehr, Manuel Malatyali, Friedhelm Meyer auf der Heide, Token dissemination in geometric dy-
namic networks, in: Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics, ALGOSENSORS, 2013, pp. 22–34.

[2] Stéphane Boucheron, Gábor Lugosi, Pascal Massart, Concentration Inequalities. A Nonasymptotic Theory of Independence, Oxford University Press,
Oxford, 2013.

[3] James E. Burns, Nancy Lynch, The byzantine firing squad problem, Adv. Comput. Res. 4 (1987) 147–161.
[4] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro, Time-varying graphs and dynamic networks, in: Hannes Frey, Xu Li, Stefan

Rührup (Eds.), ADHOC-NOW, in: Lecture Notes in Computer Science, vol. 6811, Springer, 2011, pp. 346–359.
[5] Bernadette Charron-Bost, André Schiper, The heard-of model: computing in distributed systems with benign faults, Distrib. Comput. 22 (1) (2009)

49–71.
[6] Bernard Chazelle, Natural algorithms and influence systems, Commun. ACM 55 (12) (2012) 101–110.
[7] Brian A. Coan, Danny Dolev, Cynthia Dwork, Larry Stockmeyer, The distributed firing squad problem, in: ACM Symposium on Theory of Computing

Conference, STOC’85, 1985, pp. 335–345.
[8] Thiago Correa, Breno Gustavo, Lucas Lemos, Amber Settle, An overview of recent solutions to and lower bounds for the firing synchronization problem,

preprint, arXiv:1701.01045, 2017.
[9] Reinhard Diestel, Graph Theory, Springer-Verlag, Berlin Heidelberg, 2017.

[10] Danny Dolev, Ezra N. Hoch, Yoram Moses, An optimal self-stabilizing firing squad, SIAM J. Comput. 41 (2) (2012) 415–435.
[11] Danny Dolev, Rüdiger Reischuk, H. Raymond Strong, Early stopping in Byzantine agreement, J. ACM 37 (4) (October 1990) 720–741.
[12] Danny Dolev, H. Raymond Strong, Authenticated algorithms for Byzantine agreement, SIAM J. Comput. 12 (4) (November 1983) 656–666.
[13] Cynthia Dwork, Yoram Moses, Knowledge and common knowledge in a Byzantine environment: crash failures, Inf. Comput. 88 (2) (October 1990)

156–186.
[14] Steven Finn, Resynch procedures and a fail-safe network protocol, IEEE Trans. Commun. 27 (6) (1979) 840–845.
[15] Julien M. Hendrickx, Alex Olshevsky, John N. Tsitsiklis, Distributed anonymous discrete function computation, IEEE Trans. Autom. Control 56 (10) (2011)

2276–2289.
[16] R. Jefferson David, Virtual time, ACM Trans. Program. Lang. Syst. 7 (3) (July 1985) 404–425.
[17] Fabian Kuhn, Nancy Lynch, Rotem Oshman, Distributed computation in dynamic networks, in: Proceedings of the Forty-second ACM Symposium on

Theory of Computing, STOC’10, ACM, New York, NY, USA, 2010, pp. 513–522.
[18] Fabian Kuhn, Yoram Moses, Rotem Oshman, Coordinated consensus in dynamic networks, in: Proceedings of the 30th ACM Symposium on Principles

of Distributed Computing (PODC), ACM, 2011, pp. 1–10.
[19] Christoph Lenzen, Joel Rybicki, Near-optimal self-stabilising counting and firing squads, in: Proceedings of the 19th International Symposium on Self-

Stabilizing Systems (SSS), in: LNCS, vol. 10083, Springer, Heidelberg, 2016, pp. 263–280.
[20] Edward F. Moore, The firing squad synchronization problem, in: Sequential Machines. Selected papers, 1964, pp. 213–214.
[21] F.R. Moore, G.G. Langdon, A generalized firing squad problem, Inf. Control 12 (3) (1968) 212–220.
[22] Damon Mosk-Aoyama, Devavrat Shah, Computing separable functions via gossip, in: Proceedings of the 25th ACM Symposium on Principles of Dis-

tributed Computing (PODC), ACM, 2006, pp. 113–122.
[23] Yasuaki Nishitani, Namio Honda, The firing squad synchronization problem for graphs, Theor. Comput. Sci. 14 (1) (1981) 39–61.
[24] Rotem Oshman, Distributed Computation in Wireless and Dynamic Networks, PhD thesis, Massachusetts Institute of Technology, 2012.
[25] Marshall Pease, Robert Shostak, Leslie Lamport, Reaching agreement in the presence of faults, J. ACM 27 (2) (April 1980) 228–234.
[26] Nicola Santoro, Time to change: on distributed computing in dynamic networks (keynote), in: 19th International Conference on Principles of Distributed

Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, 2015, pp. 3:1–3:14.
[27] T.K. Srikanth, Sam Toueg, Simulating authenticated broadcasts to derive simple fault-tolerant algorithms, Distrib. Comput. 2 (2) (1987) 80–94.
[28] Roger Wattenhofer, The Science of the Blockchain, CreateSpace Independent Publishing Platform, 2016.

http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4142434D483133s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4142434D483133s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4142434D483133s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib426F75636865726F6E4C75676F73694D61737361727432303133s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib426F75636865726F6E4C75676F73694D61737361727432303133s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib424C3837s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4346515331313A545647s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4346515331313A545647s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4342533039s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4342533039s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4368613132s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib434444533835s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib434444533835s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4653323031376F76657276696577s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4653323031376F76657276696577s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4469653137s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib44484D3132s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4452533930s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib44533833s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib444D3930s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib444D3930s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib46696E6E3739s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib484F543131s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib484F543131s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4A65663835s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4B4C4F3130s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4B4C4F3130s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4B4D4F3131s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4B4D4F3131s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4C523136s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4C523136s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4D6F6F3634s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4D4C3638s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4D41533036s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4D41533036s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4E697368486F6E643831s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib4F73683132s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib50534C3830s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib53616E3135s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib53616E3135s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib53543837s1
http://refhub.elsevier.com/S0304-3975(19)30458-X/bib5761743134s1

	The ﬁring squad problem revisited
	1 Introduction
	2 The model
	2.1 Distributed computations in the dynamic graph model
	2.2 Paths and broken paths in a dynamic graph
	2.3 Delayed connectivity of a dynamic graph

	3 Bounded delay connectivity is not enough
	4 Firing with a bounded diameter
	5 Firing with T-delayed connectivity
	6 Bound on the network size and randomization
	7 Conclusion and further research
	Acknowledgements
	References

