Faster reliable phylogenetic analysis
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Abstract

We present fast new algorithms for phylogenetic reconstruc-
tion from distance data or weighted quartets. The meth-
ods are conservative—they will only return edges that are
well supported by the input data. This approach is not only
philosophically attractive; the conservative tree estimate can
be used as a basis for further tree refinement or divide and
conquer algorithms. The capability to process quartet data
allows these algorithms to be used in tandem with ordinal
or qualitative phylogenetic analysis methods.

We provide algorithms for three standard conservative
phylogenetic constructions: the Buneman tree, the Refined
Buneman tree, and split decomposition. We introduce and
exploit combinatorial formalisms involving trees, quartets,
and splits, and make particular use of an attractive dual-
ity between unrooted trees, splits, and dissimilarities on one
hand, and rooted trees, clusters, and similarity measures on
the other. Using these techniques, we achieve O(n) improve-
ments in the time complexity of the best previously pub-
lished algorithms (where n is the number of studied species).
Our algorithms will be included in the next edition of the
popular SplitsTree software package. Keywords: compu-
tational biology, phylogeny reconstruction, combinatorially
reliable edges, distance based methods, quartet based meth-
ods, single linkage tree, polynomial time algorithms.

1 Introduction

Inferring evolutionary trees, or phylogenies, is a well-known
problem in computational biology, the aim being to recon-
struct the history of a set of sequences, genes, or species.

A fundamental drawback of many phylogenetic recon-
struction methods, is that they will always return a fully
resolved (binary) tree, even when the data set contains lit-
tle phylogenetic information. While a fully resolved tree
might seem more informative, in reality many of its internal
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edges could be artifacts of the method and of the particular
data set analyzed, rather than issuing from the underlying
tree [8, 9].

To avoid this problem, several studies have investigated
distance based methods proposing evolutionary trees whose
edges are supported by a significant number of combinatorial
constraints [11, 14, 29]. These constraints are expressed on
quartets of species, a basic structural unit to describe trees,
which can be efficiently inferred from biological data [3, 7,
35, 36] and which have received much attention recently [10,
11, 13, 18, 25, 35].

One example is the Q* method [3, 11] which has a strong
connection with a tree construction introduced by Buneman
in [16]. The Q" method returns a tree conta,ining only com-
binatorially safe edges, each supported by Q(n®) to O(n*)
quartets. Unfortunately it is often the case that only a few
edges in the historical phylogeny have a strong combinato-
rial support in the data.

Moulton and Steel [29] investigated a related method,
called the Refined Buneman tree, that provides a refinement
of the tree obtained by the Buneman construction (i.e., a
tree containing at least the edges inferred by the Buneman
method). The edges of the Refined Buneman tree still satisfy
between (n) and O(n3) quartets inferred from the data.

The interest in these methods is threefold: first, they
provide conservative but reliable estimates of the species
history (e.g., the @ method was experimentally shown to
induce less than 1% incorrect edges [10, 11, 31]); second, if
the evolutionary model used to correct the data is correct
then these methods are consistent, with the number of char-
acters required growing logarithmically with respect to the
inverse of the confidence level [11, 18]; more importantly, be-
cause of the important constraints they impose on inferred
edges, the corresponding tree can be exactly computed in
polynomial time, whereas most other methods use NP-hard
reconstruction criteria, i.e., requiring exponential time for
an exact solution to be found.

This motivates a new and promising approach to phy-
logeny reconstruction [10, 11, 31, 32]: first compute a tree
containing only safe edges through one of the above meth-
ods and then use this tree as a starting point for more re-
fined, and computationally intensive, reconstruction proce-
dures (10, 31]. Alternatively, one can divide the data set
into loosely grouped subsets of species and then apply these
conservative tree methods to the resulting subproblems, an
approach taken by the disc-cover method {24].

There are times when the data simply does not support a
tree and forcing a tree structure onto the data can result in
lost information. This occurs, for example, when there has



been hybridization or horizontal gene transfer. With this
problem in mind, Bandelt and Dress introduced split de-
composition, which constructs a network instead of a simple
phylogeny. We will see that split decomposition is an ex-
act analogue of the Buneman tree construction, and this
relationship proves useful when developing fast algorithms.
Split decomposition has been implemented in the package
Splits Tree [23] and has been successfully applied to the anal-
ysis of virus data [17].

In this paper, we present algorithms achieving an O(n)
improvement in the time complexity of the best previously
published algorithms for computing the Buneman tree, the

Refined Buneman tree and splitgraph on an n species dataset.

Our algorithms apply to dissilimilarity matrices or to sets
of weighted quartets, as can be obtained by usual quartet
inference methods [3, 20, 26]. The structure of the paper is
as follows:

e In the next section we define the fundamental phylo-
genetic objects on which our algorithms are based, as
well as introducing connections and dualities between
them.

e In section 3 we exploit links between the Buneman
tree, strong clusters and the single linkage tree to de-
velop an O(n?) time algorithm for computing strong
clusters and an O(n®) time algorithm for constructing
the Buneman tree.

¢ In section 4 we employ a new path covering technique
to give an O(n®) time algorithm for the Refined Bune-
man tree.

e In section 5 we use similar techniques to those devel-
oped in section 3 to give an O(n®) time algorithm for
split decomposition.

2 Preliminaries

Rooted and unrooted trees

An unrooted (phylogenetic) tree is a connected acyclic
graph with all vertices of degree less than three (and possibly
some higher degree vertices) labeled injectively from some
label set X (representing species or genes). An unrooted
tree is binary if every internal vertex has degree three.

Given any three leaves a,b, ¢ let mid(a,b,c) denote the
unique internal vertex located at the intersection of the three
paths between a and b, b and ¢, a and c. Hence mid(a,b,c) =
mid(a, ¢, b) = mid(b,c, a).

The dual of an unrooted tree is a rooted tree, which is
defined in the same way except that one internal vertex is
distinguished and called the root, and this vertex can have
degree two. A rooted tree is binary if all internal vertices
except the root have degree three and the root has degree
two. Rooted and unrooted trees are easily transformed into
one another (e.g., by using an outgroup).

2.1 Splits and clusters

A split of a finite set is a partition of the set into two non-
empty parts. Removing an edge e from an unrooted phy-
logenetic tree T partitions the leaf set of the tree into two
parts—this is the split of T associated with e. The com-
plete set of splits obtained this way is denoted splits(T).
The splits A|B where |A] = 1 or |B| = 1 are called trivial.
Any unrooted tree T can be reconstructed from its set of
splits in linear time [22, 28].
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A set of splits S is compatible if § C splits(T') for some
tree T. It is well-known that two splits A|B and C|D are
compatible if and only if one of ANC, AND, BNC, BND
is empty and that a set of splits is compatible if and only if
it is pairwise compatible [16].

A set of splits § is weakly compatible if for all splits
AllBl, AzIBz, A3|Bs at least one of A;NA2NAs, AiNB2NB3,
By N A; N B3, or By N By N Az is empty. Every compati-
ble set of splits is weakly compatible, so systems of weakly
compatible splits can be seen as a generalization of unrooted
trees. Sets of weakly compatible splits can be represented
as a splits graph where every split corresponds to a set of
parallel edges that form a cut set of the graph.

The rooted dual of a split is a cluster, which is simply a
subset of a finite set X. If we fix a leaf = then the cluster
corresponding to split A|B with z € B is the subset A C X.
Conversely the split corresponding to a cluster A of X — {z}
is the split A}X — A. Given any collection C of clusters we
say that one cluster 4 € C covers another cluster B C A if
ACeC-{A,B}st. BCCCA.

RpmnVInv an Pdﬂ'ﬁ e in a rooted tree partitions the tree

into two parts The set of leaves in the pa.rt not containing
the root is called the cluster corresponding to v, where
v is the endpoint of e furthest away from the root. A set of
clusters obtained this way is said to be compatible. Com-
patible sets of clusters (also called strong hierarchies or
just hierarchies) are characterized by the property that for
any two clusters A and B in the set, if ANB # § then A C B
or BC A.

A set of clusters C forms a weak hierarchy if for all
A,B,C € C at least one of (AUB) - C, (AUC) -
(BUC) — A is empty. Any strong hierarchy is also a weak
hierarchy.

Given any collection of clusters C of a finite set X with
X €C, and a subset Y C X, the closure of Y is given by

M= (] 4

A€C:YCA

If C is closed under intersections then (Y} is contained in C
for all Y C X. It is shown in [4] that if A is any cluster in a
weak hierarchy then there is a,a’ such that (a,a’) = A. In
strong hierarchies (rooted trees), A = {(a,a’) if and only if
A is the cluster corresponding to the least common ancestor
of a and a'.

2.2 Quartets

To every set of four species a,b,c,d € X there are three
ways to associate a leaf-labeled binary unrooted tree. The
three possible resolutions are denoted ab|cd, ac|bd and ad|bc,
indicating how the central edge of the tree splits the four
species. Each of these trees on four species is also called a
resolved quartet, or simply a quartet [11, 14, 18, 29]. Species
of quartets abjcd might not be necessary distinct, i.e., we
will also consider cases in which, say a = b or c =d.

An unrooted tree T induces a quartet abjcd if we can re-
move leaves and contract edges of T to obtain abled. Equiv-
alently, T induces ab|cd if the path from a to b in 7 does not
intersect the path from ¢ to d. Note that an unrooted tree
T is uniquely characterized by the set ¢(T') of quartets it in-
duces, from which it can be reconstructed in O(|g(T)| + n?)
time [3].

The set of quartets g(A|B) corresponding to a split A|B
is defined by

¢(A|B) = {aa'|bb’ : a,a’ € A,b,b' € B}.



Here a and a’ need not be distinct; likewise for b and b’'. We
have that ¢(T") = Ua;pespiits(ryq(A|B) and a set of splits S
is compatible if and only if ¢(S) = U, 5es¢(A|B) contains
at most one quartet on each set of four leaves [3]. Similarly,
a set of splits § is weakly compatible if and only if ¢(S)
contains at most two quartets on each subset of four leaves
[6].

Quartets have been shown to be a valuable intermedi-
ary step in phylogenetic tree reconstruction. They allow,
e.g., to apply some computationally expensive optimization
criteria, like Maximum Likelihood [20], to data sets contain-
ing more than a moderate number of species, by restricting
the analysis to four taxa at a time and then constructing
trees by combining the inferred quartets according to a re-
construction principle 3, 10, 11, 15, 18, 25, 36, 38].

2.3 Dissimilarity measures and trees

Let T be any unrooted tree and suppose that the edges of T
are weighted. The weighting induces a dissimilarity measure
d(T') on the leaf set of T: the distance between two ieaves
is taken to be the sum of the weights along the unique path
connecting them. Dissimilarity measures arising in this way
are called additive and can be easily characterized [16].
Given a split A|B we define the split metric of A|B by

_J o if{a,b}CAor{a,b}lCB
da15(a,b) = { 1 otherwise

In a weighted unrooted tree T', if A4 p is the weight of the

edge associated with split A|B then the dissimilarity mea-
sure d(T') is given by

A|Begsplits(T)

d(T)

AaB-0aB -

In all of the three standard methods below the output is a
compatible or weakly compatible set of splits together with
their weights.

2.4 Conservative phylogenetic reconstruction methods

In this section we present the phylogeny reconstruction meth-
ods for which we provide improved algorithms. These meth-
ods are conservative in the sense that they output trees or
networks containing only edges strongly supported by the
data. Our algorithms can handle both distance data and
weighted sets of quartets.

2.4.1 The Buneman Tree

Buneman showed how to construct a weighted unrooted tree
from a dissimilarity measure d on X by considering quartets
[16). The Buneman score of a quartet g=wzlyz, w,z,y, 2 €
X, is defined as:

By = Busly: = 3(min{wy + zz,wz + zy} — (wzr + y2)),

where d(z,y) is written zy for all x,y € X. The Buneman
indez of a split U]V of X is

ﬂuu’ lvv! -

= d) = min
Howv l‘U|V( ) u,u'€U,u,v' €V
Here u and v’ need not be distinct; likewise for v and v'.

Buneman showed that the set of splits B(d) = {U|V :
puiv(d) > 0} is compatible. We define the Buneman tree
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to be the weighted unrooted tree associated to B(d), whose
edges correspond to the splits U|V € B(d) and are weighted
according to py v (d).

Figure 1 (i) shows the Buneman tree calculated for the
mammalian data set of [30], containing 188 nucleotides, ob-
tained from several genes (- and 8-hemoglobins, fibrinopep-
tides A and B, cytochrome ¢, myoglobins, a-chrystallin).
There is enough structure in this data for the Buneman
tree to infer several splits, corresponding to expected groups,
e.g., primates (ape, human, monkey), ungulates (cow, sheep,
pig, horse). However, the Buneman method does not take
any decision relative to the dog, kanga, rabbit and rodent
species, whose position is still uncertain [30].

Buneman’s method can be generalized to the case when
quartets are not necessarily weighted by their Buneman scores
[3]. Given any set of quartets @ and a weighting function w
for @Q such that at most one quartet has positive weight for
each subset of four species, the set of splits

S(w) = {U|V : ¥q € q(U|V), w(q) > 0}

is compatible, giving a tree which can be obtained in O{(n?)
time, through the @* method [11]. Moreover, weighting each
split U|V of S(w) by miny vy eqv)v) w(un'|vv’) produces a
weighted unrooted tree that is an analogue to the Buneman
tree.

2.4.2 Anchored Buneman tree

One relaxation of the condition that g4 > 0 is to only
look at quartets containing a certain leaf. Fix z € X. For
each split U|V with = € U define

- = pg d) := i zu|vv’ fy
How = pov(d) = min {Boupy}

€
and put Ba(d) = {U|V s.t. pg;v > 0}. The set of splits
B.(d) is compatible [14]. The weighted unrooted tree as-
sociated to B.(d), whose edges correspond to the splits
UV € B:(d) and are weighted according to pf,v(d), is
called the Buneman tree anchored at z.

Clearly pgy > pu|v for all splits U|V, so that B(d) C
B:(d). Indeed pyv = mingex pgv 50 B(d) = Nzex B:(d).

There is a straightforward generalization of the anchored
Buneman tree for when the input is a quartet weight func-
tion. Given any set of quartets @ and a weighting function
w for @ such that at most one quartet has positive weight
for each subset of four species, define ¢z (U|V) = {uv'jvv’ €
g(UlV) : v’ =z} and

By (w) := {U|V : ¢ (U|V) C Q}
where each split in B.(w) is weighted by

(@

Tww):= min w
pow(w) = min,,

2.4.3 The Refined Buneman tree

Recently, Moulton and Steel [29] have shown that another
special relaxation of the condition uy;v >0 also gives a set
of compatible splits. Given two splits U|V and U’'|V’ put

conflU|V,U'|V') = {uv|vv’ € q(U|V) :uv|u'v' €q(U'|V')}.

Then, U|V and U’|V’ are compatible if and only if
confl(U|V,U’'|V') = 0. Hence if Q contains no two quartets
on the same set of four species, and both q(U|V) C @ and
q(U'|V') € Q then U|V and U’|V' must be compatible.
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(iii) Splits graph for the mammal data set [28]

Figure 1: Buneman tree, Refined Buneman tree, and splitsgraph for the mammal data set [30]
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Moulton and Steel observed that, if U|V and U'|V’ are
incompatible then confl(U|V,U’|V’') > n — 3. They defined
a split index fiy v such that confl(U|V,U'|V’') > n — 3 im-
plies fiy|v + fiy/;v £ 0. Hence the set of splits {U|V :
fuv(d) > 0} is compatible.

Given a split U|V put m = |g(U|V)| and let q1,...,¢m
be an ordering of the elements in g(U|V) such that for all
1 <i<j<mwehave 8, < 8. Put gumin(UlV) =
{g1,92,--.,9n-3}. The Refined Buneman indez of a split
UlV is defined as

Auv(d)
n-3
1
n—23 : Z ﬂqi
i=1

1
n—-3 Z
9€qmin (UIV)
Our definition differs slightly from the definition in [29) since
q(U|V) includes quartets uu’|vv’ with u = ' or v =, even
when [U| > 1 or |V| > 1. The change has no effect if the
distance matrix satisfies the triangle inequality.

Put RB(d) = {U|V : puv(d) > 0}. The associated
weighted unrooted-tree, whose edges correspond to the splits
UlV € RB(d) and are weighted according to fiyv(d), is
called the Refined Buneman tree. It is clear that B(d) C
RB(d), and often B(d) is strictly contained in RB(d), in
which case the Refined Buneman tree refines the Buneman
tree.

The Refined Buneman tree (Figure 1 (ii)) adds three
splits to the previous mammal tree. We draw the tree
with equal length edges so that the additional splits are
easy to identify (they have only small weight). The clus-
ter (pig,sheep,cow) is expected; the cluster (dog,kanga) is
also found by Neighbour Joining and Maximum Parsimony;
the cluster (rabbit, rodent), also found by Maximum Parsi-
mony and Neighbour Joining, is suspected to be wrong due
to the long branch attract problem, but no firm conclusion
as been reached concerning this group [30].

Like the Buneman and anchored Buneman trees, this
method can be modified to handle more general quartet
weights. Suppose that w is a weight on quartets such that
w(abled) + w(ac|bd) < 0 for any two quartets ab|cd, aclbd on
the same set of species. Once again, let gmin (U|V') be the set
of n — 3 minimum score quartets in g(U{V'). A modification
of the proof in [29] shows that if we define

1
n-3 Z
2 €qmin (U|V)

then the set of splits RB(w) = {U|V : iy;v > 0} is compat-
ible.

Hujv

:qu

Buv = fuv (w) = w(gi).

2.4.4 The C-tree construction

‘We have recently discovered that the refined Buneman method

can be further refined. It can be shown that
leonfI(UIV,U'[V")| 2 (U] - 1)(JV| - 1)

for any pair of incompatible splits U|V and U’|V’. As before,
put m = |g(U|V)| and let ¢i,...,gm be an ordering of the
elements in g(U|V') such that for all 1 < i < j < m we have
Be: < Po;. Define

(Ul-nvi-n

L Bas-

no(d) = (ur=-n(vi -1y i=1
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By a similar argument to the refined Buneman tree case,
the set of splits CT'(d) := {U|V : py,y (d) > 0} is shown to
be compatible, and the associated unrooted tree with edge
weights given by p*(d) is called the C-tree for d. As in the
Buneman tree and refined Buneman tree cases, the C-tree
can also be extended to handle sets of weighted quartets.

Clearly, RB(d) C CT(d), and there are cases in which
the C-tree strictly refines the refined Buneman tree. Extend-
ing the algorithm for RB(d) gives an O(n®) time algorithm
for the C-tree, though the C-tree algorithm is significantly
more involved and will be left for an extended version of this
paper.

There is a useful and intriguing link between the C-tree
construction and the Quartet Cleaning method [12, 25]. Sup-
pose that @ is a set of quartets containing at most one quar-
tet for every set of four species. For consistency with Quar-
tet Cleaning we assume () contains all quartets uu'|vv’ such
that 4 = u' or v = v’ or both. If we put w(abjcd) = 1
for all abled € Q and w(abled) = —1 for all abled ¢ Q
then the splits in CT(w) are exactly those splits U|V with
lgUIV) = Q| < (U} = 1)(JV]| — 1)/2. The multiple of § is
due to the averaging of quartets with scores 1.

2.4.5 Split decomposition and the splitsgraph

Just as weak compatibility of splits generalizes compatibil-
ity of splits, the d-split construction of Bandelt and Dress
[5] generalizes the tree construction method of Buneman.
We replace the Buneman quartet score 8, with the weak
quartet score 3; for a quartet ¢ = wzlyz, w,z,y,z € X,
defined as

B; = Buzly: = 3(max{wy + zz,wz + zy} — (wz + y2z)).

where, as before, d(z,y) is denoted zy, all z,y € X. The
(weak) isolation index of a split U|V is then defined

Qu|v = Otu|v(d) = ﬂ;u'wu“

min

u,u'€U,v,v' €V
Here u and ' need not be distinct; likewise for v and v'. A
split U|V is called a d-split if ayjv > 0. Bandelt and Dress
[5] showed that the set of d-splits of a distance function d is
weakly compatible. They use this construction to describe
a canonical decomposition of metrics into split metrics (and
a residue).

The split decomposition approach can be applied to sets
of weighted quartets. Given a set of quartets Q) containing
at most two quartets for each set of four leaves, the set of
splits S(Q) = {U|V : q(U|V) C Q} is weakly compatible. If
w is a weighting function on quartets such that w{ablcd) +
w(aclbd) + w(ad]bc) < 0 for all subsets of four leaves a,b, c,d
then @ could be taken to be {ablcd : w(ablcd) > 0}. In this
case the weight given to a split U|V would be

w(U|V) = min{w(uu'|vv’) : uu'|vo’ € g(UV)}.

Once the set of d-splits has been constructed, the set of
weakly compatible splits can be used to construct a splits-
graph. A splitsgraph can be regarded as a generalized tree
diagram, except that every split corresponds to a collec-
tion of parallel edges rather than a single edge. In many
cases the splitsgraph looks like a normal tree with some
additional boxes in regions of uncertainty. This is evident
when we compute the splitsgraph for the mammal data (Fig-
ure 1 (iii)). The splitsgraph adds a split separating (rab-
bit,rodent,primates) from the other species, which was also
proposed in [30].



3 An O(n®) time algorithm for the Buneman tree

The definition of the Buneman tree seems to imply that any
algorithm for computing the tree and edge weights would
take at least (n*) time—we need to calculate 3, for every
possible quartet q. Here we provide an O(n®) algorithm.
The gain in efficiency is achieved by converting the prob-

lem from one involvine unrooted trees and distances to one
i€ ITOIN OIIC 1DVO:VIng uUnrgowea rees anG Qislandces o one

involving rooted trees and similarities.

A similarity measure s on a finite set X is a symmetric
function on X x X. Intuitively, a high similarity between two
objects indicates a high degree of relationship. The strong
isolation index i,(A) of a cluster A C X with respect to s

is defined

{s(a a') — s(a,z)}.

We define i,(X) = min, p¢x 8(z,2'). The clusters {4 :
is(A) > 0} are called the sirong clusters of s and form a
(strong) hierarchy [4].

If we fix ¢ € X then a distance d can be converted into
a similarity s, on X — {z} using the Farris transform

(o BY = L(dln »Y L db »Y — dla b))
\"y vy \W\Wy ) 17 W\\yw) w\w vy

IS4

[N

a
vz

for all a,b € X — {z}. The inverse of the transform is given
by
d(a,b) = s:(a,a) + sz(b,b) — 2s:(a,b)
for all a,b € X — {z} with d(a,z) = s:(a,a) and d(z,z) = 0.
The connection with Buneman trees is provided by the
following Lemma. It can be proved by expressing 3, in terms
of s;.

Lemma 1 If d is a distance function on X with Farris
transform s; and U|V is a split of X with z € U then
l‘u]V =1, (V).

That s, strong clusters correspond to splits in the anchored
Buneman tree.

Thus AR is a split in the Bunem

L IUS J1j&7 5 o Spav i viie Su 3z uuu vulJ i 72

is a cluster of s, for all z € B d is a cluster of s, for
all y € A. The question now becomes: how quickly can we
construct the strong clusters?

trac 1 if a nlv if A

o ters a

3.1 Strong clu
One of the most widely known tree constructions in classi-
fication is the single iinkage clustering tree. It is the close
cousin of popular phylogenetics algorithms neighbor joining
[33] and uPrGMA [34]. We use it to construct strong clusters.

Theorem 2 If A is a strong cluster of s then A is a cluster
for o

i3 thc .)uiyto luu'cuyc IIIDD Jvr o.

Proof

We use a characterization of singie linkage trees described
by [7] and rediscovered in [19] to solve a related problem.
Given a similarity s on finite set X we construct the graph
G[k] with edge set E[k] = {{a,b} : s(a,b) > k}. A cluster is
in the single linkage tree for s if and only if it is a component
of Gik] for some k.
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Suppose that k is the maximum value such that A is
connected in G[k]. Given any ¢ in X and z € X — a if
{a,z} € E[K] then s(a,z) > k and so s(a,a’) > s(a,z) > k
for all a’ € A, since A is a strong cluster. However this
contradicts the maximality assumption for k. Hence A is a
component of G[k]. O

Mhic wacs:ld hns hane cvenern A aranm danile. . (0] mL ..
1 1iS IESuly asS vEei Pl uyvycu luucpcuucuu 111 lé Pty
single linkage tree for s can be constructed in O(n®) time

using spanning tree based methods [7, 21, 27).

3.2 An O(n?) algorithm for strong clusters in a tree

We are able to create a superset of the collection of strong
clusters in O(n?® ) time. The task that remains is to prune
those ciusters with zero, or negaiive, isolation index from
this collection.

Let C be the collection of clusters returned by the single
linkage algorithm. For each cluster C; € C and each z € C;
we calculate two values:

m(Ci’z)
M(Ci, )

min{s(z,z’) : 2’ € C;}
maz{s(z,z') : Ci = (x,z)}

Since C is compatible, {z,2') = C; if and only if C; is the
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z'. Furthermore, if C; is a cluster that is covered by C; and
contains z then

m(Ci,z) = mm{m(C,,:c),mm{s(x £):Ci={z,z )}}

Since each pair of leaves z,z’ gives exactly one cluster C; =
{x,z’) the values m and M can be calculated for all leaves
and clusters in O(n?) time, using a depth first search of
the single linkage tree. Once these values are calculated the

isnlation indicee can he computed:
1solation 1ndices can be computed:

Lemma 3 If A is a cluster in C — {X} and B is a strong
cluster that covers A in C then

i,(A) = min{m(A,a) — M(B,a)}.
a€A

Proof
The strong cluster B has positive isolation index so s(a,y) >
s(a,z) for all a' € A, ye B—A and z € X —B. Hence

{s(a,0") = s(a,9)}

a,a GA,VEB-
rd ~
min

eA{ mm{s(a a)} - max {s(a )} }
nélg{m(A,a) - M(B,a)}

is(4)

as required. O

i:(X) = mingex m(X,z). The values i,(A)
can now be calculated for all clusters using a preorder traver-
sal of the tree. Whenever a cluster is found with zero or neg-
ative isolation score, we remove the ciuster from the tree.
Applying the pruning procedure to the single linkage tree
gives us the strong clusters with their isolation index (AL-
GORITHM 1).

Note that 1



ALGORITHM 1. Strong Clusters

input: A similarily s on a set X of taza.
output: The tree containing the strong clusters C; € C(s)
and their strong isolation indices i,(C;).

Clonstruct the
CL uwile

algorithm.
C := clusters of T'.
foreach C; € C in a depth first traversal of T

Compute m(C;, z) for all z € C;.
(‘nmnufp MI(C; =) for all z € C;.

Pute LI 0, &) 10T

endfor
foreach C; € C in a pre-order traversal of T
Calculate i5(C;) using Lemma 3.
if i,(Ci) < 0 then
Remove C; from ¢
Let C; € C be the cluster covering C;,
foreach z € C;
M(Cj)z) = maz{M(Cj: Z), M(Ci: z)}
endfor
endif

endfor
Output C with weights i,.

We have now established:

Theorem 4 The strong clusters of a similarity measure can
be recovered, together with thesr isolation indices, tn O(n?)
time.
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8z, the Farris transform of d with respect to ;. We con-
struct the set of clusters from the single linkage tree of s;
then successively prune off clusters that are not strong clus-
ters for some other s; (ALGORITHM 2). At the conclu-

sion of the algorithm each split AlB in § is weighted by

minzex{4%5} = p4)B, the Buneman score for A|B.

Note that a number of shortcuts can speed up execution,
however they do not improve the order of time complexity
and will be reserved for an extended version of this paper.

danata
aenote

4 Computing Refined Buneman trees in O(n®) time

The algorithm of Bryant and Moulton [14] for computing
the splits RB(d) of the Refined Buneman tree is iterative. It
assumes an arbitrary order on the species X = {z1,...,2z.},
computes RB(d) for a small subset of species then extends it
by progressively incorporating the other species. The same
iterative technique has been successfully used to solve other
related problems [5, 11].

Put X = {z1,...,2¢} and let dr be the dissimiiarity
d restricted to X;. Each iteration step was based on the
following Lemma:

Lemma 5 ([14]) Suppose |X| >4, end fizz € X. Ifo=
{U,V} is o split in RB(d) with x € U, and [U| > 2, then
either {U,V} € B:(d) or {U {z},V} € RB(dx-{s}) or

both.
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ALGORITHM 2. Buneman Tree

inpui: A disiance measure d on ¢ set X = {z
taza.

output: The splits § of the Buneman tree with weights.

)m'l} Of

Construct the set

foreach A € C
S§:=SU{A|X - A}
w(A|X — A) :=i,,(A)
endfor
foreach i = 2,3,...,n
Construct Farris transform s;
C:=
foreach A|B € § with z; € B
C:=CuU{A}
endfor
Prune clusters from C that are not strong clusters of

+ 7
[

"

~
U.

f;reach AeC

§:=SU{A|X - A}

w(A}X — A) := min{w(A|X — A),1i,, (A)}
endfor

endfor
Output § with weights.
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B(ds), then at each step k (k ranging from 5 to n), the set
RB(d}) is computed by considering the splits U|V € B, (d&)
as well as {U Uz, V} and {U,V U x} for each {U,V} €
RB(dk—1). From these splits, only those having a positive
Refined Buneman index are included in RB{ds).

The most time consuming step of the O(n®) time algo-
rithm in {14] is computing the index of the splits considered
for addition in the set RB(d) at each step k. To compute
the index of a split, we have to know the k—3 quartets of
least Buneman score it induces. The set {x of all possible
quartets with leaves in X is sorted at the beginning of the
algorithm according to their Buneman score. Then, for each
examined split U|V, the algorithm proceeds in ascending or-
der through the sorted list @x, to find the & — 3 quartets
in q(U}V ) with smallest Buneman score. However, this can
require up to O(n*) for each split, i.e., O(n5) at each step
(O(k) splits are considered), hence the O(n ) complexity of
the algorithm.

Our approach is to partition the quartet set into dis-

oint subgets ghtain th
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each subset, then calculate Refined Buneman scores using
an analogue of merge sort.
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4.1 Calculating Refined Buneman scores path by path

Let T be an unrooted tree and let wz|yz be a quartet in
g(T). The path between w and y, and the path between
z and z intersect along an internal path in the tree: the
path connecting mid(w, z,y) and mid(w,y,z) Thus to ev-
ery quartet there chresnondq a ummle internal Dath in the
tree. Let P be the set of pa.ths connecting internal vertices in
T. For each P € P let Qp be the set of quartets correspond-
ing to P. Thus ¢(T') is the disjoint union of {Qp : P € P}.
Furthermore wz|yz € Qp if and only if wz|yz € q(U|V) for
exactly those splits UlV corresponding to edges along P.



Given an internal edge e (with corresponding split U|V')
let P(e) be the set of paths in P that traverse e. Then
{P(e)] < |P| < n? and q(U|V) is the disjoint union of {Qp
P € P(e)}. Hence the set gmin(U]V) of n — 3 quartets in
q(UlV) with minimum score can be constructed from the
sets of n — 3 minimal quartets contained in each Qp such
that P € P(e). This idea forms the basis of ALGORITHM
3, which calculates Buneman scores of all splits in a tree in
Just O(n*) time. We will assume, without loss of generahty,
that the tree is binary, and that the set of all 3. —'or

quartets on X has been sorted according to quartet score.

Note that locating all of the vertices mid(a,b,zo) takes
a total of O(n?) time using a depth first search of the tree,
and the map between edges e and path sets P(e) can be
constructed in O(n®) time. After preprocessing we can de-
termine the path P corresponding to a quartet wz|yz in
O(1) time by examining the vertices {mid(a,b,zo) : a,b €
{w,z,y,2}}. The quartets in ¢g(T') are already sorted, so
each insertion in the list corresponding to a path takes 0(1)
time. There are O(n?) paths in each P(e) so it takes O(n®)
time to calculate the Refined Buneman score for each edge.
We have now established

Lemma 6 If we are gwen a sorted list of quartets in q(T)
then it takes at most O(n*) time to calculate the Refined
Buneman scores for every edge of T.

ALGORITHM 3.
given tree.

Refined Buneman scores for a

input: A quartet weighting and an unrooted tree T.
output: Refined Buneman scores i and minimal quartets
for splits in T.

Fix a leaf o and use a depth first search of the tree to
determine mid(a, b, o) for every pair of leaves a and b.
for i = 1..|¢(T')| do
Determine the path P such that ¢; € Qp.
Insert the score of g; into the sorted list corresponding
to Qp.
endfor
Construct P(e) for each edge e.
foreach edge e
Merge the sorted lists of values for each P in P(e)
together, halting the process when we obtain n — 3
minimum scores.
Calculate the Refined Buneman score for e from this
list.
endfor
foreach split U|V in T
Output U]V, jiviv and gmin (U|V).

endfor

4.2 Constructing the Refined Buneman tree in O(n®) time

‘We now proceed from calculating Refined Buneman scores
to constructing Refined Buneman trees. ALGORITHM 4
calculates the splits in RB(d), as well as their weights, in
O(n®) time. The algorithm requires O(n*) memory space.
This amount of memory usage is quite acceptable when the
input data is a set of weighted quartets, however it should
be possible to improve space complexity when the input is
an n X n distance matrix. In any case, sophisticated bitmap

techniques enable quartet computation with 200 to 300 taxa
(D. Swofford, personal communication).

ALGORITHM 4. Refined Buneman tree.

input: A quartet weighting.
output: Splits § in the Refined Buneman tree, with weights.

Construct the list @x of all possible quartets wz|yz on
X, sorted according to weight.
Sy := B(ds).
foreach k from 5 ton
Sk = {xi| Xk — zi}.
Construct B, (dx) for di.
Calculate fiy)v and gmin (U[|V) for each U|V € B.(di)
using algorithm 3.
Sk = S U{U|V € B(dk) : fvyv > 0}.
Construct the sorted list Qx = {ablczx
Xi-1}-
foreach split UV € Sk-1
Construct a list L of n— 3 smallest quartets in QN
q(U U {zi}IV).
Construct gmin (UU{zx}}V) from L and gmin (U|V).
Construct a list L' of n— 3 smallest quartets in QN
q(UIV U {z}).
Construct gmin (U|VU{z}) from L’ and gmin (U|V).
Calculate Buu{z, v and Buivu{z,)-
if iyu(z,}jv > 0 then
Sk :=Se U{U U {z: }|V}
endif
if I‘Ulvuf""h} > 0 then
Sk = Sk U{U|V U {z}}
endif

endfor

endfor
Output RB(d)

: a,bc €

=S, and {fivv : U|V € Sa}.

5 Split decomposition

The definition of d-splits makes it clear that split decom-
position is to weakly compatible splits what the Buneman
tree and the Q* tree are to compatible splits. That said,
can we use an analogue of our fast Buneman tree algorithm
to quickly perform split decomposition? The answer is yes,
however we have to be careful. Systems of weakly compati-
ble splits are a bit more complicated than trees.

Once again we convert the problem from distances to
similarities. The weak isolation index of a cluster A C X
with respect to a simila.rity measure 8 on X is defined

i, (A) = a'eA in {s(a a’) — min(s(a, z), s(a’, x))}

The set of clusters {A : i;(A) > 0} are called the weak
clusters of s and form a weak hierarchy [4].
The connection back to d-splits is provided by

i3(U) = min{Blu.. : uv'lve € gUIX ~ U)}

where s is the Farris transform of d with respect to z. Thus
U|V is a d-split if and only if U is a weak cluster of s, for
all z € V and V is a weak cluster of s, for all y € U.

At the moment, the fastest algorithm for calculating the
weak clusters of a similarity measure is still the original it-
erative O(n>) time algorithm of [4). There appears to be no
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cluster case.

Let C be the set of weak clusters with respect to s, for
a leaf z. We wish to prune out clusters of C that do not
correspond to d-splits.

Fix a leaf z. For each cl
we calculate
:a,a’ € A}.

Fe (A)b) = min{ﬂ:u'ibz

The function F. can be calculated recursively using
F:(A,b) = min { min{F(B,b) : A covers B},
win{Blaee : (a,0') = 4}}.

There are at most O(n®) covering relations in a weak
hierarchy such as C that is closed under intersections. Hence
for each x the value of F;(A,b) foreach A € Cand b € X can

be calculated in O(n*) time. Thus F.(A) := mm{ﬂ,m,“,x :

a,a’ € A,b € X — A} can be all calculated in O(n*) time.
We store these values for each cluster then repeat for the
remaining z € X. The isolation index for A|(X — A) is the

minimum of F.(A) over all = € X, In this way the d-enlite

minimum of F,(A) over all In this the d-splits
can be obtained in O(n®) time using only O(n®) memory.

We summarize the method in ALGORITHM 5. Once
again we let s; denote the Farris transform of d with respect
to x;.

ALGORITHM 5. Split Decomposition.
input: a dissimilarity measure d on X = {z1,23,...,2n}.
output: d-splits of d, together with their weights.

Construct s1, the Farris transform of d with respect to
1.

Construct the weak clusters of s1 using the iterative al-
gorithm of [4].

Let C be this set of clusters and put w(A) = 15, (A) for
all AeC.

Qavd ? Loy and snnnles
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for allz € X — {z,} do
for all clusters A € C do
for allbe X -~ Ado

F;(A,b) = min { min{F(B,b) : A covers B},
min{ﬂ;a'lbz : (a:al) = A}}

A dalhas
u vauv

w(A) := min {w(A),min{F;(A,b) :be X — A}}.
endfor
endfor
for all A€ C do
if w(A) > 0 then
S := SU{A|X - a}.
w(AlX — A) .= w(A).
endif
endfor
Output S with weights.
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