
Faster reliable phylogenetic analysis

Vincent Berry* David Bryantt

Abstract

We present fast new algorithms for phylogenetic reconstruc-
tion from distance data or weighted quartets. The meth-
ods are conservative-they will only return edges that are
well supported by the input data. This approach is not only
philosophically attractive; the conservative tree estimate can
be used as a basis for further tree refinement or divide and
conquer algorithms. The capability to process quartet data
allows these algorithms to be used in tandem with ordinal
or qualitative phylogenetic analysis methods.

We provide algorithms for three standard conservative
phylogenetic constructions: the Buneman tree, the Refined
Buneman tree, and split decomposition. We introduce and
exploit combinatorial formalisms involving trees, quartets,
and splits, and make particular use of an attractive dual-
ity between unrooted trees, splits, and dissimilarities on one
hand, and rooted trees, clusters, and similarity measures on
the other. Using these techniques, we achieve O(n) improve-
ments in the time complexity of the best previously pub-
lished algorithms (where n is the number of studied species).
Our algorithms will be included in the next edition of the
popular Splitslkee software package. Keywords: compu-
tational biology, phylogeny reconstruction, combinatorially
reliable edges, distance based methods, quartet based meth-
ods, single linkage tree, polynomial time algorithms.

1 Introduction

Inferring evolutionary trees, or phylogenies, is a well-known
problem in computational biology, the aim being to recon-
struct the history of a set of sequences, genes, or species.

A fundamental drawback of many phylogenetic recon-
struction methods, is that they will always return a fully
resolved (binary) tree, even when the data set contains lit-
tle phylogenetic information. While a fully resolved tree
might seem more informative, in reality many of its internal

‘EURISE, Dkpartement de Mathhmatiques, Universitb de Saint-
Etienne, 23, Rue du Docteur Paul Michelon, 42023 Saint-Etienne
Cedex 2, France. E-mail vberryauniv-et-etisna.fr

‘C.R.M. Universitb de Mont&al, C.P. 6128, Succ. centre-ville,
MontrBal, (QuBbec) H3C 357. E-mail bryantQCBn.UMontreal.ca

Permission to make digital or hard copies of all or part of this work for
personal or cl~ssrooni use is granted without fee procided that copies
arc not mddc or distribulrd tbr profit or commcrcia~ xi~antdgc Uld that
copies hear this notice and the full citation on the first page. To copy
otherwise. to republish. to post on senws or to redistribute to lists.
requires prior specific permission and:or a fee.

RECOMB ‘99 Lyon France
Copyright ACM 1999 l-581 13-069-4/99/04...$5.00

edges could be artifacts of the method and of the particular
data set analyzed, rather than issuing from the underlying
tree [8, 91.

To avoid this problem, several studies have investigated
distance based methods proposing evolutionary trees whose
edges are supported by a significant number of combinatorial
constraints [ll, 14, 291. These constraints are expressed on
quartets of species, a basic structural unit to describe trees,
which can be efficiently inferred from biological data [3, 7,
35, 361 and which have received much attention recently [lo,
11, 13, 18, 25, 351.

One example is the Q’ method [3, 111 which has a strong
connection with a tree construction introduced by Buneman
in [16]. The Q’ method returns a tree containin only com-
binatorially safe edges, each supported by fl(n B) to O(n4)
quartets. Unfortunately it is often the case that only a few
edges in the historical phylogeny have a strong combinato-
rial support in the data.

Moulton and Steel [29] investigated a related method,
called the Refined Buneman tree, that provides a refinement
of the tree obtained by the Buneman construction (i.e., a
tree containing at least the edges inferred by the Buneman
method). The edges of the Refined Buneman tree still satisfy
between n(n) and O(n3) quartets inferred from the data.

The interest in these methods is threefold: first, they
provide conservative but reliable estimates of the species
history (e.g., the Q’ method was experimentally shown to
induce less than 1% incorrect edges [lo, 11, 311); second, if
the evolutionary model used to correct the data is correct
then these methods are consistent, with the number of char-
acters required growing logarithmically with respect to the
inverse of the confidence level [ll, 181; more importantly, be-
cause of the important constraints they impose on inferred
edges, the corresponding tree can be exactly computed in
polynomial time, whereas most other methods use NP-hard
reconstruction criteria, i.e., requiring exponential time for
an exact solution to be found.

This motivates a new and promising approach to phy-
logeny reconstruction [lo, 11, 31, 321: first compute a tree
containing only safe edges through one of the above meth-
ods and then use this tree as a starting point for more re-
fined, and computationally intensive, reconstruction proce-
dures [lo, 311. Alternatively, one can divide the data set
into loosely grouped subsets of species and then apply these
conservative tree methods to the resulting subproblems, an
approach taken by the disc-cover method [24].

There are times when the data simply does not support a
tree and forcing a tree structure onto the data can result in
lost information. This occurs, for example, when there has

59

been hybridization or horizontal gene transfer. With this
problem in mind, Bandelt and Dress introduced split de-
composition, which constructs a network instead of a simple
phylogeny. We will see that split decomposition is an ex-
act analogue of the Buneman tree construction, and this
relationship proves useful when developing fast algorithms.
Split decomposition has been implemented in the package
SplitsZFee [23] and has been successfully applied to the anal-
ysis of virus data [17].

In this paper, we present algorithms achieving an O(n)
improvement in the time complexity of the best previously
published algorithms for computing the Buneman tree, the
Refined Buneman tree and splitgraph on an n species dataset.
Our algorithms apply to dissilimilarity matrices or to sets
of weighted quartets, as can be obtained by usual quartet
inference methods [3, 20, 261. The structure of the paper is
as follows:

l In the next section we define the fundamental phylo-
genetic objects on which our algorithms are based, as
well as introducing connections and dualities between
them.

l In section 3 we exploit links between the Buneman
tree, strong clusters and the single linkage tree to de-
velop an O(n2) time algorithm for computing strong
clusters and an O(n3) time algorithm for constructing
the Buneman tree.

l In section 4 we employ a new path covering technique
to give an O(n’) time algorithm for the Refined Bune-
man tree.

l In section 5 we use similar techniques to those devel-
oped in section 3 to give an O(n5) time algorithm for
split decomposition.

2 Preliminaries

Rooted and unrooted trees

An unrooted (phylogenetic) tree is a connected acyclic
graph with all vertices of degree less than three (and possibly
some higher degree vertices) labeled injectively from some
label set X (representing species or genes). An unrooted
tree is binary if every internal vertex has degree three.

Given any three leaves a,b,c let mid(a, b,c) denote the
unique internal vertex located at the intersection of the three
paths between a and b, b and c, a and c. Hence mid(a, b, c) =
mid(a, c, b) = mid(b, c, a).

The dual of au unrooted tree is a rooted tree, which is
defined in the same way except that one internal vertex is
distinguished and called the root, and this vertex can have
degree two. A rooted tree is binary if all internal vertices
except the root have degree three and the root has degree
two. Rooted and unrooted trees are easily transformed into
one another (e.g., by using an outgroup).

2.1 Splits and clusters

A split of a finite set is a partition of the set into two non-
empty parts. Removing an edge e from an unrooted phy-
logenetic tree T partitions the leaf set of the tree into two
parts-this is the split of T associated with e. The com-
plete set of splits obtained this way is denoted splits(T).
The splits AIB where IAl = 1 or (B] = 1 are called trivial.
Any unrooted tree T can be reconstructed from its set of
splits in linear time [22, 281.

A set of splits S is compatible if S C_ splits(T) for some
tree T. It is well-known that two splits AIB and C]D are
compatible if and only if one of An C, A n D, B n C, B f~ D
is empty and that a set of splits is compatible if and only if
it is pairwise compatible [16].

A set of splits S is weakly compatible if for all splits
A1]Bi,A2]B2,A3(B~atleastoneofAinA2nA3,AlnBznB3,
B1 n A2 n B3, or Bl n B2 n A3 is empty. Every compati-
ble set of splits is weakly compatible, so systems of weakly
compatible splits can be seen as a generalization of unrooted
trees. Sets of weakly compatible splits can be represented
as a splits graph where every split corresponds to a set of
parallel edges that form a cut set of the graph.

The rooted dual of a split is a cluster, which is simply a
subset of a finite set X. If we fix a leaf z then the cluster
corresponding to split AIB with x E B is the subset A c X.
Conversely the split corresponding to a cluster A of X - {z}
is the split AIX - A. Given any collection C of clusters we
say that one cluster A E C covers another cluster B c A if
,BCcC-{A,B}s.t. BcCcA.

Removing an edge e in a rooted tree partitions the tree
into two parts. The set of leaves in the part not containing
the root is called the cluster corresponding to v, where
v is the endpoint of e furthest away from the root. A set of
clusters obtained this way is said to be compatible. Gom-
patible sets of clusters (also called strong hierarchies or
just hierarchies) are characterized by the property that for
any two clusters A and B in the set, if AnB # 0 then A & B
or B 5 A.

A set of clusters C forms a weak hierarchy if for all
A,B,C E Cat least oneof (AUB)-C, (AuC)-B,
(B U C) - A is empty. Any strong hierarchy is also a weak
hierarchy.

Given any collection of clusters C of a finite set X with
X E C, and a subset Y C X, the closure of Y is given by

0-7 = f-) A
AEC:YC_A

If C is closed under intersections then (Y) is contained in C
for all Y C X. It is shown in [4] that if A is any cluster in a
weak hierarchy then there is a, a’ such that (a, a’) = A. In
strong hierarchies (rooted trees), A = (a,a’) if and only if
A is the cluster corresponding to the least common ancestor
of a and a’.

2.2 Quartets

To every set of four species a, b,c,d E X there are three
ways to associate a leaf-labeled binary unrooted tree. The
three possible resolutions are denoted ablcd, aclbd and adlbc,
indicating how the central edge of the tree splits the four
species. Each of these trees on four species is also called a
resolved quartet, or simply a quartet [ll, 14, 18, 291. Species
of quartets ablcd might not be necessary distinct, i.e., we
will also consider cases in which, say a = b or c = d.

An unrooted tree T induces a quartet ablcd if we can re-
move leaves and contract edges of T to obtain ablcd. Equiv-
alently, T induces ablcd if the path from a to b in T does not
intersect the path from c to d. Note that an unrooted tree
T is uniquely characterized by the set q(T) of quartets it in-
duces, from which it can be reconstructed in 0(lq(T)I + n2)
time [3].

The set of quartets q(AIB) corresponding to a split AIB
is defined by

q(AIB) = {aa’lbb’ : a, a’ E A, b, b’ E B}.

60

Here a and a’ need not be distinct; likewise for b and b’. We
have that q(T) = UAIBEsplits(T)q(AIB) and a set of splits S
is compatible if and only if q(S) = UAlsEsq(AIB) contains
at most one quartet on each set of four leaves [3]. Similarly,
a set of splits S is weakly compatible if and only if q(S)
contains at most two quartets on each subset of four leaves
PI.

Quartets have been shown to be a valuable intermedi-
ary step in phylogenetic tree reconstruction. They allow,
e.g., to apply some computationally expensive optimization
criteria, like Maximum Likelihood [20], to data sets contain-
ing more than a moderate number of species, by restricting
the analysis to four taxa at a time and then constructing
trees by combining the inferred quartets according to a re-
construction principle [3, 10, 11, 15, 18, 25, 36, 381.

2.3 Dissimilarity measures and trees

Let T be any unrooted tree and suppose that the edges of T
are weighted. The weighting induces a dissimilarity measure
d(T) on the leaf set of T: the distance between two leaves
is taken to be the sum of the weights along the unique path
connecting them. Dissimilarity measures arising in this way
are called additive and can be easily characterized [16].

Given a split AIB we define the split metric of AIB by

hAlI (a, b) =
0 if{a,b}EAor{a,b}sB
1 otherwise

In a weighted unrooted tree T, if XAls is the weight of the
edge associated with split AIB then the dissimilarity mea-
sure d(T) is given by

d(T) = c x AIt? 6AlB .

AIBEaplits(T)

In all of the three standard methods below the output is a
compatible or weakly compatible set of splits together with
their weights.

2.4 Conservative phylogenetic reconstruction methods

In this section we present the phylogeny reconstruction meth-
ods for which we provide improved algorithms. These meth-
ods are conservative in the sense that they output trees or
networks containing only edges strongly supported by the
data. Our algorithms can handle both distance data and
weighted sets of quartets.

2.4.1 The Buneman Tree

Buneman showed how to construct a weighted unrooted tree
from a dissimilarity measure d on X by considering quartets
[16]. The Buneman score of a quartet q=wzlyz, to, CC, y, z E
X, is defined as:

/3, = Pwrlyz := +(min{wy + ~2, WE + zy} - (wz + yz)),

where d(z, y) is written zy for all z, y E X. The Buneman
index of a split UIV of X is

/WV = ,wv(d) = u u,~~~v,evAuqvv~-
I ,>

Here u and u’ need not be distinct; likewise for w and v’.
Buneman showed that the set of splits B(d) = {UlV :
p”,,,(d) > 0) is compatible. We define the Buneman tree

to be the weighted unrooted tree associated to B(d), whose
edges correspond to the splits UIVcB(d) and are weighted
according to pulv(d).

Figure 1 (i) shows the Buneman tree calculated for the
mammalian data set of [30], containing 188 nucleotides, ob-
tained from several genes (a- and /3-hemoglobins, fibrinopep-
tides A and B, cytochrome c, myoglobins, a-chrystallin).
There is enough structure in this data for the Buneman
tree to infer several splits, corresponding to expected groups,
e.g., primates (ape, human, monkey), ungulates (cow, sheep,
pig, horse). However, the Buneman method does not take
any decision relative to the dog, kanga, rabbit and rodent
species, whose position is still uncertain [30].

Buneman’s method can be generalized to the case when
quartets are not necessarily weighted by their Buneman scores
[3]. Given any set of quartets Q and a weighting function w
for Q such that at most one quartet has positive weight for
each subset of four species, the set of splits

S(w) = VW : vq E qNJlned > 0)
is compatible, giving a tree which can be obtained in O(n4)
time, through the Q’ method [ll]. Moreover, weighting each
split UIV of S(w) by min ,.,, vv’~q(~~~) 4~41~~‘) produces a ,l
weighted unrooted tree that is an analogue to the Buneman
tree.

2.4.2 Anchored Buneman tree

One relaxation of the condition that PAls > 0 is to only
look at quartets containing a certain leaf. Fix x E X. For
each split UlV with z E U define

&v = &v(d) := u~~~ff’EV~PrYI”Y)h

and put B,(d) = {UlV s.t. &lv > 0). The set of splits
B,(d) is compatible [14]. The weighted unrooted tree as-
sociated to B,(d), whose edges correspond to the splits
UIV E B,(d) and are weighted according to p~lV(d), is
called the Buneman tree anchored at x.

Clearly &lv > ,uulv for all splits UlV, so that B(d) c
B,(d). Indeed pulv = min,ex &lv so B(d) = f&xB,(d).

There is a straightforward generalization of the anchored
Buneman tree for when the input is a quartet weight func-
tion. Given any set of quartets Q and a weighting function
w for Q such that at most one quartet has positive weight
for each subset of four species, define qz(UIV) = {w’lw E
q(UlV) : u’ = z} and

B,(w) := {UlV : q&IV) E Q}

where each split in B,(w) is weighted by

P&(W) := ,,qm$lv, w(q).
t

2.4.3 The Refined Buneman tree

Recently, Moulton and Steel [29] have shown that another
special relaxation of the condition pulv > 0 also gives a set
of compatible splits. Given two splits UIV and U’IV put

conf6(UIV, U’IV’) = {uu’~vv’Eq(U~V):uw~u’v’Eq(U’~V’)}.

Then, UIV and U’IV’ are compatible if and only if
confl(UIV, U’IV’) = 8. Hence if Q contains no two quartets
on the same set of four species, and both q(U(V) C_ Q and
q(U’IV’) C Q then UIV and U’IV must be compatible.

61

-0.1

TilL: mammife~-
Date:PriCkI 907:16:181998

-0.1

(i) Buneman tree on the mammal data set [28]

(ii) Refined Buneman tree for the mammal data set [28]
(drawn with equal length edges)

(iii) Splits graph for the mammal data set [28]

Figure 1: Buneman tree, Refined Buneman tree, and splitsgraph for the mammal data set [30]

62

Moulton and Steel observed that, if UIV and U’ IV’ are
incompatible then confZ(UIV, U’IV’) 1 n - 3. They defined
a split index ,%olV such that confl(U]V, U’]V’) 2 n - 3 im-
plies ,!&Iv + &,~l,~ 5 0. Hence the set of splits {UlV :
j&iv(d) > 0) is compatible.

Given a split UIV put m = Iq(UlV)l and let ql,. . . ,qm
be an ordering of the elements in q(UlV) such that for all
1 5 i 5 j 5 m we have & 5 /I,, . Put q,,,i,, (UIV) =
{ql, qz, . . . , q,,-s}. The Refined Buneman index of a split
UIV is defined as

FiUlV = ,&iv(d)

.- .- -.L .z pq<
n-3

i=l

1 = -9
n-3 c P9i

9E9min(UIV)

Our definition differs slightly from the definition in [29,j since
q(UlV) includes quartets UU’]VV’ with u = U’ or v = v , even
when IUI > 1 or IV1 > 1. The change has no effect if the
distance matrix satisfies the triangle inequality.

Put RB(d) = {UlV : j&iv(d) > 0). The associated
weighted unrooted-tree, whose edges correspond to the splits
UIV E RB(d) and are weighted according to pulv(d), is
called the Refined Buneman tree. It is clear that B(d) 2
RB(d), and often B(d) is strictly contained in RB(d), in
which case the Refined Buneman tree refines the Buneman
tree.

The Refined Buneman tree (Figure 1 (ii)) adds three
splits to the previous mammal tree. We draw the tree
with equal length edges so that the additional splits are
easy to identify (they have only small weight). The clus-
ter (pig,sheep,cow) is expected; the cluster (dog,kanga) is
also found by Neighbour Joining and Maximum Parsimony;
the cluster (rabbit, rodent), also found by Maximum Parsi-
mony and Neighbour Joining, is suspected to be wrong due
to the long branch attract problem, but no firm conclusion
as been reached concerning this group [30].

Like the Buneman and anchored Buneman trees, this
method can be modified to handle more general quartet
weights. Suppose that w is a weight on quartets such that
w(ab]cd) + w(aclbd) 5 0 for any two quartets ablcd, ac(bd on
the same set of species. Once again, let q,,,i,,(UIV) be the set
of n - 3 minimum score quartets in q(UlV). A modification
of the proof in [29] shows that if we define

PUIV = jiUI”(W) := --& . C W(G).
9iE9min(ulV)

then the set of splits RB(w) = {UlV : ,!&I~ > 0) is compat-
ible.

2.4.4 The C-tree construction

We have recently discovered that the refined Buneman method
can be further refined. It can be shown that

bnfWIV U’lV’)l 2 WI - Nlvl - 1)
for any pair of incompatible splits UIV and U’IV’. As before,
put m = Iq(UjV)l and let q1 , . . . , q,,, be an ordering of the
elements in q(UlV) such that for all 1 5 i 2 j 5 m we have
/Yqi 5 fig,. Define

(IUI-l)(lVl-1)

&m = (p-q - 1)&q - 1) . .. c Ai.
i=l

By a similar argument to the refined Buneman tree case,
the set of splits CT(d) := {UlV : ,ublv(d) > 0) is shown to
be compatible, and the associated unrooted tree with edge
weights given by p*(d) is called the C-tree for d. As in the
Buneman tree and refined Buneman tree cases, the C-tree
can also be extended to handle sets of weighted quartets.

Clearly, RB(d) C_ CT(d), and there are cases in which
the C-tree strictly refines the refined Buneman tree. Extend-
ing the algorithm for RB(d) gives an O(n’) time algorithm
for the C-tree, though the C-tree algorithm is significantly
more involved and will be left for an extended version of this
paper.

There is a useful and intriguing link between the C-tree
construction and the Quartet Cleaning method [12,25]. Sup-
pose that Q is a set of quartets containing at most one quar-
tet for every set of four species. For consistency with Quar-
tet Cleaning we assume Q contains all quartets UU’]VV such
that ‘II = u’ or v = v’ or both. If we put w(ablcd) = 1
for all ablcd E Q and w(ab]cd) = -1 for all a5lcd g Q
then the splits in CT(w) are exactly those splits UIV with
Iq(UlV) - &I < (IV1 - l)(lVl - 1)/2. The multiple of $ is
due to the averaging of quartets with scores fl.

2.4.5 Split decomposition and the splitsgraph

Just as weak compatibility of splits generalizes compatibil-
ity of splits, the d-split construction of Bandelt and Dress
[5] generalizes the tree construction method of Buneman.
We replace the Buneman quartet score pq with the weak
quartet score pi for a quartet q = wxlyt, w, 2, y, z E X,
defined as

p,’ = J3&lyz := $(max{wy + zz, wz + xy} - (wz + yz)).

where, as before, d(x, y) is denoted xy, all x,y E X. The
(weak) isolation index of a split UIV is then defined

~UIV = WV(~ = u u,~~~~,EvKy~~yu~.
9 (9

Here u and U’ need not be distinct; likewise for v and v’. A
split U(V is called a d-split if aulv > 0. Bandelt and Dress
[5] showed that the set of d-splits of a distance function d is
weakly compatible. They use this construction to describe
a canonical decomposition of metrics into split metrics (and
a residue).

The split decomposition approach can be applied to sets
of weighted quartets. Given a set of quartets Q containing
at most two quartets for each set of four leaves, the set of
splits S(Q) = {UlV : q(UlV) C Q} is weakly compatible. If
w is a weighting function on quartets such that w(ab]cd) +
w(ac]bd) + w(adlbc) 5 0 for all subsets of four leaves a, 5, c, d
then Q could be taken to be {ab]cd : w(ab]cd) > 0). In this
case the weight given to a split UIV would be

w(UIV) = min{w(21u’]vv’) : uu’lvv’ E q(UlV)}.

Once the set of d-splits has been constructed, the set of
weakly compatible splits can be used to construct a splits-
graph. A splitsgraph can be regarded as a generalized tree
diagram, except that every split corresponds to a collec-
tion of parallel edges rather than a single edge. In many
cases the splitsgraph looks like a normal tree with some
additional boxes in regions of uncertainty. This is evident
when we compute the splitsgraph for the mammal data (Fig-
ure 1 (iii)). The splitsgraph adds a split separating (rab-
bit,rodent,primates) from the other species, which was aho

proposed in [30].

63

3 An O(n3) time algorithm for the Buneman tree

The definition of the Buneman tree seems to imply that any
algorithm for computing the tree and edge weights would
take at least O(n”) time-we need to calculate & for every
possible quartet q. Here we provide an O(n3) algorithm.
The gain in efficiency is achieved by converting the prob-
lem from one involving unrooted trees and distances to one
involving rooted trees and similarities.

A similarity measure s on a finite set X is a symmetric
function on X xX. Intuitively, a high similarity between two
objects indicates a high degree of relationship. The strong
isolation index i,(A) of a cluster A C X with respect to s
is defined

i,(A) = o,a,e~~X-A { 40, a’) - m={s(a, 51, da’, xl>)

which is equivalent to

We define id(X) = rnix+,eX 8(x,x’). The clusters {A :
i,(A) > 0) are called the strong clusters of s and form a
(strong) hierarchy [4].

If we fix x E X then a distance d can be converted into
a similarity sZ on X - {x} using the Farris transform

s&z, b) = $(d(a, z) + d(b, z) - d(a, b))

for all a, b E X - {x}. The inverse of the transform is given
by

d(a, b) = s&x, a) + sz(b, b) - 2sz(a, b)

for all a, b E X - {z} with d(a, z) = sz(a, a) and d(z, z) = 0.
The connection with Buneman trees is provided by the

following Lemma. It can be proved by expressing /3, in terms
of SZ.

Lemma 1 If d is a distance function on X with Far&
transform s2 and lJ]V is a split of X with x E U then

That is, strong clusters correspond to splits in the anchored
Buneman tree.

Thus A]B is a split in the Buneman tree if and only if A
is a cluster of sZ for all x E B and B is a cluster of sy for
all y E A. The question now becomes: how quickly can we
construct the strong clusters?

3.1 Strong clusters and the single linkage tree

One of the most widely known tree constructions in classi-
fication is the single linkage clustering tree. It is the close
cousin of popular phylogenetics algorithms neighbor joining
(331 and UPGMA (341. We use it to construct strong clusters.

Theorem 2 If A is a strong cluster of s then A is a cluster
in the single linkage tree for s.

Proof
We use a characterization of single linkage trees described
by [7] and rediscovered in [19] to solve a related problem.
Given a similarity s on finite set X we construct the graph
G[k] with edge set E[k] = {{a, b} : s(a, b) 2 k}. A cluster is
in the single linkage tree for s if and only if it is a component
of G[k] for some k.

Suppose that k is the maximum value such that A is
connected in G[k]. Given any a in X and x E X - a if
{a,x) E E[k] then s(a, x) 2 k and so s(a,a’) > s(a,x) > k
for all a’ E A, since A is a strong cluster. However this
contradicts the maximality assumption for k. Hence A is a
component of G[k]. 0

This result has been proved independently in [2J. The
single linkage tree for s can be constructed in O(n) time
using spanning tree based methods [7, 21, 271.

3.2 An O(n2) algorithm for strong clusters in a tree

We are able to create a superset of the collection of strong
clusters in O(n2) time. The task that remains is to prune
those clusters with zero, or negative, isolation index from
this collection.

Let C be the collection of clusters returned by the single
linkage algorithm. For each cluster Ci E C and each x E Ci
we calculate two values:

m(G, z) := min{s(x,x’) : 2’ E Ci}

M(Ci, X) := 77laUX{S(X, X’) : Ci = (X,X’)}

Since C is compatible, (x,x’) = Ci if and only if Ci is the
cluster corresponding to the least common ancestor of x and
x’. Furthermore, if Cj is a cluster that is covered by Ci and
contains x then

m(C;,x) = min{m(Cj,x),min{s(x,x’) : C; = (x,x’)}}.

Since each pair of leaves x, x’ gives exactly one cluster Ci =
(x,x’) the values m and M can be calculated for all leaves
and clusters in O(n2) time, using a depth first search of
the single linkage tree. Once these values are calculated the
isolation indices can be computed:

Lemma 3 If A is a cluster in C - {X} and B is a strong
cluster that covers A in C then

i.,(A) = rrJz{m(A, a) - M(B, a)}.

Proof
The strong cluster B has positive isolation index so ~(a, y) >
s(u,x) for all ~‘EA, WEB-A and XEX-B. Hence

is(A) =

=

=

as required. 0

Note that i.(X) = min,exm(X,x). The values id(A)
can now be calculated for all clusters using a preorder traver-
sal of the tree. Whenever a cluster is found with zero or neg-
ative isolation score, we remove the cluster from the tree.
Applying the pruning procedure to the single linkage tree
gives us the strong clusters with their isolation index (AL-
GORITHM 1).

ALGORITHM 1. Strong Clusters

i nput: A similarity s on a set X of taxa.
c mtput: The tree containing the strong clusters Ci E C(s)
t md their strong isolation indices i*(Ci).

Construct the single linkage tree T for s using Prim’s
algorithm.
C := clusters of T.
foreach Ci E C in a depth first traversal of T

Compute 772(Ci, 2) for all X E Ci.
Compute M(Ci , 2) for all 3: E Ci .

endfor
foreach Ci E C in a pre-order traversal of T

Calculate i.(C;) using Lemma 3.
if i.(Ci) 5 0 then

Remove Ci from C
Let Cj E C be the cluster covering C;,
foreach x E Ci

M(Cj,X) = T7ZCJX{M(Cj~X),M(Ci~X)}

endfor
endif

endfor
Output C with weights i,.

We have now established:

Theorem 4 The strong clusters of a similarity measure can
be recovered, together with their isolation indices, in O(n’)
time.

3.3 An O(n3) algorithm for the Buneman tree

We can now exploit the relationship between the anchored
Buneman trees and the Buneman tree. We let si denote
szi, the Farris transform of d with respect to xi. We con-
struct the set of clusters from the single linkage tree of s1
then successively prune off clusters that are not strong clus-
ters for some other si (ALGORITHM 2). At the conclu-
sion of the algorithm each split AIB in S is weighted by
min,Ex(&,s} = PA/B, the Buneman score for AJB.

Note that a number of shortcuts can speed up execution,
however they do not improve the order of time complexity
and will be reserved for an extended version of this paper.

4 Computing Refined Buneman trees in O(n5) time

The algorithm of Bryant and Moulton [14] for computing
the splits RB(d) of the Refined Buneman tree is iterative. It
assumes an arbitrary order on the species X = (21,. . . , x,,},
computes RB(d) for a small subset of species then extends it
by progressively incorporating the other species. The same
iterative technique has been successfully used to solve other
related problems [5, 111.

Put xk = {xl,..., zk} and let dk be the dissimilarity
d restricted to Xk. Each iteration step was based on the
following Lemma:

Lemma 5 ([14]) Suppose 1X1> 4, and fix x E X. If (I =
{U,V} is a split in RB(d) with x E U, and IUI > 2, then
either {U, V} E B=(d) or {U - {x}, V) E RB(dx-tz}) or
both.

ALGORITHM 2. Buneman ?kee

input: A distance measure d on a set X = {XI,. . . , x,,} of
taxa.
Dutput: The splits S of the Buneman tree with weights.

Construct the set C of strong clusters for s1
foreach A E C

S:=Su{AIX-A}
w(AIX - A) := i,,(A)

endfor
foreachi=2,3,...,n

Construct Farris transform si
c := 0
foreach AIB E S with zi E B

C:=Cu{A}

endfor
Prune clusters from C that are not strong clusters of

i&each A E C
S:=Su{AIX-A}
w(AIX - A) := min{w(AlX - A), i., (A)}

endfor
endfor
Output S with weights.

Thus, the algorithm of [14] first computes RB(dr) =
B(db), then at each step k (k ranging from 5 to n), the set
RB(dk) is computed by considering the splits VlV E B,, (dk)
as well as {u U zk, V} and {V, V U zk} for each {u, V} E
RB(dk-1). From these splits, only those having a positive
Refined Buneman index are included in RB(dk).

The most time consuming step of the O(n’) time algo-
rithm in [14] is computing the index of the splits considered
for addition in the set RB(dk) at each step k. To compute
the index of a split, we have to know the k-3 quartets of
least Buneman score it induces. The set Qx of all possible
quartets with leaves in X is sorted at the beginning of the
algorithm according to their Buneman score. Then, for each
examined split UIV, the algorithm proceeds in ascending or-
der through the sorted list Qx, to find the k - 3 quartets
in q(UlV) with smallest Buneman score. However, this can
require up to O(n4) for each split, i.e., O(n5) at each step
(O(k) splits are considered), hence the O(n6) complexity of
the algorithm.

Our approach is to partition the quartet set into dis-
joint subsets, obtain the n - 3 smallest quartet values for
each subset, then calculate Refined Buneman scores using
an analogue of merge sort.

4.1 Calculating Refined Buneman scores path by path

Let T be an unrooted tree and let UKC~~Z be a quartet in
q(T). The path between w and y, and the path between
x and z intersect along an internal path in the tree: the
path connecting mid(w, x, y) and mid(w, y, z). Thus to ev-
ery quartet there corresponds a unique internal path in the
tree. Let P be the set of paths connecting internal vertices in
T. For each P E P let &p be the set of quartets correspond-
ing to P. Thus q(T) is the disjoint union of {Qp : P E P}.
Furthermore wzlyz E Qp if and only if wzlyz E q(UjV) for
exactly those splits UlV corresponding to edges along P.

Given an internal edge e (with corresponding split UlV)
let ‘P(e) be the set of paths in ‘P that traverse e. Then
lP(e)l 5 IPl < n2 and q(UlV) is the disjoint union of {QP :
P E P(e)}. Hence the set qmin(UIV) of n - 3 quartets in
q(U(V) with minimum score can be constructed from the
sets of n - 3 minimal quartets contained in each Qp such
that P E P(e). This idea forms the basis of ALGORITHM
3, which calculates Buneman scores of all splits in a tree in
just O(n4) time. We will assume, without loss of generality,
that the tree is binary, and that the set of all 3 . &
quartets on X has been sorted according to quartet score.

Note that locating all of the vertices mid(a, b, ze) takes
a total of O(n2) time using a depth tist search of the tree,
and the map between edges e and path sets P(e) can be
constructed in O(n3) time. After preprocessing we can de-
termine the path P corresponding to a quartet wzlyr in
O(1) time by examining the vertices {mid(a, b, 20) : a, b E
{w,z, y,z}}. The quartets in q(T) are already sorted, so
each insertion in the list corresponding to a path takes O(1)
time. There are O(n2) paths in each P(e) so it takes O(n3)
time to calculate the Refined Buneman score for each edge.
We have now established

Lemma 6 Zj we we given a sorted list of quartets in q(T)
then it takes at most O(n4) time to calculate the Refined
Buneman scores for every edge ojT.

ALGORITHM 3. Refined Buneman scores for a
given tree.

input: A quartet weighting and an unrooted tree T.
output: Refined Buneman swms ji and minimal quartets
for splits in T.

Fix a leaf zo and use a depth first search of the tree to
determine mid(a, b, ZO) for every pair of leaves a and b.
for i = l..lq(T)I do

Determine the path P such that qi E Qp.
Insert the score of qi into the sorted list corresponding
to QP.

endfor
Construct P(e) for each edge e.
foreach edge e

Merge the sorted lists of values for each P in P(e)
together, halting the process when we obtain n - 3
minimum scores.
Calculate the Refined Buneman score for e from this
list.

endfor
foreach split UIV in T

Output UlV, /%I~v and qmin(UIV).

end for

L

4.2 Constructing the Refined Buneman tree in O(n5) time

We now proceed from calculating Refined Buneman scores
to constructing Refined Buneman trees. ALGORITHM 4
calculates the splits in &3(d), as well as their weights, in
O(n5) time. The algorithm requires O(n4) memory space.
This amount of memory usage is quite acceptable when the
input data is a set of weighted quartets, however it should
be possible to improve space complexity when the input is
an n x n distance matrix. In any case, sophisticated bitmap

techniques enable quartet computation with 200 to 300 taxa
(D. Swofford, personal communication).

ALGORITHM 4. Refined Buneman tree.

nput: A quartet weighting.
mtput: Splits S in the Refined Buneman tree, with weights.

Construct the list Qx of all possible quartets wzlyz on
X, sorted according to weight.
s4 := B(d4).
foreach k jrom 5 to n

Sk := {zklxk - t%}.
Construct B,(dk) for dk.
Calculate PUIV and q,i,(U(V) for each U(V E &(dk)
using algorithm 3.
Sk := Sk U {u/v E B,(dk) : jiulv > 0).
Construct the sorted list Qk = {ab[Czk : a,b,c E
x,-l}.

foreach split lJ(V E Sk-1
COnStrUCt a list L Of n - 3 Smallest quartets in Qk fl
!@u {zk)lv).

construct qmin(Uu{Zk}lV) from L and qmi,(U(V).
Construct a list L’ of n-3 smallest quartets in Qk II
@Iv u {zk)).

Construct ~min(u~vu{Zk}) from L’ andq,i,,(UlV).
Cahhte Fuu{~,IIv and &u~x+~~.

if Puu{~,~Iv > 0 then

Sk := Sk u {u u (2k)lv)

endif
if PuIvu{~~~ > 0 then

Sk := Sk u {ulv u {Sk}}

endif
endfor

endfor
Output RB(d) = S,, and {/h,,v : UlV E S,,}.

66

analogue of the single linkage tree connection in the strong
cluster case.

Let C be the set of weak clusters with respect to sz for
a leaf x. We wish to prune out clusters of C that do not
correspond to d-splits.

Fix a leaf 2. For each cluster A E C and leaf b E X - A
we calculate

F,(A,b) = min{/3za,lbz : a,a’ E A}.

The function F, can be calculated recursively using

Fz(A,b) = min { min{F(B, b) : A covers B},

min{j3&rlb, : (a,~‘) = A}}.

There are at most O(n3) covering relations in a weak
hierarchy such as C that is closed under intersections. Hence
for each z the value of F,(A, b) for each A E C and b E X can
be calculated in O(n4) time. Thus F,(A) := min{&,lb, :
a, a’ E A, b E X - A} can be all calculated in O(n4) time.
We store these values for each cluster then repeat for the
remaining x E X. The isolation index for AI(X - A) is the
minimum of F,(A) over all x E X. In this way
can be obtained in O(n5) time using only O(n3)

the d-splits
memory.

We summarize the method in ALGORITHM 5. Once
again we let 3; denote the Farris transform of d with respect
to xi.

QLGORITHM 5. Split Decomposition.

nput: a dissimilarity measure d on X = {xi, x2,. . ,x,,}.
mtput: d-splits of d, together with their weights.

Construct ~1, the Farris transform of d with respect to
Xl.

Construct the weak clusters of si using the iterative al-
gorithm of [4].
Let C be this set of clusters and put w(A) = i:,(A) for
all A E C.
Sort C by set inclusion and tabulate covering relations.
for all x E X - (21) do

for all clusters A E C do
for all b E X - A do

Fz(A,b) = min { min{F(B, b) : A covers B},

min{Pia,lbz : (a, a’) = A}}.

endfor
w(A) := min {w(A),min{F,(A, b) : b E X - A}}.

endfor
endfor
for all A E C do

if w(A) > 0 then
S:=Su{AIX-a}.
w(A(X -A) := w(A).

endif
endfor
Output S with weights.

Acknowledgements

The authors would like to thank D. Penny for providing the
mammal data set, and B. Leclerc and B. Fichet for helpful

discussions. This work was carried out while D. Bryant held
a Bioinformatics Postdoctoral Fellowship from the Canadian
Institute for Advanced Research, Evolutionary Biology Pro-
gram. Research supported in part by the Natural Sciences
and Engineering Research Council of Canada and the Cana-
dian Genome Analysis and Technology grants to D. Sankoff.
V. Berry was supported during part of this work by ESPRIT
LTR Project no. 20244 - ALCOM-IT.

References

[l] K. Atteson. The performance of neighbor-joining al-
gorithms of phylogeny reconstruction. In Proc. of CO-
COON, Computing and Combinatorics, pages 101-110.
Springer, 1997.

[2] J. P. Benzecri (1967) and ~011. Description mathma-
tique des classifications, volume 1 : La Taxinomie of
L’analyse des donnes, chapter TIB No 3 [D.M.Cl.],
pages 146-148. Dunod, Paris, 1973.

[3] H-J. Bandelt and A.W. Dress. Reconstructing the
shape of a tree from observed dissimilarity data. Adv.
in appl. math., 7:309-343, 1986.

[4] H.-J. Bandelt and A.W. Dress. Weak hierarchies asso-
ciated with similarity measures - an additive clustering
technique. Bull. Math. Biol., 51:133-166, 1989.

[5] H.-J. Bandelt and A.W. Dress. A canonical decomposi-
tion theory for metrics on a finite set. Advances Math,
92:47-105, 1992.

[6] H.-J. Bandelt and A.W. Dress. A relational approach
to split decomposition. Tech. rep. Univ. Bielefeld. 1994.

[7] J.P. Barthelemy and A. Gu&roche. Z’kees and proximi-
ties representations. Wiley, 1991.

[8] V. Berry and 0. Gascuel. On the interpretation of boot-
strap trees: appropriate threshold of clade selection and
induced gain. Mol. Biol. Evol., 13(7):999-1011, 1996.

[9] V. Berry and 0. G ascuel. Choosing the tree which ac-
tually best explains the data: another look at the boot-
strap in phylogenetic reconstruction. Proc. of the 2nd
World Conference of the Int. Assoc. for Stat. Comput.
Computing Science and Statistics, 29(2):227-232, 1997.

[lo] V. Berry and 0. Gascuel. Reconstructing phylogenies
from resolved Ctrees. Tech. rep. 97076, LIRMM, 1997.

[ll] V. Berry and 0. Gascuel. Inferring evolutionary trees
with strong combinatorial confidence. Theoretical Com-
puter Science, to appear, 1998.

[12] V. Berry, T. Jiang, P. Kearney, M. Li and T. Wareham.
Quartet cleaning: improved algorithms and simulations
Submitted, 1999.

[13] D. Bryant and M. Steel. Extension operations on sets
of leaf-labelled trees. Advances in Appl. Math., 16:425-
453, 1995.

[14] D. Bryant and V. Moulton. A polynomial time algo-
rithm for constructing the refined buneman tree. Appl.
Math. Lett., in press, 1998.

[15] D. Bryant and M. Steel. Fast algorithms for construct-
ing optimal trees from quartets. SODA’99. (in press).

67

PI

P71

1181

WI

PO1

WI

1221

1231

(241

[251

WI

WI

WI

PJI

(301

1311

[321

[331

P. Buneman. Mathematics in Archeological and Histor-
ical Sciences, chapter The recovery of trees from mea-
sures of dissimilarity, pages 387-395. Edhinburgh Uni-
versity Press, 1971.

J. Dopazo, A. Dress, and A. von Haeseler. Split de-
composition: A technique to analyze viral evolution.
Proc. Natl. Acad. Sci. USA, 90:10320-10324, 1993.

P.L. ErdSs, M.A. Steel, L.A. Szkely, andT.J. Warnow.
Constructing big trees from short sequences. In 24th
International Colloquium on Automata Langages and
Programming, 1997.

M. Farach, S. Kannan, and T. Warnow. A robust model
for finding optimal evolutionary trees. Algorithmica,
13:155-179, 1993.

J. Felsenstein. Evolutionary Trees from gene frequen-
cies and quantitative characteres : finding maximum
likelihood estimates. Evolution, 35(6), 1229-1242, 1981.

Gower and Ross. Minimum spanning tree and single
linkage cluster analysis. Appl. Stats., 18:54-64, 1969.

D. Gusfield. Efficient algorithms for inferring evolution-
ary trees. Networks, 21:19-28, 1991.

D. Huson. SPLITSTREE - a program for analyzing and
visualizing evolutionary data. Bioinformatics 14(1):68-
73, 1998.

Huson, D., S. Nettles, T. Parida, T. Warnow, and
S. Yooseph. The disc-covering method for tree recon-
struction. Proceedings of ALEX, 1998, Zkento, Italy,
1998.

T. Jiang, P. Kearney, and M. Li. Orchestrating quar-
tets: approximation and data correction. Proceedings
of the 39th IEEE Symposium on Foundations of Com-
puter Science, to appear, 1998.

P. Keamey. The ordinal quartet method. Proceedings of
the Second Annual International Conference on Com-
putational Molecular Biology, pages 125-134, 1998.

B. Leclerc. Description combinatoire des ul-
tram&riques. Math. Sci. Hum., 73:5-37, 1981.

C. Mea&am. A manual method for character compat-
ibility. Tazon, 30:591-600, 1981.

V. Moulton and M. Steel. Retractions of finite distance
functions onto tree metrics. Discrete Applied Math.,
1998. (To appear).

D. Penny and M.D. Hendy and M.A. Steel Testing the
theory of descent. In M.M. Miyamoto and J. Cracraft,
editors, Phylogenetic analysis of DNA sequences, 155-
183, Oxford University press, 1991.

K. Rice, M. Steel, T. Warnow, and S. Yooseph. Hybrid
tree construction methods. manuscript, 1997.

K. Rice, M.A. Steel, T. Warnow, and S. Yooseph. Bet-
ter methods for solving parsimony and compatiblity.
In Proc. of the 2nd Ann. Int. Conf. on Computational
Molecular Biology (RECOMB). ACM, 1998.

N. Saitou and M. Nei. The neighbor-joining method: A
new method for reconstruction phylogenetic trees. Mol.
Biol. Euol., 4(4):406425, 1987.

[341

L351

[361

[371

1381

P.H. Sneath and R.R. Sokal. Numerical Taxonomy.
Freeman, San Fransisco, 1973.

M. Steel. The complexity of reconstructing trees from
qualitative characters and subtrees. J. of Classification,
9:91-116, 1992.

K. Strimmer and A. von Haeseler. Quartet puzzling: a
quartet maximum-likelihood method for reconstructing
tree topologies. Mol. Biol. Ewol., 13(7):964-969, 1996.

D.L. Swofford, G. J. Olsen, P.J. Wade& and D.M. Hillis.
Phylogenetic Inference. In D.M. Hillis, C. Moritz, and
B.K. Mable, editors. Molecular systematics (2nd edi-
tion) 407-514. Sunderland, USA, 1996.

S. Willson. Measuring inconsistency in phylogenetic
trees. J. Theoret. Biol, 190:15-36, 1998.

68

