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Abstract
Physical memory is the scarcest resource in today’s cloud

computing platforms. Cloud providers would like to max-
imize their clients’ satisfaction by renting precious phys-
ical memory to those clients who value it the most. But
real-world cloud clients are selfish: they will only tell their
providers the truth about how much they value memory
when it is in their own best interest to do so. How can real-
world cloud providers allocate memory efficiently to those
(selfish) clients who value it the most?

We present Ginseng, the first market-driven cloud sys-
tem that allocates memory efficiently to selfish cloud clients.
Ginseng incentivizes selfish clients to bid their true value for
the memory they need when they need it. Ginseng contin-
uously collects client bids, finds an efficient memory allo-
cation, and re-allocates physical memory to the clients that
value it the most. Ginseng achieves a 6.2×–15.8× improve-
ment (83%–100% of the optimum) in aggregate client satis-
faction when compared with state-of-the-art approaches for
cloud memory allocation.

Categories and Subject Descriptors D.4.2 Operating Sys-
tems [Storage Management]: Main memory

Keywords KVM; Memory Overcommitment
1. Introduction

Infrastructure-as-a-Service (IaaS) cloud computing providers
rent computing resources to their clients. As competition be-
tween providers gets tougher and prices decrease, providers
will need to continuously and ruthlessly reduce expenses,
primarily by improving their hardware utilization. Physical
memory is the most constrained and thus precious resource
in cloud computing platforms today [12, 15, 17, 25, 27, 37].
Google, for example, had to begin charging for memory
usage in addition to CPU usage: not charging for memory
made the scaling of applications that use a lot of memory
and little CPU time “cost-prohibitive to Google.” [8]. Other
platforms (such as Amazon EC2) offered virtual machines
with varying amounts of memory to begin with, thereby
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charging clients for memory usage in addition to CPU and
I/O usage. In general, today’s cloud computing clients buy
a supposedly-fixed amount of physical memory for the life-
time of their guests.

Providers can greatly reduce their expenses by using less
memory to run more client guest virtual machines on the
same physical hosts. This can be done transparently by
means of memory overcommitment [23, 37]. When mem-
ory is overcommited, the clients have no way to discern how
much physical memory they are actually getting. Due to the
lack of transparency and difficulties with providing a given
level of quality of service when overcommitting memory,
some providers refrain from memory overcommitment and
let their hardware go underutilized. Others simply reduce
their clients’ quality of service.

Clients would much prefer to have full visibility and con-
trol over the resources they receive [2, 28]. They would like
to pay only for the physical memory they need, when they
need it [3, 11]. By granting clients this flexibility, providers
can increase client satisfaction: clients interested in high
quality of service (QoS) will be able to choose a non-
overcommited machine, while budget-conscious clients will
be able to enjoy the cloud at low prices when demand is
low. Finding an efficient allocation of physical memory on
each cloud host—an allocation that gives each guest virtual
machine precisely the amount of memory it needs, when
it needs it, at the price it is willing to pay—yields benefits
for clients, whose satisfaction is improved, and providers,
whose hardware utilization is improved.

Previous physical memory allocation schemes assumed
that guest virtual machines are white boxes: that they are
run by fully cooperative clients, who let the host know pre-
cisely what each guest is doing, how well it performs, how
much benefit additional memory would bring to it, and the
importance of the workload to the client [12, 15, 17, 27].
These systems allocated memory efficiently and improved
the overall system’s performance, but were unsuitable for
real-world commercial clouds, because the assumption that
the host has full, accurate information on all aspects of guest
performance is unrealistic.

As recent commercial cloud trends of price dynamicity
and fine-grained resource granularity [2] indicate, real-world
cloud clients act rationally and selfishly. They are black
boxes with private information such as their performance
statistics, how much memory they need at the moment, and
what it is worth to them. Rational, selfish black-boxes will



not share this information with their provider unless it is in
their own best interest to do so.

When the host allocates memory solely according to
guest-provided input, rational and selfish guests have an
incentive to manipulate the host into granting them more
memory than their fair share. For example, if the host gives
memory to those guests that will benefit more from it, each
guest will say it benefits from memory more than any other
guest. If the host gives memory to those guests that perform
poorly with their current allocation, each guest will say it
performs poorly.

Alternatively, the host can allocate memory according
to passive black-box measurements taken outside of the
guests [18, 25, 37, 39, 40]: for example, by monitoring I/O
and inferring major page faults [18], or by monitoring use
of physical pages to balance the guests’ need for physical
memory [39]. However, in such cases the guests have an
incentive to bias the measurement results, e.g., by inducing
unnecessary page faults or accessing unnecessary memory.
Furthermore, such passive measurements can only compare
the guests by externally visible metrics such as throughput
and latency, which are valued differently by different guests
under different circumstances.

We address the cloud provider’s fundamental memory al-
location problem: How should it divide the physical memory
on each cloud host among selfish black-box guests? A rea-
sonable meta-approach would be to give more memory to
guests who would benefit more from it. But how can the host
compare the benefits of additional memory for each guest?

Our first contribution towards solving this problem is
the Memory Progressive Second Price (MPSP) auction,
a game-theoretic market-driven mechanism which induces
auction participants to bid (and thus express their willing-
ness to pay) for memory according to their true economic
valuations (how they perceive the benefit they get from the
memory, stated in monetary terms).

Our second contribution is Ginseng itself, a market-
driven cloud system for allocating memory efficiently to
selfish black-box virtual machines. It is the first full im-
plementation of a single-resource Resource-as-a-Service
(RaaS) cloud [2]. Ginseng is the first cloud platform to op-
timize overall client satisfaction for black box guests. In
Ginseng, the host periodically auctions memory using the
MPSP auction. Guests bid for the memory they need as they
need it; the host then uses these bids to compare the benefit
that different guests obtain from physical memory, and to al-
locate it to those guests which benefit from it the most. The
host is not manipulated by guests and does not require un-
reliable black-box measurements. We also build a strategic
agent for the MPSP auction.

Ginseng supports static-memory applications—legacy
applications that require some fixed quantity of memory and
do not perform better with more memory, but is tailored for
elastic-memory applications—applications that can improve

Figure 1. Ginseng system architecture

their performance when given more memory on-the-fly over
a large range of memory quantities and can return memory
to the system when needed. Elastic-memory applications are
becoming more common thanks to platforms that facilitate
their development, such as Salomie et al.’s database [29],
Java runtime with balloons [12, 17, 29], CRAMM [38],
or dynamic heap adjustment for garbage-collected envi-
ronments [14, 16]. In addition, applications designed for
the Linux mempressure control group are elastic by design.
Our third contribution is two elastic-memory benchmark
applications: an elastic-memory version of Memcached, a
widely-used key-value cloud application, and MemoryCon-
sumer, an elastic memory benchmark we developed.

Ginseng achieves a 6.2× improvement in aggregate client
satisfaction for MemoryConsumer and 15.8× improvement
for Memcached, when compared with state-of-the-art ap-
proaches for cloud memory allocation. Overall, it achieves
83%–100% of the optimal aggregate client satisfaction.
2. System Architecture

Ginseng is a market-driven cloud system that allocates
memory to guests using guest bids for memory. It is imple-
mented for cloud hosts running the KVM hypervisor [20]
with Litke’s memory overcommit manager MOM [23]. It
controls the exact amount of physical memory allocated to
each guest via libvirt using balloon drivers [37]. The balloon
driver is installed in the guest operating system. The host’s
balloon controller controls the balloon driver, inflating or de-
flating it. When inflating, the balloon driver allocates mem-
ory from the guest OS and pins it, so that the guest OS won’t
attempt to swap it out; the balloon driver then transfers this
memory to the host. When deflating, the balloon driver frees
memory back to its OS, in effect giving the OS more mem-
ory from the host. Libvirt supplies an API to balloon drivers
in different hypervisors, improving portability.

Ginseng has a host component and a guest component,
as depicted in Figure 1. The host component includes the
Auctioneer, which runs the MPSP auction. The auction-
eer’s communicators communicates asynchronously with
the guests’communicators according to the auction’s pro-
tocol specified in Section 4. The host’s communicator also



instructs the balloon controller how to allocate memory be-
tween guests. The balloon controller inflates and deflates
the balloon drivers inside the guests. The guest’s economic
learning agent acts on behalf of the client. The strategy ad-
viser is the agent’s brains. Our implementation of an adviser
is described in Section 6, but the client is free to choose a
different logic.
3. Memory Auctions

Ginseng allocates memory efficiently because its guests
bid for the memory they want in a specially-designed auction
that the host conducts in quick rounds. We begin by supply-
ing the background to the auction, whose protocol is defined
in Section 4.

In Ginseng, each guest has a different, changing, pri-
vate (secret) valuation for memory. This valuation reflects
how much additional memory is worth to each guest. We
define the aggregate benefit of a memory allocation to all
guests—their satisfaction from auction results—using the
game-theoretic measure of social welfare. The social wel-
fare of an allocation is defined as the sum of all the guests’
valuations of the memory they receive in this allocation. An
efficient memory auction allocates the memory to the guests
such that social welfare—guest satisfaction—is maximized.

VCG [7, 13, 34] auctions optimize social welfare by in-
centivizing even selfish participants with conflicting eco-
nomic interests to inform the auctioneer of their true valu-
ation of the auctioned items. VCG auctions do so by charg-
ing each participant for the damage it inflicts on other par-
ticipants’ social welfare, rather than directly for the items it
wins. VCG auctions are used in various settings, including
Facebook’s repeated auctions [24].

Various auction mechanisms, some of which resemble the
VCG family, have been proposed for divisible resources, in
particular for bandwidth sharing [19, 21, 26]. For practical
reasons, bidders in these auctions do not communicate their
valuation for the full range of auctioned goods. One of these
VCG-like auctions is Lazar and Semret’s Progressive Sec-
ond Price (PSP) auction [21]. None of the auctions proposed
so far for divisible goods are suitable for auctioning mem-
ory, because memory has two characteristics that set it apart
from other divisible resources. First, transferring memory
too quickly between two participants leads to waste; Sec-
ond, the participants’ valuation functions might not be con-
cave; that is, the law of diminishing marginal utility might
not always apply to memory, e.g., as in Figure 2b. However,
the PSP auction optimally allocates a divisible resource if
and only if all the valuation functions are monotonically ris-
ing and concave. Other bandwidth auctions also rely on the
monotonically rising concave property of the valuation func-
tions.

The memory valuation function, which describes how
much the guest is willing to pay for different memory quan-
tities, depends on the load the guest is under, the perfor-
mance gain or loss it expects from more memory given

that load, and the value of performance to the guest. For-
mally, it is V (mem, load) = Vperf (perf(mem, load)), where
Vperf (perf) refers to the valuation of performance as de-
scribed below, and perf(mem, load) describes the perfor-
mance the guest can achieve given a certain load and a cer-
tain memory quantity.

Performance might be measured in page hits per sec-
ond for a webserver, “get” hits per second for a caching
service, transactions per second for a database, trades per
second for a high-frequency trading system, or any other
guest-specific metric. For our experiments, an offline map-
ping of performance as a function of memory and load (as
done by Hines et al. [17] and Gordon et al. [12]) was ac-
curate enough, as we demonstrate in Section 8.2. However,
real-world performance may depend on many variable con-
ditions. To this end, performance can be measured online as
several works demonstrate [39–41]. An important feature of
the MPSP auction is that it does not require the guest to have
its performance defined for any memory value. Hence, the
guest can keep a moving window of its latest performance
measurements, which reflect best the current conditions un-
der which it operates.

The guest’s owner’s (i.e., the client’s) valuation of perfor-
mance function, Vperf (perf), describes the value the client
derives from a given level of performance from a given
guest. This client-specific function is private information of
each client. It is based on economic considerations and busi-
ness logic.

For example, an e-commerce website that typically makes
$100 sales and needs to display 10, 000 web pages on aver-
age to generate a single sale might measure its performance
in displayed pages per second, and value each displayed
page at $0.01. For this client, Vperf (perf) = $0.01

page · perf.
Another client might require the same average number of
displayed pages to make a sale, but its typical sale would be
$10 only. For this client, Vperf (perf) = $0.001

page · perf. Both
clients will need to know perf(mem, load): how many pages
they can display per second when given various amounts of
memory and under the current conditions (e.g., load).

If either of these functions is non-concave or not mono-
tonically rising, the composed function may be non-concave
or not monotonically rising as well. Indeed, guest perfor-
mance perf(mem, load) is not necessarily a concave, mono-
tonically rising function of physical memory. For example,
the performance graph of off-the-shelf memcached in our
experimental environment is monotonically rising, but not
concave (Figure 2b). This non-concave function resembles
a step function, and is typical of the operating system’s ef-
forts to handle memory pressure through swapping. Non-
concavity may also result from differences in the size and
frequency of use of various working sets, swapping poli-
cies, or garbage collection operations [31]. Our elastic mem-
cached, in contrast, has a concave, monotonically rising
performance graph in the same experimental environment
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Figure 2. Application performance (“get” hits per second
for Memcached, hits per second for MemoryConsumer) as a
function of guest physical memory, for different load values.
The load is defined as the number of concurrent requests
made to the application.

(Figure 2a). However, in a default system configuration, its
performance graph is neither concave nor monotonically ris-
ing (Figure 2c), due to a network bottleneck that was pre-
vented in the experimental environment. This bottleneck is
an example of a problem that a real production system might
encounter. It cannot fine-tune its setup parameters and re-
design its software on-the-fly; it has to make do with what it
measures. Ginseng is designed to support such ad hoc, real-
life valuation-of-memory graphs that are neither concave nor
monotonically rising.

Auction protocols that assume monotonically rising con-
cave valuation functions either interpret a bid of unit price
and quantity (p, q) as willingness to buy exactly q units for
unit price p or as willingness to buy up to q units at price
p. In the first case, the bidding language is limited to ex-
act quantities. In the second case, if the valuation function
is non-concave, the guest may get a quantity that is smaller
than the one it bid for, and pay for it a unit price it is not
willing to pay. If the function is not, at the very least, mono-
tonically rising, it may even get a quantity it would be better
off without.

MPSP supports monotonically rising concave memory
valuation functions in the same way that the PSP auction
supports them. In addition, it supports non-concave and
non-monotonic valuation functions by specifying forbidden

ranges. These are forbidden memory-quantity ranges for a
single price bid. The guest can use forbidden ranges to cover
domains in which its average valuation per memory unit is
lower than its bid price. By definition, MPSP will not allo-
cate the guest a memory quantity within its forbidden ranges.
Rather, it will optimize the allocation given the constraints.
The guest can thus avoid getting certain memory quantities
in advance while still expressing a variety of desired quanti-
ties. The forbidden ranges are designed to efficiently convey
information about functions which are concave, monoton-
ically rising in separate ranges. However, the terminology
does not restrict the guest valuation functions in any way. In
particular, the guest can bid for a specific desired point (p, q)
by setting the open range (0, q) as a forbidden range.
4. MPSP: Repeated Auction Protocol

In Ginseng, each guest has some permanent base mem-
ory. Guests pay a constant hourly fee for their base memory,
and it is theirs to keep as long as they run. In each auction
round, each guest can bid for extra memory. Ginseng calcu-
lates a new memory allocation after every auction round and
guests rent the extra memory they won. In the next auction
round the same memory will be put up for auction again.

The constant fees for base memory are designed to pro-
vide the lion’s share of the host’s revenue from memory,
such that the host can afford to rent the extra memory for the
sole purpose of optimizing social welfare, thereby attracting
more guests. The price of base memory is not affected by the
prices paid for extra memory.

Ultra high-end clients with hard QoS requirements are
expected to pre-pay for all the memory they need in advance,
to ensure that they always get the resources they need. Ultra
low-end clients are expected to pre-pay only for as much
memory as they need to operate the guest OS and limit their
bids, so that they can temporarily rent additional resources
later while staying within their budget. The clients spanning
the range between those extremities are expected to choose
a flexible deal according to their needs.

Here we describe one MPSP auction round, accompanied
by a numeric example.

Initialization. Each guest i is set up with its base mem-
ory as it enters the system. For example, guest 1 runs mem-
cached and pre-pays for 1.4GB, while guest 2 runs Memo-
ryConsumer and pre-pays for 0.6GB.

Auction Announcement. The host computes the free
memory—the maximal amount of memory each guest can
bid for—as the excess physical memory beyond the amount
of memory in use by the host and the sum of base memo-
ries. It then informs each guest of the free memory and the
auction’s closing time, after which bids are ignored. In the
example, the machine has 4GB. The host uses 1.6GB, and
the guests pre-paid for 2GB, so the host announces an auc-
tion for 0.4MB.

Bidding. Interested guests bid for memory. Agent i’s bid
is composed of a unit price pi—memory price per GB per



hour (billing is still done per second according to exact rental
duration) and a list of desired ranges: mutually exclusive,
closed ranges of desired memory quantities, sorted in as-
cending order. We denote the desired ranges by [rj , qj ] for
j = 1 . . .mi, where r and q stand for restriction and quan-
tity. The bid means that the guest is willing to rent any mem-
ory quantity within the desired range list for a unit price pi.

In the example, both guests experience a load of 10 con-
current requests. Guest 1 values its performance at $1 per
Khit/second, and bids $1 per GB of memory per second (p =
1 $
GBs ) for any amount of memory between 0 and 0.4GB

(r1 = 0, q1 = 0.4GB), on the basis of the performance
data in Figure 2a. Guest 2 values its performance at $0.1 per
hit/second, and bids $5 per GB of memory per second for the
same amount of memory (p = 5 $

GBs , r1 = 0, q1 = 0.4GB),
on the basis of the performance data in Figure 2d.

Bid Collection. The host asynchronously collects guest
bids. It considers the most recent bid from each guest, dis-
missing bids received before the auction round was an-
nounced. Guests that did not bid lose the auction automati-
cally, and are left with their base memory.

Allocation and Payments. The host computes the alloca-
tion and payments according to the MPSP auction protocol
described in Section 5. For each guest i, it computes how
much memory it won (denoted by q′i) and at what unit price
(denoted by p′i). The payment rule guarantees that the price
the guest will pay is less than or equal to the unit price it bid.
The guest’s account is charged accordingly. In the example,
guest 1 loses (p′1 = 0, q′1 = 0), and guest 2 wins all of the
free memory (p′2 = 1 $

GBs , q
′
2 = 0.4GB).

Informing Guests. The host informs each guest i of its
personal results p′i, q

′
i. The host also announces borderline

bids: the lowest accepted bid’s unit-price and the highest
rejected bid’s unit-price (5 $

GBs and 1 $
GBs in the example,

respectively). This is information that guests can work out
on their own; having the host supply it makes for a more
efficient system. The guests use this information in on-line
algorithms that decide how much to bid in future rounds, as
described in Section 6.

Adjusting and Moving Memory. After an adjustment
period following the announcement, the host actually takes
memory from those who lost it and gives it to those who
won, by inflating and deflating their balloons as necessary.
The purpose of the adjustment period is to allow each guest’s
agent to notify its applications of the upcoming memory
changes, and then allow the applications time to gracefully
reduce their memory consumption, if necessary. The appli-
cations are free to choose when to start reducing their mem-
ory consumption, according to their memory-release agility.
This early notification approach makes it possible for the
guest operating systems to gracefully tolerate sudden large
memory changes and spares applications the need to mon-
itor second-hand information on memory pressure. Which
applications to notify and when to notify them is left to the

guest’s agent. In the absence of elastic applications, it is left
to the guest kernel to deal with memory pressure, e.g., by
shrinking internal caches.
5. MPSP: Auction Rules

Every auction has an allocation rule—who gets the
goods?—and a payment rule—how much do they pay? To
decide who gets the goods, the MPSP auction determines
the optimal allocation of memory. This is the allocation that
maximizes social welfare—client satisfaction—as described
in Section 3. To determine the optimal allocation, the MPSP
auction solves a constrained divisible good allocation prob-
lem, as detailed in Section 5.1. To determine how much they
pay, the MPSP auction takes into account the damage they
inflict on other guests, as detailed in Section 5.2. After ex-
plaining the rules we discuss their run-time complexity and
provide an example for executing them. A correctness proof
is also available but has been omitted for brevity.
5.1 Allocation Rule

Ginseng finds the optimal allocation using a constrained
divisible-good allocation algorithm, which works in stages
as described below. In each stage, Ginseng attempts a divis-
ible good allocation by sorting the guests lexically, first by
their bid unit-price, second (to break ties) by their current
holdings, and last by a random shuffle. Preferring the cur-
rent holder when breaking ties reduces memory waste due
to back-and-forth transfers of memory between guests [39].
It also reduces the waste in comparison to a single PSP auc-
tion, in which tied guests are excluded from the allocation.
Ginseng then allocates each guest its maximal desired quan-
tities according to this order.

If there are a guest g and a forbidden range R such that g
ends up with a memory quantity inside R, then the allocation
is invalid. This can happen if g is the last guest allocated
some memory and there is not enough memory left to fulfill
g’s entire request. Ginseng examines the social welfare of
such invalid allocations. If such an invalid allocation gives
a higher social welfare than the highest social welfare seen
to date in a valid allocation, then Ginseng considers two
constrained allocations instead of the invalid one. In the first,
guest g gets a memory quantity large enough to cover all of
R. In the second, g gets a memory quantity small enough
such that none of it is in R. The social welfare of the valid
allocations is compared to find the optimal allocation.
5.2 Payment Rule

The payments follow the exclusion compensation princi-
ple, as formulated by Lazar and Semret [21]. Let q′′k denote
the memory that would have been allocated to guest k in an
auction in which guest i does not participate and the rest of
the guests bid as they bid in the current auction. Then guest
i is charged a unit price p′i, which is computed as follows:

p′i =
1

q′i

∑
k 6=i

pk (q
′′
k − q′k) . (1)



According to this payment rule, when guest i is charged p′iq
′
i,

it actually pays for the damage its bid inflicted on the other
guests. We note that to compute the payment for a guest that
gets allocated some memory, the constrained divisible good
allocation algorithm needs to be computed again without this
guest. In total, the allocation procedure needs to be called
one time more than the number of winning guests.
5.3 Complexity

The problem that the MPSP algorithm solves—finding
the memory allocation that maximizes the social welfare
function—is defined over the domain of memory quantities
that guests agree to rent. This domain is not convex because
the forbidden ranges create “holes” in it. Maximizing a func-
tion over a non-convex domain is at least as hard as the knap-
sack problem, and therefore NP-hard. In the worst case the
algorithm needs to compute the social welfare which results
from each forbidden range being completely allocated or
completely denied: 2M different divisible allocations, where
M is the number of all the forbidden ranges in all the bids.
Each such allocation takes O(N) to compute, where N is
the number of bids, and each payment rule requires O(N)
allocations to be computed. Hence, the time complexity of
MPSP is O(N2 · 2M ).

Nevertheless, for real life performance functions, a few
forbidden ranges should be enough to cover the non-concave
regions. We observed one forbidden range for off-the-shelf
memcached and zero forbidden ranges for elastic-memory
applications. Given the relatively small number of guests on
a physical machine, the algorithm’s run-time is reasonable:
we observed less than one second using a single hardware
thread, even in experiments with 23 guests.
6. Guest Strategy

So far, we discussed the Ginseng system’s architecture,
and the MPSP memory auction from the auctioneer’s point
of view. But what should guests who participate in MPSP
auctions do? How much memory should they bid for and
how much should they offer to pay? In an exact VCG auc-
tion, the guests can inform the host about their valuation for
different memory quantities. However, the reduced MPSP
bidding language lightens the computational burden on the
host and leaves the choice of memory quantity with the
guest. An intermediate approach—the multi-bid auctions—
is discussed in Section 10.

In this section we present the bidding strategy we devel-
oped. It is used by the guests in the performance evaluation
in Section 8. Our guest wishes to maximize the utility it es-
timates it will derive from the next auction. This is a natural
class of bidding strategies in ad auctions [5].

Our guest needs to decide how much memory to bid for,
and at what price. We show in Section 6.1 that for any
memory quantity, the best strategy for the guest would be
to bid its true valuation for that quantity. To choose the
maximal quantity it wants to bid for, the guest compares its

estimated utility from bidding for the different quantities, as
described in Section 6.2.
6.1 Choosing a Bid Price

In this subsection we assume the guest has decided how
much memory (qm, or q for short) it wants to bid for and
show how much it should bid for it. For the simple case of an
exact desired memory quantity (m = 1, rm = qm = q), for
any value q, bidding the mean unit valuation of the desired
quantity (the slope s(q) = V (base+q)−V (base)

q ) is the best
strategy, no matter what the other guests do. By bidding
lower than p = s(q), the guest risks losing the auction; by
bidding higher it risks operating at a loss (paying more than
what it thinks the memory is worth).

For less simple cases when the guest bids for a range of
memory quantities up to q, if the valuation function is (at
least locally, in the range up to q) concave monotonically
rising, bidding p = s(q) is still the best strategy for q re-
gardless of other guests’ bids: s(q) is the guest’s minimal
valuation for the range because the unit valuation drops with
the quantity. See, for example, Figure 3a, where the valua-
tion function is above the line connecting the valuation of
1200 MB with the base (400 MB) valuation. Since the con-
necting line’s slope is the mean unit valuation of 1200MB,
any point above the line is a point whose mean unit valuation
is higher than the mean unit valuation of 1200MB.

In the remaining cases, the valuation function is non-
concave or not even monotonically rising. In such functions,
the mean unit-valuation s(q) may rise locally with quantity:
in Figure 3b, for example, s(2200MB) > s(1800MB).
This means that simply bidding for 2200MB with a unit-
price of s(2200MB) may result in getting a memory quan-
tity for which the guest is not willing to pay that much. The
guest can avoid getting quantities for which the mean unit
valuation is lower than its bid price by excluding those quan-
tities from its bid using the forbidden ranges mechanism. In
this example, the guest uses a forbidden range to exclude
the quantities [1700, 2000] MBs of memory from its range,
since it is not economical to bid for them with a unit price of
s(2200MB).

The forbidden ranges mechanism allows the guest to bid
s(q) without the risk of operating at a loss. However, the
guest may have something to gain by bidding with a unit-
price that is less than s(q). If the guest does not get the
maximal memory quantity it bid for, it can try exploring its
strategy space. It can retain q, lower the bid price, and de-
crease the forbidden ranges. Thus the guest allows the host
to give it a partial allocation in more cases, when the alterna-
tive might be not getting any memory at all. In Figure 3b, the
lowest bid-price worth exploring is labeled the low slope: it
eliminates the need for forbidden ranges.

When the auction has reached a steady state—when a
guest’s won goods and payment turn out the same in sub-
sequent auctions in response to the same strategy—the guest
already knows how much memory it can get for any bid. The



(a) Single range (b) Multiple range

Figure 3. Strategies for choice of unit price for two maxi-
mal quantities, using the same valuation function. Figure 3a
demonstrates a single desired range strategy for a concave
monotonically rising part of the valuation function. Fig-
ure 3b demonstrates a multiple desired range strategy for a
non-concave, not even monotonically rising part of the valu-
ation function.

guest is incentivized to raise its bid price to a maximum, thus
increasing the exclusion compensation that other guests pay
and making them more considerate. Hence, our guests al-
ways bid s(qm).
6.2 Choosing a Maximal Memory Quantity qm

To maximize the guest’s estimated utility from the next
auction, the guest chooses qm. Our guest assumes it is in
a steady state, and estimates its utility using past auction
results. The guest assumes, for simplicity, that it will get a
memory quantity of qm if p > pmin, and 0 otherwise. pmin

is the lowest price the guest can offer and still have a chance
of getting any memory at all. It is evaluated on the basis of
ten recent borderline bids that are announced by the host.

The utility estimation also requires an estimation of the
unit price to be paid for the allotted memory amount. The
guest estimates its utility from bidding (p, qm) by dividing
it to two components: (1) a valuation improvement from
winning the memory it expects to win and (2) a charge.
For concave valuation functions V (·), the estimated utility
is maximized when s(qm) = pmin. In such cases, the guest
need only estimate and predict pmin to bid optimally. For
other (non-concave) functions, the guest must evaluate the
estimated charge to find the memory quantity that maximizes
the estimated utility To this end it assesses the unit price it
will pay on the basis of a historical table of (p′, q′) pairs, and
further bounds it from above by the highest losing bid price
in the last auction round. If several values of qm maximize
the estimated utility, the guest prefers to bid with higher p
values, to improve its chances of winning the auction.
7. Experimental Setup

In this section we describe the experimental setup in
which we evaluate Ginseng.

Alternative Memory Allocation Methods. We com-
pared Ginseng with memory overcommitment and alloca-
tion methods available to commercial IaaS providers: static,
host-swapping and MOM. In the static method, each guest is

allocated a fixed amount of memory without any overcom-
mitment. This is a common method in public clouds. When
relying on host-swapping, each guest gets a fixed memory
quantity regardless of the number of guests, and the host
is allowed to swap guest memory to balance memory be-
tween guests as it sees fit. This method is the fallback of
many overcommitment methods. The Memory Overcommit-
ment Manager (MOM) [23] collects data from its guests to
learn about their memory pressure and continuously adjusts
their balloon sizes to make the guests feel the same memory
pressure as the host. This is a state-of-the-art overcommit-
ment method that is freely available, but it is not a black-box
method: it relies on probes inside the guests and can be eas-
ily circumvented by a malicious one.

Workloads. To experiment with overcommitment trade-
offs, we used benchmarks of elastic memory applications:
applications that can improve their performance when given
more memory on-the-fly over a large range of memory quan-
tities, and can return memory to the system when needed. We
experimented with a modified elastic memcached and with
MemoryConsumer, a dedicated dynamic memory bench-
mark. Both applications interacted with the Ginseng guest
agent to dynamically adjust their heap sizes when they won
or lost memory: the Ginseng agent informed the application
of the upcoming change and the application reacted by re-
ducing its working-set size accordingly, so that the system
would not run out of memory when the balloon is inflated.

Elastic memcached is a version of memcached that
changes its heap size on-the-fly to respond to guest mem-
ory changes. It can free the less-needed internal-cache slabs
or alternatively increase its internal cache size. Memcached
was driven by a memslap client, a standard memcached
benchmarking utility. To test a large number of guests
quickly, we configured memslap such that memcached’s
performance graphs saturated at 2GB. To this end we ran
memslap with a key size of 249 bytes, a value size of 1024
bytes, a window size of 100K, and a get/set ratio of 30:70,
for 200 seconds each time. The application’s performance is
defined as the “get” hits per second. 1

MemoryConsumer is an elastic memory benchmark. It
tries to write to a random 1MB-sized cell from a predefined
range. If the address is within the range of memory currently
available to the program, then 1MB of data is actually writ-
ten to the memory address and it is considered a hit. Af-
ter each attempt, whether a hit or a miss, it sleeps for 0.1
seconds, so that misses cost time. The application’s perfor-
mance is defined as the hits per second. This application is
tailored as a pure memory overcommitment benchmark, in
order to create clean tests, unhindered by resource bottle-
necks other than memory. As with memcached, we chose a
range of 1950 cells, so that performance graphs would satu-
rate at 2GB.

1 Elastic-memcached is available from https://github.com/

ladypine/memcached.



We profiled the performance of each workload with vary-
ing amounts of memory to create its perf(mem, load) func-
tion. We measured performance under different loads for
four concurrent guests without memory overcommitment, as
also done by Hines et al. [17]. We gradually increased and
decreased the physical memory in small steps, waiting in
each step for the performance to stabilize. For memcached
we measured the performance over 200 seconds, and for
MemoryConsumer over 60 seconds. The perf(mem, load)
graphs can be seen in Figure 2a for the elastic Memcached
and Figure 2d for MemoryConsumer.

Load. We defined “load” for memcached and Memo-
ryConsumer as the number of concurrent requests. Loads
are in the range [2, 10]. The total load is always the number
of guests ×6, so that the aggregate hits per second of dif-
ferent experiments will be comparable. Each pair of guests
exchanged their loads every Tload. The load values and
their exchange timing were chosen to increase the diversity
among the guests, as expected in a real system. Guests were
further diversified by assigning them with different memory
valuation functions.

Machine Setup. We used a cloud host with 12GB of
RAM and two Intel(R) Xeon(R) E5620 CPUs @ 2.40GHz
with 12MB LLC. Each CPU had 4 cores with hyper-
threading enabled, for a total of 16 hardware threads. The
host ran Linux with kernel 2.6.35-31-server-#62-Ubuntu,
and the guests ran 3.2.0-29-generic-#46-Ubuntu. To
reduce measurement noise, we disabled EIST, NUMA, and
C-STATE in the BIOS and KSM in the host kernel. To
prevent networking bottlenecks, we increased the network
buffers. We dedicated hardware thread 0 to the host and
pinned the guests to hardware threads 1 . . . N .

Memory Division. 0.75GB were dedicated to the host. To
allow guests to both grow and shrink their memory alloca-
tions, we configured all guests with a high maximal memory
of 10GB, most of which was occupied by balloons, leaving
each guest with a smaller initial memory. However, when
using host-swapping and MOM, extensive host-swapping
caused the host to freeze when the maximal guest memory
was set to 10GB. Hence we also created a hinted (white-box)
version of each of these methods to compare against: we in-
formed the host that the applications actually cannot benefit
from the full 10GB, and that a rational guest would only
need 2GB. As a result, the provider in the hinted-MOM and
hinted-host-swapping methods configured the guests with at
most 2GB. This white-box configuration, which is based on
our knowledge of the experiment design, is intended to get
the best performance out of the alternative memory alloca-
tion methods. The initial and maximal memory values are
summarized in Table 1.

Reducing Guest Swapping. Bare metal operating sys-
tems shield applications from memory pressure by paging
memory out and by clearing buffers and caches, but elastic-
memory applications should be exposed to memory-pressure

Method/Memory (GB) Initial Maximal
Ginseng 0.6 10

Static 11.25/N 11.25/N
Host-swapping 10 10

MOM 0.6 10
Hinted host-swapping 2 2

Hinted MOM 0.6 2

Table 1. Guest configuration: initial and maximal memory
values for each overcommitment method. N denotes the
number of guests.

in order to enable them to respond. To this end we minimized
guest swapping by setting vm.min free kbytes to 0. Note
that this did not hinder performance of host-swapping.

Reducing Indirect Overcommitment. Bare metal oper-
ating systems keep some memory free, in case of sudden
memory pressure. The host can indirectly overcommit such
memory by giving it to other guests while it is unused; the
host relies on its ability to page out guests if and when sud-
den memory pressure occurs. Since we focus on direct over-
commitment (e.g., using balloons), we made the account-
ing more accurate by setting vm.overcommit memory to 1
in our guests, thus making the guest physical memory the
exact limitation for guest memory allocations. These set-
tings make more sense for a production VM than the de-
fault bare-metal OS settings (vm.overcommit memory=0).
A VM with default settings would have required and not
used 300MB more on our system. These 300MB would only
be available for use by other VMs.

Time Scales. Three time scales define the usability of
memory borrowing and therefore the limits to the experi-
ments we conducted: the typical time that passes before the
change in physical memory begins to affect performance
(e.g., cache-warming time—time for the cache to be filled
with relevant data), Tmemory; the time between auction
rounds, Tauction; a typical time scale in which conditions
(e.g., load) change, Tload. Useful memory borrowing re-
quires Tload >> Tmemory . This condition is also necessary
for on-line learning of performance with different memory
quantities. To evaluate Tmemory , we performed large step
tests, making abrupt, sizable changes in the physical mem-
ory and measuring the time it took the performance to stabi-
lize. We empirically determined good values for Tload on the
basis of step tests results: 1000 seconds for memcached ex-
periments, whereas for MemoryConsumer 200 seconds are
enough. We also used those step tests to verify that major
page faults in the guest were insignificant (indicating hardly
any guest thrashing), and to verify that there was enough
time for the performance measurement method to evaluate
the performance. For example, memslap required 200 sec-
onds to start experiencing cache misses.

In realistic setups, providers should set Tauction <<
Tload, to get a responsive system. Therefore, we set Tauction



to 12 seconds. In each 12-second auction round the host
waited 3 seconds for guest bids and then spent 1 second
computing the auction’s result and notifying the guests. The
guests were then allowed 8 seconds to prepare in case they
lost memory. We note that due to the long Tload, most of
the auctions in the experiments did not result in memory
changes, and the cache warmth was not affected.
8. Performance Evaluation

This section answers the following questions: (1) Which
memory allocation method provides the most satisfied guests
(i.e., the highest social welfare)? (2) How accurate is off-line
profiling of guest performance?
8.1 Comparing Social Welfare

We evaluate the social welfare achieved by Ginseng vs.
each of the five other methods listed in Table 1 for a vary-
ing number of guests on the same physical host. We evaluate
memcached guests and MemoryConsumer guests in separate
sets of experiments. Each Memcached experiment lasted 60
minutes, with Tload = 1000 seconds. Each MemoryCon-
sumer experiment lasted 30 minutes with Tload = 200 sec-
onds. For each set we present average results of 5 exper-
iments. Ginseng guests use the strategy described in Sec-
tion 6.

In both benchmarks, perf(mem) is a concave function.
To evaluate Ginseng’s abilities over non-concave functions,
we used performance valuation functions Vperf (perf) that
make the resulting composed valuation function V (mem)
non-concave.

In the first experiment set (MemoryConsumer), each
guest i’s valuation function is defined as Vi(mem) = fi ·
(perf(mem))

2, where the fi values were drawn from the
Pareto distribution, a widely used model for income and
asset distributions [22, 32]. We bounded the distribution be-
cause on-line trading does not span the whole range of hu-
man transactions: some are too cheap or too expensive to be
made on-line. We used a reasonable Pareto index for income
distributions (1.1) [32], and a lower bound of 10−4 $

Khit . The
“square of performance” valuation function is characteristic
of on-line games and social networks, where the memory
requirements are proportional to the number of users, and
the income is proportional to user interactions, which are
proportional to the square of the number of users. The com-
posed valuation function is illustrated in Figure 4a.

In the second experiment set (elastic memcached), each
guest i’s valuation function is defined as V(mem) = fi ·
perf(mem), where the fi values were Pareto-distributed
with a Pareto index of 1.36 (an empirical wealth distribu-
tion [22]), and bounded in the range [10−4, 100] $

Khit . The
highest coefficient was set as:

f1 =

{
0.1 $

Khit perf(mem) < 3.4Khit
s

1.8 $
Khit otherwise.

(2)

The piecewise-linear valuation function characterizes ser-
vice level agreements that distinguish usage levels by unit
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Figure 4. Valuation functions for different loads
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(b) Memcached, first guest valuation is piecewise linear

Figure 5. Social welfare (mean and standard deviation) un-
der different allocation schemes as a function of the number
of guests. The dashed lines indicate simulation-based upper
bounds on Ginseng’s social welfare.

price. The valuation function for the first guest is shown in
Figure 4b.

We calculated the social welfare for each experiment us-
ing each VM’s measured performance and that VM’s val-
uation function. The social welfare of the different exper-
iments is compared in Figure 5. The figures contain two
upper bounds for the social welfare, achieved by simulat-
ing Ginseng’s auction and assuming the guests perform ex-
actly according to their predicted performance (e.g., ignor-
ing cache warmup). The tighter bound results from a simula-
tion of Ginseng itself. The looser bound results from a white-
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(a) MemoryConsumer, valuation is a square of performance. Performance
is in terms of hits per second.
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(b) Memcached, first guest valuation is piecewise linear. Performance is
in terms of “get” hits per second.

Figure 6. Performance (mean and standard deviation) un-
der different allocation schemes as a function of the num-
ber of guests. The dashed lines indicate the performance
according to the simulation from which the upper bounds
on Ginseng’s social welfare were derived. They are not the
upper bound on aggregate performance: memory allocation
schemes with lower social welfare may have higher aggre-
gate performance.

box on-line simulation, which results in the theoretically op-
timal allocations given full offline information. The MOM
and host-swapping methods yield negligible social welfare
values for these experiments, and are not shown.

As can be seen in Figure 5, Ginseng achieves much bet-
ter social welfare than any other allocation method for both
workloads. It improves social welfare by up to 15.8× for
memcached and up to 6.2× for MemoryConsumer, com-
pared both with black-box (static) and white-box approaches
(hinted-mom). As the number of guests increases, so does
the potential for increased social welfare, because more indi-
vidual utilities are aggregated to compose the social welfare.
However, each guest is allocated a fixed amount of memory
(base) on startup, reducing our host’s free memory, which is
available for auction; hence the relative peak in social wel-
fare for 7 guests (MemoryConsumer). In the Memcached
experiment the relative peak is flat because the first guest’s
valuation is much higher than the valuations of the rest of

the guests. In both experiment sets, Ginseng achieves 83%–
100% of the optimal social welfare. The sharp decline in
Ginseng’s social welfare for 13 guests comes when Ginseng
no longer has enough free memory to answer even the needs
of the most valuable guest. This improved social welfare
does not come at the cost of overall aggregate performance:
it is roughly equivalent to the performance of the better per-
forming competitors, as can be seen in Figure 6.
8.2 Influence of Off-Line Profiling

In our experiments we used performance graphs that were
measured in advance in a controlled environment. In real
life, such data should be collected on-line, considering both
data accumulation and data freshness in view of changing
environment conditions. Since the accuracy of the best on-
line methods is bounded by the accuracy of hindsight, we
can bound the influence of refraining from on-line eval-
uation on the performance graphs. In Figure 7 we com-
pare our benchmarks’ predicted performance (deduced from
measured load and memory quantities using the functions in
Figure 2, which were measured without memory overcom-
mitment) with performance values measured during Ginseng
experiments for the same loads and memory quantities. The
experimental values were collected after the memory usage
stabilized. The comparison shows that the profiled data is
accurate enough, as can be seen when comparing Ginseng’s
results in the full experiments to its results with simulated
guests in Figure 5.
9. Discussion: Host Revenue and Collusion

Ginseng does not maximize host revenue directly. In-
stead, it assumes that the host charges an admittance fee for
the seed virtual machine and maximizes the aggregate client
satisfaction (the social welfare). Maximizing social welfare
improves host revenues indirectly because better-satisfied
guests are willing to pay higher admittance fees. Likewise,
improving each cloud host’s hardware (memory) utilization
should allow the provider to run more guests on each host.
To ensure that guests cover power-related operational costs,
the host can introduce a dummy bidder that bids with a unit
price that equals these costs.

Our guests reach a steady state using indirect interac-
tions that result from their on-line strategy. More sophisti-
cated guests may collude and negotiate to ease their way into
a steady state of their choice. While collusion can hasten
reaching a steady-state, it may also result in a non-optimal
resource allocation. However, collusion which involves bid-
ding with non-truthful unit prices is risky if bidders can join
or leave and bids can change. The risk can be increased by
randomly limiting the auctionable memory [1].
10. Related Work

Grey-Box and Black-Box Techniques. Magenheimer [25]
used the guests’ own performance statistics to guide over-
commitment. Zhao et al. [40] balanced memory between
VMS on the basis of on-the-fly intermittently-built miss-rate
curves. Waldspurger [37] randomly sampled pages to esti-
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Figure 7. Comparison of predicted performance values (ac-
cording to the profile graphs, given load and memory alloca-
tion) with measured performance.

mate the quantity of unused guest memory, to guide page
reclaim. These methods can be circumvented by a selfish
guest, and like white-box methods, ignore the client’s valu-
ation of performance. Gong, Gu and Wilkes [11] and Shen
et al. [30] used learning algorithms to predict guest resource
requirements.

Market Driven Resource Allocation Drexler and Miller
suggested auctioning memory chunks to reach a market
clearing price [10]. Waldspurger et al. used multiple con-
current sealed-bid, second price auctions to auction proces-
sor time slices [35]. Waldspurger [36] allocated resources in
proportion to tickets that had to be allocated by a central-
ized know-all control. In a cloud, no know-all control can
allocate tickets to separate economic entities. However, real
clouds do not need to allocate tickets—the real money that
they use has intrinsic value.

Resource Allocation For Monotonically Rising, Con-
cave Valuations. Maillé and Tuffin [26] extended the
PSP [21] to multi-bids, increasing the auction’s complexity
to instantly reach equilibrium. Though a multi-bid auction
is more efficient for static problems, it loses its appeal in
dynamic problems which require repeated auction rounds
anyhow. Other drawbacks of the multi-bid auction are that
the guest needs to know the memory valuation function for
the full range; that frequent guest updates pose a burden to
the host; and that the guest cannot directly explore working
points which currently seem less than optimal. (It can do so
indirectly by faking its valuation function.) In contrast, the
MPSP auction leaves the control over the currently desired
resource allocation to the guest, who best knows its own
current and future needs.

Chase et al. [6] allocated CPU time assuming client valu-
ations of the resource are fully known, concave, and mono-
tonically increasing. Urgaonkar, Shenoy, and Roscoe [33]
overbooked bandwidth and CPU given full profiling data.

Auctions With Non-concave Valuations. Bae et al. [4]
supported a single bidder with a non-concave valuation func-
tion. Dobzinski and Nisan [9] presented truthful polynomial
time approximation algorithms for multi-unit auctions with
not-necessarily-concave k-minded valuations. They only as-

sumed that the valuations are non-decreasing (because they
allow shedding of unneeded goods). Our bidding language
of forbidden ranges creates more efficient allocations, be-
cause it allows undesired memory to be auctioned to guests
who value it more, instead of disposing of it. Ginseng is
based on a divisible good auction, and not on bundles in a
multi-unit auction. Hence, its fine-grained allocation accu-
racy does not increase its algorithmic complexity.
11. Conclusion

Ginseng is the first cloud platform that allocates physical
memory to selfish black-box guests while maximizing their
aggregate benefit. It does so using the MPSP auction, in
which even guests with non-concave valuation of memory
are incentivized to bid their true valuations for the memory
they request. Ginseng achieves an order of magnitude of
improvement in the social welfare function when compared
with alternative cloud memory allocation methods.

Although Ginseng focuses on selfish guests, it can also
benefit altruistic guests (e.g., when all guests are owned by
the same economic entity). In this case, guests that perform
the same function for different purposes, such as a test server
vs. a production server, can be distinguished by their eco-
nomic valuation functions.

The MPSP auction is suitable for memory auctioning, but
is not limited to this purpose. When used for the allocation
of another divisible resource, e.g., bandwidth, whose valu-
ation functions are concave and monotonically rising, it is
as efficient as the PSP auction. Hence, Ginseng is not just
a memory auctioning platform, but rather the first concrete
step towards the Resource-as-a-Service (RaaS) cloud [2].
In the RaaS cloud, all resources, not just memory, will be
bought and sold on-the-fly. Extending Ginseng to resources
other than physical memory remains as future work.
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[26] P. Maillé and B. Tuffin. Multi-bid auctions for bandwidth
allocation in communication networks. In IEEE INFOCOM,
2004.

[27] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Man-
aging performance interference effects for qos-aware clouds.
In ACM SIGOPS European Conf. on Computer Systems (Eu-
roSys), 2010.

[28] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui.
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