
Bill Estimation in Simplified Memory
Progressive Second Price Auctions

Danielle Movsowitz-Davidow1(B) , Nir Lavi2 ,
and Orna Agmon Ben-Yehuda2,3(B)

1 Computer Science Department, University of Haifa, Haifa, Israel
dmovsowi@campus.haifa.ac.il

2 Computer Science Department, Technion—Israel Institute of Technology,
Haifa, Israel

dl8.nir@gmail.com, ladypine@cs.technion.ac.il
3 Caesarea Rothschild Institute for Interdisciplinary Applications

of Computer Science, University of Haifa, Haifa, Israel

Abstract. Vertical elasticity, the ability to add resources on-the-fly to a
virtual machine or container, improves the aggregate benefit clients get
from a given cloud hardware, namely the social welfare. To maximize
the social welfare in vertical elasticity clouds, mechanisms which elicit
resource valuation from clients are required. Full Vickrey-Clarke-Groves
(VCG) auctions, which allocate resources to optimize the social welfare,
are NP-hard and too computationally-complex for the task. However,
VCG-like auctions, which have a reduced bidding language compared
with VCG, are fast enough. Such is the Simplified Memory Progressive
Second Price Auction (SMPSP). A key problem in VCG-like auctions is
that they are not completely truthful, requiring participants, who wish
to maximize their profits, to estimate their future bills. Bill estimation
is particularly difficult since the bill is governed by other participants’
(changing) private bids.

We present methods to estimate future bills in noisy, changing, VCG-
like auction environments. The bound estimation method we present
leads to an increase of 3% in the overall social welfare.

Keywords: Bill estimation · Progressive second price auction ·
Resource allocation · Multi armed bandit problem

1 Introduction

Cloud providers give their clients the illusion of elastic resources: “just ask for
more, and the cloud shall provide”. However, virtual machines (VMs) or contain-
ers in the cloud are located on physical machines. Unless they are live-migrated,

Nir Lavi—The work was done while the author was a student at the Computer Science
Dept., Technion.

c© Springer Nature Switzerland AG 2019
K. Djemame et al. (Eds.): GECON 2019, LNCS 11819, pp. 1–9, 2019.
https://doi.org/10.1007/978-3-030-36027-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36027-6_5&domain=pdf
http://orcid.org/0000-0003-4475-662X
http://orcid.org/0000-0001-7374-2476
http://orcid.org/0000-0002-6699-8999
https://doi.org/10.1007/978-3-030-36027-6_5

2 D. Movsowitz-Davidow et al.

their vertical elasticity—the ability to extend the resources on the same system—
is limited first by the physical boundaries of the machine, and furthermore by
the resource consumption of neighboring clients.

During 2017, the major providers introduced vertical CPU elasticity using
the term “burstable” (Amazon [4], Azure [12], and Google [8]). The industry
offered vertical elasticity for CPU first, because it is easy to evict and allocate
on-the-fly. This is done using mature tools at the system’s level, such as cgroups
and CFS [5]. Vertical elasticity of storage resources, such as RAM and SSD, is
the hardest, since their eviction takes a toll. Hence, the allocation of storage
resources should be modified less often, to allow clients to benefit from the
resources prior to its eviction.

Resources that are divided to a small number of units can be auctioned to
optimize the social welfare—the aggregate benefit that all clients draw from
the resource—using a VCG auction [6,9,13], as done for last level cache (LLC)
ways [7]. In this auction, the clients bid with their valuation for each good—
how much each good is worth to them. The host chooses the allocation which
maximizes the social welfare and charges each client according to the damage
it causes to its neighbors, such that it is in the client’s best interest to tell the
truth and enable the host to optimize the sum of true valuations.

A RAM auction is more complicated. RAM is a divisible good, which can be
viewed as continuous or as composed of millions of small chunks. When viewed
as millions of chunks, the complexity of a full VCG auction is prohibitive for
practical purposes.

The Simplified Memory Progressive Second Price (SMPSP) [1,2] auction has
a reasonable complexity on the provider’s side (O(n log(n))), because it is only
VCG-like. In a VCG-like mechanism, clients do not bid using their full valuation
functions. Instead, they use simplified bids, representing their specific resource
requests: a maximal quantity q and a unit price p. The client’s choice of a bid
price p as a function of q is usually truthful, and simple [3]. However, the choice
of quantity is harder—this is where the computational burden lies. Each client
wants to choose a bid that wins the auction and optimizes its performance and
profit goals. Since the unit price and quantity are coupled, the chosen quantity
must correspond to a unit price that is likely to win, and that is likely to yield
the maximal profit. Only by estimating the bill, can the client predict its profit
and optimize it by choosing its bid quantity.

Our contribution is a method for clients to estimate their next bill in an
SMPSP auction. Future bills depend on private bids made by other auction par-
ticipants, which might change their preferences and consequently their bids over
time. We detect such changes in a noisy environment by tracking and analyz-
ing historical data, and focusing on the notable effect of environmental changes
on the bill and minimal winning unit price. As a result, clients in an SMPSP
auction now successfully respond to changing conditions in a noisy environment,
improving the overall social welfare by 3% on average.

The code is free and available from https://bitbucket.org/danimovso/
ginseng-open/.

https://bitbucket.org/danimovso/ginseng-open/
https://bitbucket.org/danimovso/ginseng-open/

Bill Estimation in Simplified Memory Progressive Second Price Auctions 3

Fig. 1. Auction results. Each bid is represented by a rectangle whose height and width
are the client’s p and q.

2 Allocation and Payment in the SMPSP Auction

In the SMPSP auction the host (the software running on the physical machine,
on behalf of the provider) sorts the participating clients’ bids in a descending
price order (see Fig. 1) and allocates RAM to those in the interval [0, Q]. This is
the allocation which optimizes the social welfare. The allocation’s social welfare
is the sum of areas that belong to clients who were allocated RAM. To determine
a client’s bill the host first calculates the social welfare, and subtracts the specific
client’s valuation for the allocation of the resources it got. The host then repeats
the process, excluding the specific client. The client’s bill is the difference between
these two results. Visually, if the client was allocated a quantity of q, its payment
will be the area under the plot in the interval [Q,Q + q].

3 Client Strategy

SMPSP clients need to translate their valuation into a bid. Unlike PSP [10]
clients, SMPSP clients do not hear all the bids and therefore need to estimate
what their bill would be for every bid they make.

To help clients estimate their future bills, at the end of each auction round
the host provides two borderline bid results, as depicted in Fig. 1. pmin in denotes
the minimal unit price offered by a client that was allocated a positive amount
of RAM. pmax out denotes the maximal unit price offered by a client that did
not receive its full requested quantity of RAM.

We consider a single auction round in which Q MB of RAM are offered for
rent, and focus on a single client with a valuation function V (·) for RAM. For
simplicity, V depends only on the quantity of RAM allocated to the client, and
w.l.o.g., V (0) = 0.

The client examines options for a bid quantity q in the interval [0, Q]. For
each option q, it performs the following stages:

1. Compute the truthful bid price, the mean unit valuation p (q) = V (q)
q , which

is the best choice in a steady state, according to [3].

4 D. Movsowitz-Davidow et al.

2. Filter out q if the resulting p(q) is unlikely to win any resources.
3. Estimate bill(q), the bill for the quantity q, assuming the auction is won.

Of the remaining options, the client bids with the (q, p(q)) pair with the
smallest q that maximizes the profit:

q = min (argmaxq (V (q) − bill (q))) . (1)

For the bill estimation in Step 3 we examine three approaches: (1) Use the last
unit price paid by the client. (2) Use a weighted average (with a time-dependent
decay) of the latest unit prices paid by the client. (3) Perform additional com-
putations on each historical data piece; use a feedback loop to learn and adjust
the results (in Sect. 4).

4 Bound Estimation

To estimate its own bill, denoted by bill, a client gathers data about the effect
other clients’ have on its bill. After each auction round, the client can adjust its
estimation using the announced borderline bids. E.g., clients who where allocated
some RAM in the previous round can use pmax out together with their actual
bill (denoted by bill′) and allocation (denoted by q′) to deduce the average unit
price in the interval [Q,Q + q′].

In the bound estimation approach, the client bounds its future bill from above
and below by extrapolating data which was possibly recorded under different
circumstances, and is not necessarily accurate. Finally, the client learns to correct
the interpolation between the bounds according to the general shape of the
allocation plot.

The analysis in this section relies on the following statements, which result
from the concavity and monotonicity of the valuation functions: The first,
pmax out ≤ pmin in. The second, if q1 < q2, then p (q1) ≤ p (q2).

Let us denote the client’s change in the requested amount of RAM by Δq =
q − q′. The estimated bill can be bound on the basis of Δq, assuming that bids
from the rest of the clients stay the same. We will analyze the cases where Δq
is positive or negative separately.

In the following sections, “our” client, whose bill we are estimating, is
described by the rectangle marked “A” in the figures.

4.1 Increased Demand

When Δq > 0 and the client’s request is fully satisfied, the client’s bill increases.
The client’s estimated bill is the lowest (Fig. 2) when all the newly unsatisfied
clients (indicated by the rectangle “C”) are clients who bid with unit price
pmin in. Hence, the estimated lower bill bound is:

bill ≥ bill′ + Δq · pmin in (2)

Bill Estimation in Simplified Memory Progressive Second Price Auctions 5

(a) Before incrementing by Δq (b) After incrementing by Δq

Fig. 2. Visualizing client A’s estimation of the lowest bill bound when the rest of the
clients do not change their bid. Δq > 0.

(a) Before incrementing by Δq (b) After incrementing by Δq

Fig. 3. Visualizing client A’s estimation of the highest bill bound when the rest of the
clients do not change their bid. Δq > 0.

The client’s estimated bill is the highest (Fig. 3) if only one client bid unit
price pmin in and received only δMB, such that δ → 0 (the rectangle “C”), and
another client (the rectangle “B”) received an amount of memory when bidding
for the unit price p′ − ε, such that ε → 0. Hence, the estimated upper bill bound
is:

bill ≤ bill′ + Δq · p (q) . (3)

4.2 Decreased Demand

In cases where Δq < 0, the client’s bill decreases. The client’s estimated bill
is the lowest (Fig. 4) when all the unsatisfied clients affecting our client’s bill
bid with the unit price pmax out (the rectangle “D”). If our client decreases its
RAM request by |Δq|, then the rest of the clients in the interval [Q,Q + Δq] are
allocated RAM. Since the clients are sorted in a descending order, the average
unit price decreases. Hence, the estimated lower bill bound is:

bill ≥ bill′ + Δq · pmax out. (4)

6 D. Movsowitz-Davidow et al.

(a) Before decreasing by Δq (b) After decreasing by Δq

Fig. 4. Visualizing client A’s estimation of the lowest bill bound when the rest of the
clients do not change their bid. Δq < 0.

(a) Before decreasing by Δq (b) After decreasing by Δq

Fig. 5. Visualizing client A’s estimation of the highest bill bound when the rest of the
clients do not change their bid. Δq < 0.

The client’s estimated bill is the highest (Fig. 5) when the client who bid
pmax out receives only δMB, such that δ → 0 (rectangle “D”), and the rest of
the clients in the interval [Q,Q + Δq] bid with the unit price ε → 0. Hence, the
estimated upper bill bound is:

bill ≤ bill′ · q

q′ . (5)

This is because the unit price can only drop, since the bids with the higher unit
price affect the bill less.

4.3 Interpolating the Bounds

Where between the bounds would the actual bill be? The interpolation depends
on the shape of the allocation plot in the vicinity of the Q boundary which
affects the bill change computation. The shape of the allocation plot is the shape
of the function formed by the top of the allocation rectangles. The concavity
of the allocation plot affects the distance of the bill from the bounds. When
Δq < 0, the shape of the allocation plot to the right of the Q boundary affects

Bill Estimation in Simplified Memory Progressive Second Price Auctions 7

Fig. 6. The accuracy of the estimation algorithms. A typical trace of one VM’s actual
bill and its estimation, for each of the methods.

the interpolation: if the allocation plot is concave (downward), the lower bound
will be a better estimate (Fig. 4), if the allocation plot is convex (downward),
the upper bound will be better (Fig. 5). When Δq > 0, it is the shape of the plot
to the left of the Q boundary that matters. The upper bound dominates when
it is concave (Fig. 3), and the lower—when it is convex (Fig. 2).

The client does not need to learn the exact shape of the allocation plot—it
is enough to learn its effect on the interpolation. Hence, the client validates its
prior estimates of upper and lower bounds against its actual bill: it expresses
the previous actual bill as a linear interpolation:

bill′

q
= (1 − α)

Ln−1

q′
n−1

+ α
Un−1

q′
n−1

, (6)

where Ln−1, Un−1 and q′
n−1 denote the lower bound, upper bound and requested

RAM quantity of the previous round, respectively. The interpolation coefficient,
α, is extracted from the validation and used to predict the future bill,

bill = (1 − α)Ln + αUn. (7)

The reuse of a past value of the interpolation coefficient α relies on the assump-
tion that the environment changes slowly, and thus the shape of the allocation
plot remains more or less the same, at least for a small quantity change |Δq|.

5 Evaluation

To evaluate the bill estimation methods, we conducted a series of experiments,
each with a different estimation method used by all guests. In each experiment,
Ginseng [3] auctioned RAM among 10 VM clients using an SMPSP auction. Each
VM ran the elastic version of memcached, a key-value storage application which
is widely used on clouds. The elastic version1 can dynamically adjust its RAM
footprint on-the-fly, so its valuation function for RAM is concave, monotonically
1 Available from https://github.com/ladypine/memcached.

https://github.com/ladypine/memcached

8 D. Movsowitz-Davidow et al.

rising. Its performance, defined by the rate of successful query responses, was
measured using memaslap, which reports its progress every second. The valua-
tion function of each guest was the performance multiplied by a factor, which
was drawn from a Pareto distribution: a characteristic economic distribution.
We used an index of 1.36, according to Levy and Solomon [11] and as used in
earlier work [1,3].

Each experiment lasted 150 auction rounds, each taking 12 seconds. The
experiments all started after a warm-up time of 100 rounds, in which auctions
did not take place, allowing memcached’s cache to stabilize. During each exper-
iment, the valuation functions of 5 of the 10 participating VMs changed, once,
to introduce noise.

The accuracy of the estimation methods is presented in Fig. 6. The previous
unit price method and the weighted history average method do not converge,
and induce fluctuations in the bill. Adjoined by needless allocation changes,
this hurts the VMs’ ability to utilize the RAM. The bound estimation method
converges, and the bill it induces on the system is more stable.

Bill prediction inaccuracy leads to a sub-optimal allocation, which takes its
toll. First, it prevents the SMPSP auction from optimizing the social welfare: the
RAM is not allocated to the best possible clients. Second, an instable allocation
means that RAM has to be reclaimed more often. Frequent RAM reclamation
hurts the application’s ability to make use of the RAM, thus hurting the overall
performance and social welfare achieved by the physical machine. In this set
of experiments, the “previous unit price” method increases the social welfare
by 0.2%, compared with the “weighted history average” method. The “bound
estimation” method increases it by 3% compared with the “weighted history
average” method.

6 Conclusion and Future Work

An accurate bill prediction algorithm is essential for the stability and social
welfare optimization of a VCG-like auction. The bounds estimation algorithm
predicts the bill in an SMPSP auction better than others, and converges to the
actual bill. Improving the bound estimation algorithm by gathering additional
and relevant historical data, remains for future work.

Acknowledgments. This work was partially funded by the Amnon Pazi memorial
research foundation, and supported by the Israeli Ministry of Science & Technology. We
thank Orr Dunkelman for fruitful discussions. We also thank the Caesarea Rothschild
Institute for Interdisciplinary Applications of Computer Science in the University of
Haifa for their support. This research was also partially supported by the Center for
Cyber, Law and Privacy and the Israel National Cyber Directorate.

Bill Estimation in Simplified Memory Progressive Second Price Auctions 9

References

1. Agmon, S., Agmon Ben-Yehuda, O., Schuster, A.: Preventing collusion in cloud
computing auctions. In: Coppola, M., Carlini, E., D’Agostino, D., Altmann, J.,
Bañares, J.Á. (eds.) GECON 2018.: preventing collusion in cloudcomputing auc-
tions, vol. 11113, pp. 24–38. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-13342-9 3

2. Movsowitz, D., Funaro, L., Agmon, S., Agmon Ben-Yehuda, O., Dunkelman, O.:
Why are repeated auctions in RaaS clouds risky? In: Coppola, M., Carlini, E.,
D’Agostino, D., Altmann, J., Bañares, J.Á. (eds.) GECON 2018. LNCS, vol. 11113,
pp. 39–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13342-9 4

3. Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., Mu’alem,
A.: Ginseng: market-driven memory allocation. In: Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE 2014, pp. 41–52. ACM, New York (2014). https://doi.org/10.1145/2576195.
2576197

4. Amazon: Amazon EC2 burstable performance instances. https://aws.amazon.com/
ec2/instance-types/#burst. Accessed 25 July 2018

5. CFS scheduler. https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt. Accessed 22 Oct 2017

6. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
7. Funaro, L., Agmon Ben-Yehuda, O., Schuster, A.: Ginseng: market-driven LLC

allocation. In: Gulati, A., Weatherspoon, H. (eds.) 2016 USENIX Annual Technical
Conference, USENIX ATC 2016, Denver, CO, USA, 22–24 June 2016, pp. 295–308.
USENIX Association (2016). https://www.usenix.org/node/196287

8. Google: Google cloud compute engine pricing. https://cloud.google.com/compute/
pricing. accessed 07 June 2019

9. Groves, T.: Incentives in teams. Econ.: J. Econ. Soc. 41(4), 617–631 (1973)
10. Lazar, A., Semret, N.: The progressive second price auction mechanism for network

resource sharing. International Symposium on Dynamic Games and Applications
05 1999

11. Levy, M., Solomon, S.: New evidence for the power-law distribution of wealth.
Phys. A: Stat. Mech. Appl. 242(1), 90–94 (1997). https://doi.org/10.1016/S0378-
4371(97)00217-3. http://www.sciencedirect.com/science/article/pii/S0378437197
002173

12. Microsoft: Microsoft azure AKS b-series burstable VM. https://azure.microsoft.
com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/. accessed 25
July 2018

13. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Financ. 16(1), 8–37 (1961)

https://doi.org/10.1007/978-3-030-13342-9_3
https://doi.org/10.1007/978-3-030-13342-9_3
https://doi.org/10.1007/978-3-030-13342-9_4
https://doi.org/10.1145/2576195.2576197
https://doi.org/10.1145/2576195.2576197
https://aws.amazon.com/ec2/instance-types/#burst
https://aws.amazon.com/ec2/instance-types/#burst
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.usenix.org/node/196287
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
https://doi.org/10.1016/S0378-4371(97)00217-3
https://doi.org/10.1016/S0378-4371(97)00217-3
http://www.sciencedirect.com/science/article/pii/S0378437197002173
http://www.sciencedirect.com/science/article/pii/S0378437197002173
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/

	Bill Estimation in Simplified Memory Progressive Second Price Auctions
	1 Introduction
	2 Allocation and Payment in the SMPSP Auction
	3 Client Strategy
	4 Bound Estimation
	4.1 Increased Demand
	4.2 Decreased Demand
	4.3 Interpolating the Bounds

	5 Evaluation
	6 Conclusion and Future Work
	References

